CS11-737 Multilingual NLP

Language Change, Pidgin, Creoles

Lei Li

https://lileicc.github.io/course/11737mnlp23fa/
Language is changing!

Letter from Isaac Newton in 1672.

Letter from Wilbur Wright 1899
Why do languages change?

- Changes in the world
 - \emptyset -> email, radiogram -> \emptyset

- Laziness/efficiency (Gibson 2019)
 - telephone -> phone

- Emphasis/clarity
 - he/heo/hi -> he/she/they

- Politeness
 - https://developers.google.com/style/word-list

- Misunderstanding
 - bead: prayer -> small ball

- Group identity/prestige (Danescu-Niculescu-Mizil et al. 2013)
 - aroma -> smell

- Structural reasons
 - regularity in phonetics, morphology

(Trask 2010)
Cognates

https://www.mentalfloss.com/article/68281/evolution-two-indo-european-language-family
Loan Words

orchestra

オーケストラ

karaoke

"empty - orche"

卡拉オケ
<table>
<thead>
<tr>
<th>Sanskrit</th>
<th>pron.</th>
<th>Chinese</th>
<th>pron.</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>क्षण</td>
<td>kṣaṇa</td>
<td>刹那</td>
<td>chànà</td>
<td>instant</td>
</tr>
<tr>
<td>बिम्बा</td>
<td>bimbā</td>
<td>苹果</td>
<td>píngguǒ</td>
<td>apple</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>English</th>
<th>Chinese</th>
<th>pron.</th>
</tr>
</thead>
<tbody>
<tr>
<td>coffee</td>
<td>咖啡</td>
<td>kāfēi</td>
</tr>
<tr>
<td>t-shirt</td>
<td>T恤衫</td>
<td></td>
</tr>
</tbody>
</table>
Language contact

• Language contact is the use of more than one language in the same place at the same time (Thomason ‘95)

• Major driving factor behind language change
Swahili - major language in southeast Africa, 100M speakers

800 A.D.-1920 Indian Ocean trading

Influence of Islam

~40% of Swahili types are borrowed from Arabic (Johnson ‘39)
Lexical borrowing is pervasive in languages

<table>
<thead>
<tr>
<th>Resource-poor recipient</th>
<th># speakers (millions)</th>
<th>Resource-rich donors (% types)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swahili, Zulu, Malagasy, Hausa, Tarifit, Yoruba</td>
<td>200</td>
<td>Arabic, Spanish, English, French (>40%)</td>
</tr>
<tr>
<td>Japanese, Vietnamese, Korean, Cantonese, Thai</td>
<td>400</td>
<td>Chinese, English (30–70%)</td>
</tr>
<tr>
<td>Hindustani, Hindi, Urdu, Bengali, Persian, Pashto</td>
<td>860</td>
<td>Arabic, English (>40%)</td>
</tr>
<tr>
<td></td>
<td>1.4 billion</td>
<td></td>
</tr>
</tbody>
</table>
Cross-lingual lexical similarities

• How to bridge across languages?

• Identify words that are orthographically or phonetically similar across different languages and are likely to be mutual translations
Lexicon structure

- Core-periphery lexicon structure (Itô & Mester ‘95)

- English:
 - Core (20%–33%): beer, bread
 - Assimilated: cookie, sugar, coffee, orange
 - Peripheral: New York, Luxembourg
How to bridge across languages?

Transliteration
- Peripheral
- Assimilated
- Core

Peripheral vocabulary: proper names, specialized terms

Borrowing
- Peripheral
- Assimilated
- Core

Content words of foreign origin, assimilated in the language and aren’t perceived as foreign

Cognates
- Peripheral
- Assimilated
- Core

Content words in core lexicon: words in related languages inherited from one word in a common ancestral language

<table>
<thead>
<tr>
<th>Language</th>
<th>Example</th>
<th>Language</th>
<th>Example</th>
<th>Language</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>New York</td>
<td>Arabic</td>
<td>sukkar</td>
<td>Latin</td>
<td>nocte</td>
</tr>
<tr>
<td>Yoruba</td>
<td>Niu Yoki</td>
<td>*transliterated</td>
<td>zuccarum</td>
<td>French</td>
<td>nuit</td>
</tr>
<tr>
<td>Russian</td>
<td>Нью-Йорк</td>
<td>German</td>
<td>sucre</td>
<td>Spanish</td>
<td>noche</td>
</tr>
<tr>
<td>Arabic</td>
<td>نيويورك</td>
<td>Italian</td>
<td>Zucker</td>
<td>Italian</td>
<td>notte</td>
</tr>
<tr>
<td>Hebrew</td>
<td>ניו יורק</td>
<td>English</td>
<td>zucchero</td>
<td>Portuguese</td>
<td>noapte</td>
</tr>
</tbody>
</table>
Cross-lingual Lexical Learning
Mapping lexicons across languages

<table>
<thead>
<tr>
<th>ARABIC SCRIPT</th>
<th>qahwa</th>
<th>zarāfa</th>
<th>sukkar</th>
<th>quṭn</th>
<th>al-kuḥūl</th>
<th>šarāb</th>
<th>al-jabr</th>
<th>ġazāl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARABIC TRANSLITERATED</td>
<td>qahwa</td>
<td>zarāfa</td>
<td>sukkar</td>
<td>quṭn</td>
<td>al-kuḥūl</td>
<td>šarāb</td>
<td>al-jabr</td>
<td>ġazāl</td>
</tr>
<tr>
<td>LATIN</td>
<td>zuccarum</td>
<td>alcohol</td>
<td>algebra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURKISH</td>
<td>kahve</td>
<td>zürafa</td>
<td>şeker</td>
<td>alkol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLD FRENCH</td>
<td>giraffa</td>
<td>sucre</td>
<td>coton</td>
<td>sirop</td>
<td>gazel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRENCH</td>
<td>girafe</td>
<td>sucre</td>
<td>coton</td>
<td>sirop</td>
<td>gazelle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERMAN</td>
<td>Kaffee</td>
<td>Giraffe</td>
<td>Zucker</td>
<td>Alkohol</td>
<td>Algebra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITALIAN</td>
<td>caffè</td>
<td>giraffa</td>
<td>zucchero</td>
<td>cotone</td>
<td>alcol</td>
<td>scirop</td>
<td>algebra</td>
<td>gazzella</td>
</tr>
<tr>
<td>ENGLISH</td>
<td>coffee</td>
<td>giraffe</td>
<td>sugar</td>
<td>cotton</td>
<td>alcohol</td>
<td>syrup</td>
<td>algebra</td>
<td>gazelle</td>
</tr>
</tbody>
</table>

- Coffee
- Giraffe
- Sugar
- Cotton
- Alcohol
- Syrup
- Algebra
- Gazelle
Cross-lingual lexicon induction
Transliteration models

- FSTs Knight & Graehl ‘98

- LSTMs with attention Rosca & Breuel’16

- Exact Hard Monotonic Attention for Character-Level Transduction Wu & Cotterell’19

Figure 1: Example of source and target string for each task. Tag guides transduction in morphological inflection.
Transliteration evaluation

Intrinsic evaluation

• Word accuracy in top-1
• Fuzziness in top-1 (mean F-score)
• Ranking; Mean Reciprocal Rank (MRR), Mean Average Precision (MAP)

Downstream evaluation

• Machine translation
• Cross-lingual information extraction
Transliteration resources

• 1.6M named entities across 180 languages aggregated across multiple public datasets

TRANSLIT: A Large-scale Name Transliteration Resource

Fernando Benites, Gilbert François Duivesteijn, Pius von Däniken, Mark Cieliebak
Zurich University of Applied Sciences, Deep Impact
Switzerland
benf@zhaw.ch, gilbert@deep-impact.ch, vode@zhaw.ch, ciel@zhaw.ch

Abstract

Transliteration is the process of expressing a proper name from a source language in the characters of a target language (e.g. from Cyrillic to Latin characters). We present TRANSLIT, a large-scale corpus with approx. 1.6 million entries in more than 180 languages with about 3 million variations of person and geolocation names. The corpus is based on various public data sources, which have been transformed into a unified format to simplify their usage, plus a newly compiled dataset from Wikipedia. In addition, we apply several machine learning methods to establish baselines for automatically detecting transliterated names in various languages. Our best systems achieve an accuracy of 92% on identification of transliterated pairs.

Keywords: Transliteration of Names, Name Variant Discovery, Multi-lingual, Language Resource
Cognates and loanwords

Borrowing

Peripheral
Assimilated
Core

Content words of foreign origin, assimilated in the language and aren’t perceived as foreign

Cognates

Peripheral
Assimilated
Core

Content words in core lexicon: words in related languages inherited from one word in a common ancestral language

Arabic
*transliterated
Latin
French
German
Italian
English

سُكَر
sukkar
zucchero
sugar

zuccarum
sucrè
Zucker
zucchero

nocte
nuit
noche
notte
noapte
Arabic--Swahili borrowing examples

<table>
<thead>
<tr>
<th>English</th>
<th>Arabic</th>
<th>Swahili</th>
<th>Phonological & morphological integration</th>
</tr>
</thead>
</table>
| fever | ﻫﻤﻰ ﻣﺴﻤﺎت | homa | * syllable structure adaptation: CV, CVV, CVC, CVCC → V, CV
| | ﺑﺤﻤﻰ | | * degemination - Swahili does not allow consonant clusters
| | ﻫﻤﺎ | | * vowel substitution |
| minister| ﺔﻠﻮﺷر | kiuwaziri | * Arabic morphology (optionally) drops
| | ﺔﻠﻮ | | * Swahili morphology is applied
| | ﺔﻠﻮ | | * vowel epenthesis to keep syllables open
| | ﺔﻠﻮ | | * vowel substitution |
| palace | ﺔﻠﻮ | kasiri | * consonant adaptation: /tˤ/ → /t/, /dˤ/ → /d/, /θ/ → /s/, /x/ → /k/, etc
| | ﺔﻠﻮ | | * vowel epenthesis |
Linguistic research on lexical borrowing

- Case studies of lexical borrowing in language pairs
 - Cantonese (Yip ‘93), Korean (Kang ‘03), Thai (Kenstowicz & Suchato ‘06), Russian (Benson ‘59), Romanian (Friesner ‘09), Hebrew (Schwarzwald ‘98), Yoruba (Ojo ‘77), Swahili (Schadeberg ‘09), Finnish (Johnson ‘14), 40 languages (Haspelmath & Tadmor ‘09), etc.

- Case studies of phonological/morphological phenomena in borrowing
 - Phonological integration (Holden ‘76, Van Coetsem ‘88, Ahn & Iverson ‘04, Kawahara ‘08, Hock & Joseph ‘09, Calabrese & Wetzels ‘09, Kang ‘11); morphological integration (Rabeno ‘97, Repetti ‘06); syntactic integration (Whitney ‘81, Moravcsik ‘78, Myers-Scotton ‘02), etc.

- Case studies of sociolinguistic phenomena in borrowing
 - (Guy ‘90, McMahon ‘94, Sankoff ‘02, Appel & Muysken ‘05), etc.
Cognate and loanword models

- Phonologically-weighted Levenshtein distance between phonetic sequences
 Mann & Yarowsky ‘01, Dellert ‘18

- Phonetic + semantic distance Kondrak ‘01, Kondrak, Marcu & Knight ‘03

- Log-linear model with Optimality-theoretic features Bouchard-Côté et al. ‘09

- Generative models of sound laws and word evolution for cognate identification
 Hall & Klein ‘10, ‘11

- Optimality-theoretic constraint-based learning for loanword identification Tsvetkov
 & Dyer ‘16

- Cognate identification using Siamese networks Soisalon-Soininen & Granroth-Wilding ‘19
Cognate databases

• 3.1 million cognate pairs across 338 languages using 35 writing systems

CogNet: a Large-Scale Cognate Database

Khuyagbaatar Batsuren† Gábor Bella† Fausto Giunchiglia‡
DISI, University of Trento, Trento, Italy†
Jilin University, Changchun, China‡
{k.batsuren; gabor.bella; fausto.giunchiglia}@unitn.it
Lexical borrowing databases

https://wold.clld.org/

The World Loanword Database (WOLD)

The World Loanword Database, edited by Martin Haspelmath and Uri Tadmor, is a scientific publication by the Max Planck Institute for Evolutionary Anthropology, Leipzig (2009).

It provides vocabularies (mini-dictionaries of about 1000-2000 entries) of 41 languages from around the world, with comprehensive information about the loanword status of each word. It allows users to find loanwords, source words and donor languages in each of the 41 languages, but also makes it easy to compare loanwords across languages.

Each vocabulary was contributed by an expert on the language and its history. An accompanying book has been published by De Gruyter Mouton (Loanwords in the World’s Languages: A Comparative Handbook, edited by Martin Haspelmath & Uri Tadmor).
Bilingual lexicon induction

1. Learn monolingual embeddings
2. Find alignment between embedding spaces
3. Find nearest neighbors to induce lexicon
4. Perform supervised alignment to minimize distance between lexicon items

https://ruder.io/cross-lingual-embeddings/
Code-switching

• Usually between speakers of equal fluency in two languages
 ○ Casual speech/text
 ○ Face-to-face or in social media

• Often defined in terms of a matrix language (based language word order)
 ○ (major) Word order in matrix languages, as are particles (morphology)
 ○ Lexemes and short phrases in other language

• We can measure the amount of code switching
 ○ As percentage (but doesn’t distinguish number of switchers)
 ○ Other measure try to capture that (but its hard)
Pidgins and Creoles

- **Pidgins**: non-natives learn a “simplified” mix of multiple languages

- **Creoles**: when such a mix/non-native dialect becomes a native languages
 - Creoles have native speakers, Pidgins do not (yet-ish).
 - Might be classified as just dialects, possibly low-status

- **Jamaican Patois (Creole)**
 - An fram Dievid taim op tu wen dem did tek we di Izrel piipl dem an fuos dem fi go wok a Babilan a fuotiin jinarieshan Jiizas did av de-so tu, an fram da taim de tu wen Krais Jiizas bhan, a fuotiin jinarieshan dat tu.

- **Haitian Creole**
 - Zebadya pitit Izmayèl la chèf branch fanmi jida a va pi gwo jij pou tou sa ki an rapo ak lalwa peyi a.

- **English**
 - Is a creole or code-switched Saxon and Norman French (arguably)
Pidgins and Creoles

• These are linguistic terms

• They also get used as political terms too
 ○ And not always favorably
 ○ “not proper English”, “dialect”, “uneducated speech”

• Often used for speech communication not in writing
 ○ Cf Latin verses Vulgar Latin

• Thus often hard to find examples, written forms are formal

• But what about code-switching is it a “pre-pidgin”?
Major Code-switching Dialects

- Sometimes between local and global languages
 - But most common examples are between major languages

- Hinglish
 - Hindi and English: very common with educated young Hindi speakers

- Chinglish
 - Chinese and English: common amongst Chinese speakers in Singapore

- Spanglish
 - Spanish and English: common in Spanish speaking areas of US (e.g. South West, New York, Puerto Rico)

- African American English and Standard American English
 - Very common in US in Black communities

- In these cases people are usually very fluent in both languages
When do they code-switch

• Vocabulary coverage:
 ○ Talk about machine learning in English and food in Hindi
 ○ Relationships in Spanish, studying in English

• “Showing off” Trends
 ○ “Fashionable English Works” vs “Ethnic other words”
 ○ Displaying affiliation (show education and/or show roots)

• Maybe more sentiment in native languages (Rudra et al 2016)
 ○ Looking at language choice in tweets

• Entrainment (copy others in conversation)

• To get distinctions (simple semantics or opinion)
Why do we care?

- Newspapers and Wikipedia will not be code-switched
 - Why care about NLP of non-standard language?

- Code-switching is how people actually communicate

- Code-switching
 - People type in questions to Google/Bing
 - They talk to call centers
 - They write their opinions
 - Use of code-switching can define group membership
 - People trust code-switched communication better
 - (Not that it is fake, but its their language and someone developed communication in their language)

- Facebook, Amazon, Microsoft, Apple all want to understand Code-switch more
Why is it Hard

• There is very little data available
 ○ Often code-switched data is removed from datasets

• It is very noisy
 ○ Spelling is very non-standard so it's hard to know the vocabulary
 ○ It often romanizes native script (inconsistently)

• Our favorite contextualized word embeddings are confused
 ○ We have “random” mixed language juxtaposed
 ○ BERT was never trained for that
 ○ mBERT was never trained for that

• Its casual speech/text
 ○ Monolingual casual speech is hard, we now have two languages
Code Switching Data

• Often used by hard to find
 ○ Harder to verify: is it bilingual or code switched

• Twitter/youtube/reddit
 ○ Social media is good, but it's not labeled (and very noisy)

• Collecting is hard too
 ○ Need right environment to have users code-switch
 ○ Usually based on their peer relationship.
 ○ There isn’t just one type of code-switching
Code Switching Data

• Annual speech/text workshops on Code-Switching
 ○ At ACL/Interspeech

• Sitaram et al. “A survey of code-switched speech and language processing”

• Thamar Solorio (U Huston)
 ○ https://ritual.uh.edu/code-switching/

• Growing but still limited
 ○ Only a few language pairs are studies
Code Switching: LT Tasks

• Language ID (Speech ID)
 ○ Labeling the words
 ○ In Speech the pronunciation may vary from monolingual cases

• Speech Recognition/Synthesis
 ○ Google’s Indian English ASR is actually Hinglish ASR
 ○ Code-switch synthesis, but ...

• Spelling Normalization
 ○ As spell checkers don’t work, spelling is particularly inconsistent
 ○ May require roman → native script conversion too

• POS Tagging
 ○ Some datasets available (but often noisy)
 ○ Detecting matrix language can be important
Code Switching: LT Tasks

- Named Entity Recognition
 - (and cross-lingual entity linking)
 - Various challenges have addressed this

- Sentiment analysis
 - Understanding cross-lingual references may be important

- Question Answering

- NLI

- Dialog processing
 - Common Amigos (Ahn et al 2020, Parekh et al 2020)

- When/home to use code-switching
 - Generation as a style
Code Switching: Techniques

• Very similar to general low-resource language issues
 ○ Find appropriate data
 ○ Bootstrap labeling
 ○ Data argumentation/generation techniques
 ○ Find new (reliable) evaluation techniques
Mining Data

• Social media sites
 ○ Code Switching (usually) implies casual speech

• Youtube for speech
 ○ Hinglish: lots of examples, but some human has to find each video
 ‣ Google Indian English ASR can give a reasonable transcription
 ○ Broadcast news, Bibles/Koran wont have code-switching

• Reddit (or local equivalent)
 ○ Mining the data is hard
 ○ You want conversations, not just utterances

• Twitter/Weibo
 ○ Rarely conversational
 ○ Sometimes bilingual (translations) not code switching
Bootstrapping Labeling

• Label small amount of data
 ○ Build classifier for the data
 ○ Use the classifier to label lots of other data
 ○ Select “high confidence” samples and add to training data
 ○ Rebuild classifier
 ○ Repeat until (something)

• Care has to made to ensure you don’t miss out on important examples

• Care has to made to ensure you don’t just add garbage examples

• Care has to made to ensure you don’t just add trivial addition examples

• Downstream task evaluation would help
 ○ But you probably don’t have that yet.
Data augmentation/generation

• Build generator from limited data to get more
 ○ Build classifiers that distinguish real from generated data
 ○ Choose false positive data to boost base data
 ○ Been shown to help in lots of cases
 ○ (could this help building better word embedding models)

• Paraphrase existing data to get more
 ○ Replace NE, modify some word by translation
Evaluation Techniques

• Task evaluation of held out data
 ○ Standard techniques, but does that help the overall task

• We don’t yet have lots of good high level tasks to test
 ○ Dialog understanding
 ○ Summarization
 ○ Question/Answering

• MSR India (Khanuja et al ACL 2020)
 ○ GLUECoS: Set of standard tasks for testing code-switching models
Code-switching, Pidgins and Creoles

- Multilingual is much more varied than one single language

- Code-switching
 - Mixed within an utterance

- Pidgin
 - Non-native mixed lingua franca (often for trade)

- Creole
 - When Pidgin becomes native and its own language

- Issues are as hard as with monolingual casual speech
 - But now we have multiple languages to confuse things
Discussion
Class discussion

• Pick a language that you speak, read about its history, and in particular how this language influenced other languages
 ○ are there languages that historically borrowed words from your language?
 ○ can you find specific examples of words?
 ○ could you recognize these loanwords in other languages based on their new form?
 ○ can you guess what were phonological and morphological adaptation processes that the loanword had to undergo to assimilate in the new language?
 ○ Pick another language and analyze the code-switching