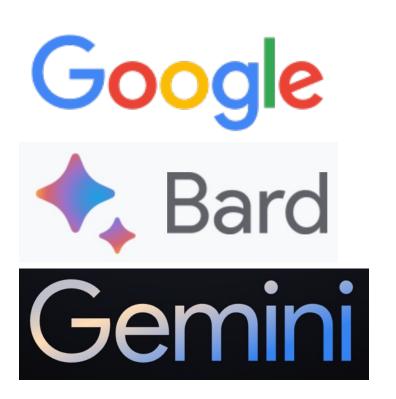
Assessing and Improving Large Language Models

Lei Li
Language Technologies Institute
Carnegie Mellon University

Large Language Model Products



You

create a funny viral tweet about my talk at Michigan State University with the title "Assessing and Improving Large Language Models"

ChatGPT

Excited to announce my upcoming talk at Michigan State University titled 'Assessing and Improving Large Language Models'! Join me as I reveal the secret lives of AI models - spoiler alert: they're just like us, but with an endless appetite for data and a slight obsession with cats. #AIHumor #MichiganStateUniversity

Language Models: The Power of Predicting Next Word

Prob. (next_word | prefix)

Santa Barbara has very nice ____

beach 0.5

weather 0.4

snow 0.01

Pittsburgh is a city of _____

bridges

0.6

corn

0.02

Language Model: $P(x_{1..T}) = \prod_{t=1}^{T} P(x_{t+1}|x_{1..t})$

Predict using Neural Nets

Evaluating Large Language Models

- BLEU for evaluation?
 - 20 year old metric... with obvious limitation.
- But LLM generation requires new metrics
 - o diverse output (OOD)
 - BLEU/ROUGE will have significantly decreased correlations with human judgments.

Outline

- InstructScore: Explainable Text Generation Evaluation
- Assessing Knowledge in LLMs (KaRR)
- Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback

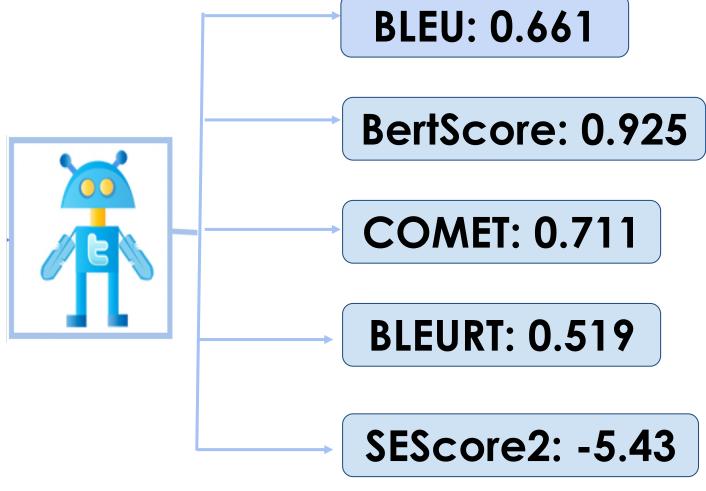
When you made a mistake...

Limitations of Prior Metrics

Lack of Interpretation

Reference: Is there a wife in the wifecake?

Candidate: Is there a wife in the sweetheart cake?



Ideal Metric: Fine-grained Explanation

Reference: Is there a wife in the sweetheart cake?

Candidate: Is there a wife in the wifecake?

Error location: wifecake

Error type: Terminology is used inconsistently

Major/Minor: Major

Explanation: The term "wife cake" is not the standard term for this food, which is "sweetheart cake".

Why is training an explainable metric challenging?

- Fine-grained Data Scarcity
- Deviation of Human rating
- Well Defined Explainable al Metric

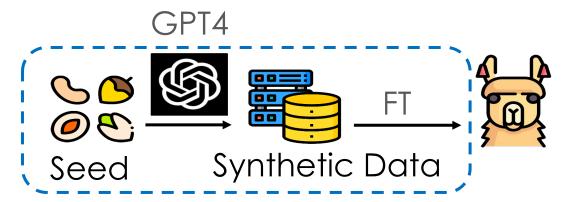
Highly Aligned with Expert Annotator

Fine-grained Explainability

Generalizable

Naive solution

Guided error-and-explanation synthesis



Derive synthetic data

Raw text: "The art ... between providing enough detail to ... too much information."

Error type 1: Translation includes information not present in the correct translation

Major/minor: Major

Incorrect generation:

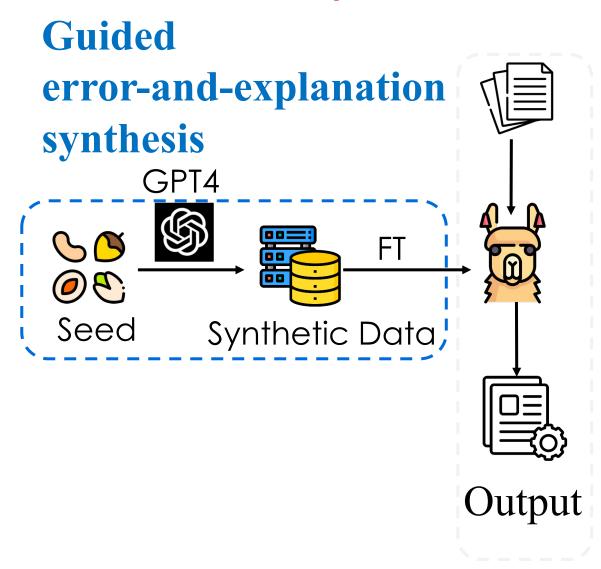
[GPT4 fill in]

Error location 1: [GPT4 fill in]

Explanation for error 1:

[GPT4 fill in]

But, failed explanation in GPT4



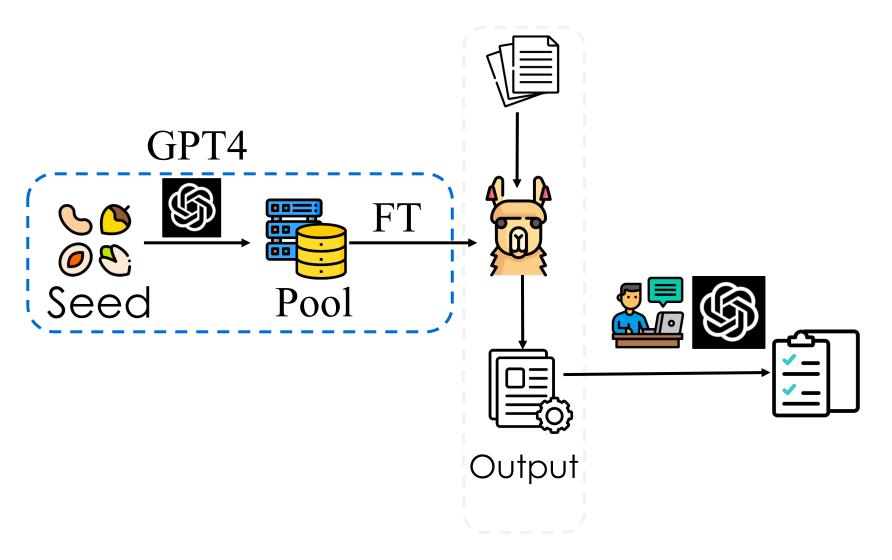
Error type 3: Missing information Explanation for error 3: The incorrect translation adds the word "annual" to the phrase ...

Failure Mode Categorization

Fields	Failure Mode	Description (M is local failure mode, G is global failure mode)
Error Type	Inconsistency to explanation	M1: Error type is inconsistent with explanation
Error Location	Inconsistency to explanation	M2: Error locations are not consistent with the explanation
	Hallucination	M3: Error locations are not referred in the output text
Major/Minor	Major/Minor disagreement	M5: Major and minor labels are not correct
Explanation	Hallucination	M4: Error locations are not referred in the output text
	Explanation failure	M6: Explanation is illogical
All 4 Fields	False negative error	G1: Error described in the explanation is not an error
	Repetition	G2: One error is mentioned more than once among explanations
	Phrase misalignment	G3: Incorrect phrase and correct phrase are not aligned
	Mention multiple errors	G4: One error span mentions multiple errors

Meta-Evaluation of the Explainable Metric

Introducing InstructScore



InstructScore: Automatic Feedback

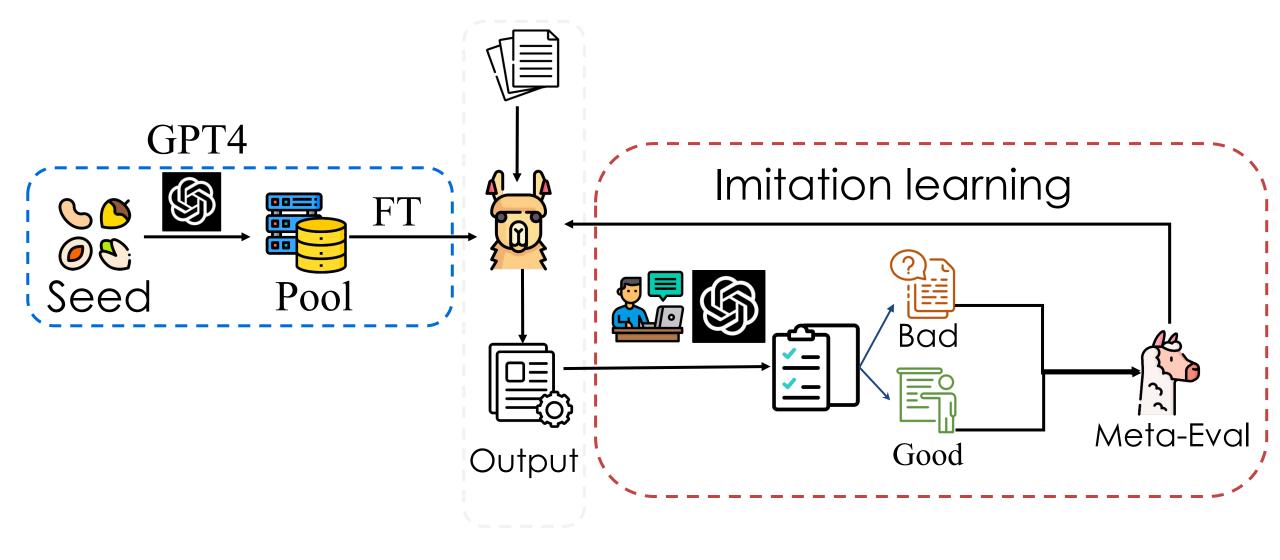
Reference Candidate

Error location1
Error Type1
Major/Minor
Explanation1

Error location2
Error Type2
Major/Minor
Explanation2

Error1	Error location	
	Error type	
	Major/min or	×
	Explanatio n	*
Error2	Error location	
	Error type	
Alignment	sadonje: 7/1/18in	
	or	

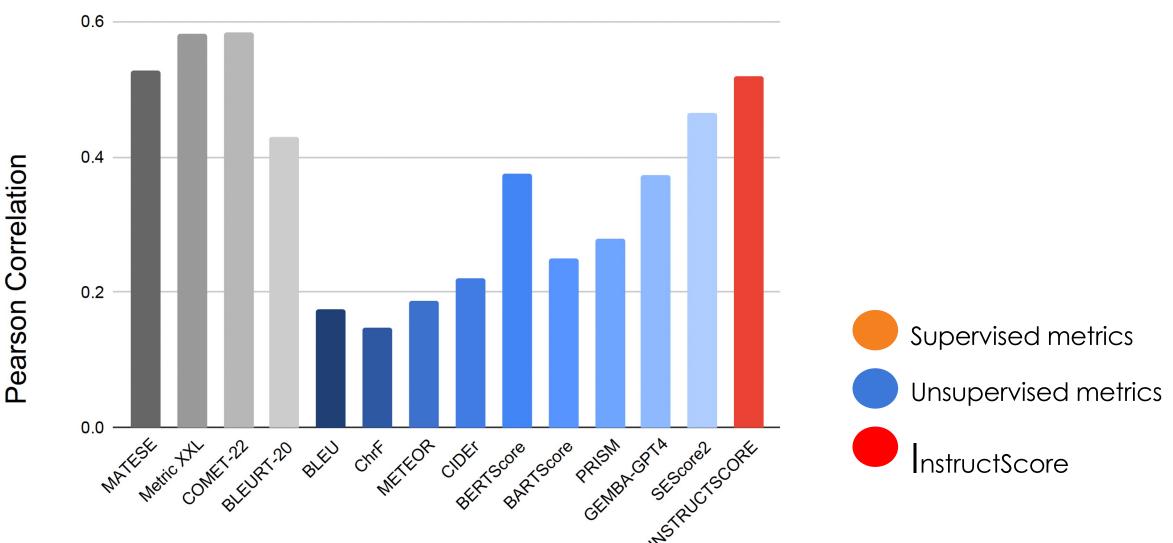
InstructScore: Refinement



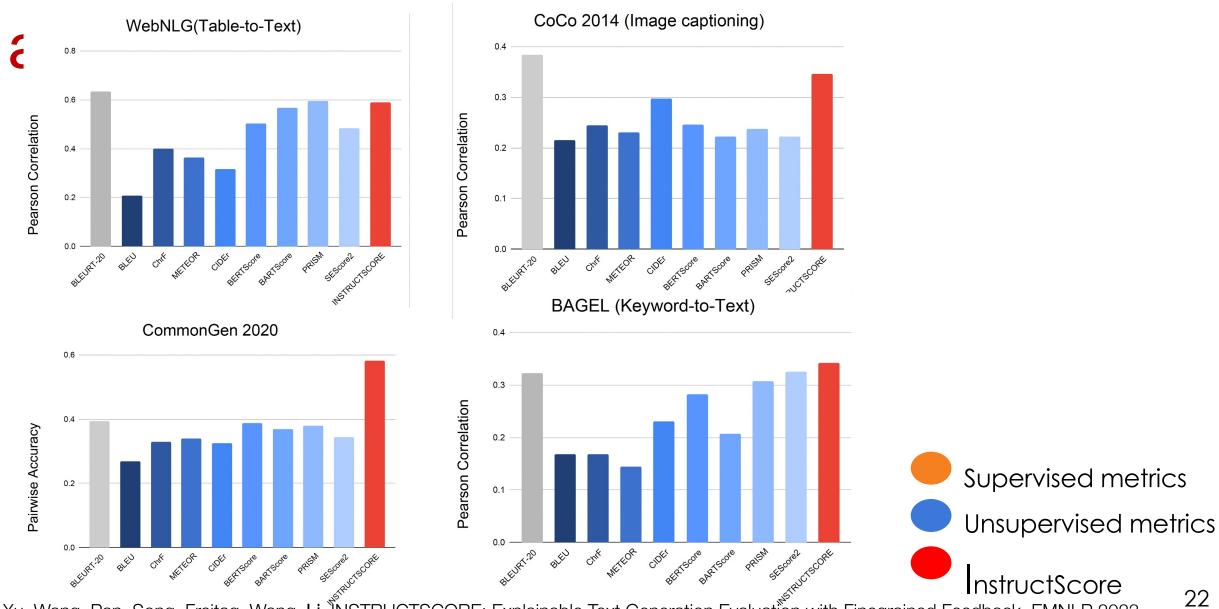
Robust Performance across Tasks (Four seen and one unseen NLG tasks)

InstructScore can judge machine translation!

WMT22 Chinese-to-English Translation

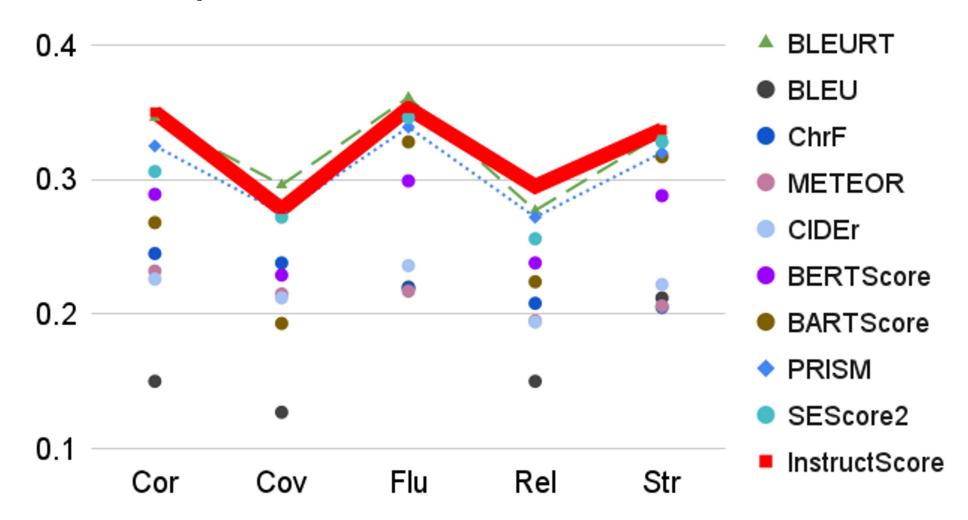


InstructScore can do well in other tasks



Xu, Wang, Pan, Song, Freitag, Wang, Li. INSTRUCTSCORE: Explainable Text Generation Evaluation with Finegrained Feedback. EMNLP 2023.

Robust Performance across Dimensions (WebNLG20)



InstructScore vs GPT4

Candidate: Or how long before the restaurant is ready? Can you ask for me?

Reference: And how much longer does it take for the restaurant to

prepare it? Could you help me ask them?

InstructScore vs GPT4

Error Type: Lexical Selection

• **Major/Minor:** Major

Error Location: "Or" instead of "And"

2. **Error Type:** Omission

Major/Minor: Major

o **Error Location:** "how much longer does it take

for" is omitted

3. Error Type: Lexical Selection

Major/Minor: Minor

Error Location: "the restaurant is ready"
 instead of "the restaurant to prepare it"

4. **Error Type:** Lexical Selection/Omission

Major/Minor: Major

Error Location: "Can you ask for me?" instead

of "Could you help me ask them?"

5. **Error Type:** Omission

Major/Minor: Minor

Error Location: Missing "Could" in "Could you

help me ask them?"

Error type 1: Incorrect translation is

missing content from the correct

translation

Major/minor: Major

Error location 1: "Or how long before

the restaurant is ready?"

Error type 2: Problems with grammar,

other than orthography

Major/minor: Minor

Error location 2: "could you helmmn

ask them?"

Key Advantages of InstructScore

- 1. Fine-grained Explainability
- 2. Highly Aligned with Human
- 3. Generalizability (No human ratings are required!)

We develop a **new model-based evaluation metric** for Explainable text generation-based metric and leverage automatic feedback to **align with human requirements**!

Outline

InstructScore: Explainable Text Generation Evaluation

Assessing Knowledge in LLMs (KaRR)

 Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback

Unreliable Factual Knowledge in LLMs

 LLMs often generate unreliable answers given varying prompts.

Example1: Alpaca-7B

William Shakespeare's job is?

: A playwright.

: A boatman. X

Example2: ChatGPT

William Shakespeare's job is?

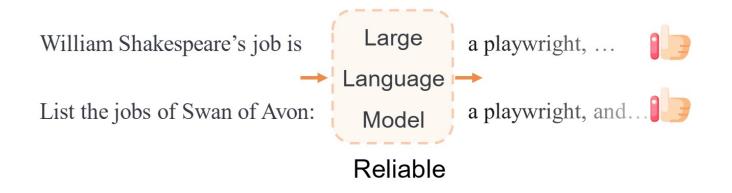
Signature
Sig

Is William Shakespeare a teacher?

Signature
Sig

Knowledge Assessment for LLMs

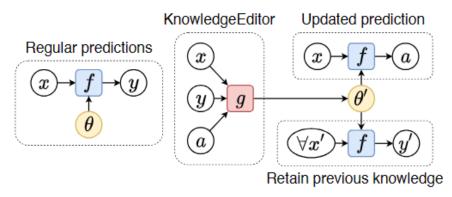
 Given varying prompts regarding a factoid question, can a LLM reliably generate factually correct answers?



NeurIPS 2023 31

Why Do We Need Knowledge Assessment?

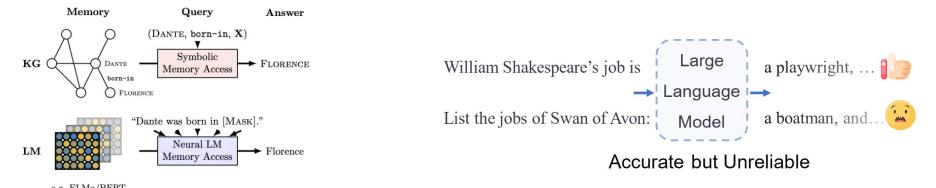
- The assessment results directly affect the people's trust in the LLM generated content.
- Once we identify inconsistency of LLM generation, we could potentially correct such knowledge in LLMs.



Knowledge Editing Method¹

¹Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021.

Challenges in Knowledge Assessment



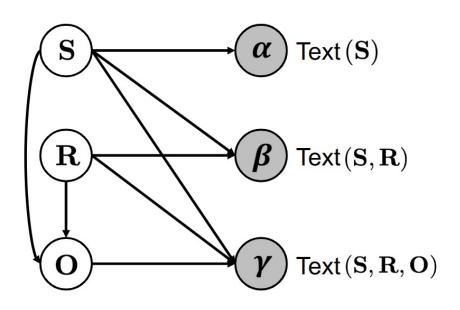
Probing method for MLM¹

- Accuracy v.s. Reliability: Previous studies primarily assess accuracy, not reliability.
- Knowledge irrelevant generation: The freely generated results of generative models might be irrelevant to factual knowledge.

¹Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. Language models as knowledge bases? In Proceedings of EMNLP-IJCNLP, 2019.

Graphical Model for Knowledge Assessment

To evaluate LLM knowledge reliably, we decompose the knowledge symbols and text forms.



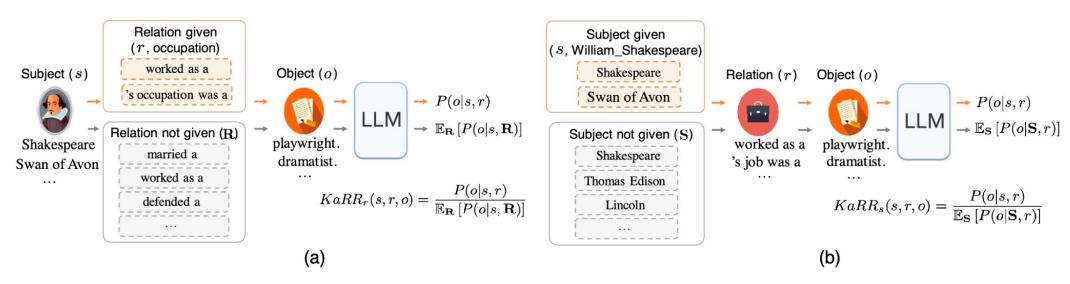
hollow circles: latent variables shaded circles: observed variables

Establish the connection between symbols and text forms.

Goal: estimate the model knowledge on **symbols** through the observable model probability across diverse corresponding **textual forms**.

Knowledge Assessment Risk Ratio

- Based on the graphical model, we propose Knowledge Assessment Risk Ratio (KaRR).
- Assesses the joint impact of subject and relation symbols on the LLM's ability to generate the object symbol.



Knowledge Assessment with Wide Coverage

Good coverage -- 994,123 entities and 600 relations

Method	Subj. Alias	Obj. Alias	Rel. Alias	Rel. Cvg.	
LAMA@1	X	X	X	6.83%	
LAMA@10	X	X	X	6.83%	
ParaRel	X	X	\checkmark	6.33%	
KaRR	\checkmark	\checkmark	\checkmark	100%	

- Accurate
- Less Variance and Spurious Correlation

Knowledge Assessment with High Human Correlation

- Good coverage
- Accurate -- strong correlation with human assessment

Method	Recall	Kendall's $ au$	p-value
LAMA@1	83.25%	0.17	0.10
LAMA@10	65.81%	0.08	0.23
ParaRel	69.15%	0.22	0.02
K-Prompts	78.00 %	0.32	0.03
KaRR	95.18%	0.43	0.03

• Less Variance and Spurious Correlation

Knowledge Assessment with Less Bias

- Good coverage
- Accurate
- Less Variance and Spurious Correlation

Method	Var (↓)	Std (\downarrow)	Method	SP (↓)	$\Delta \mathbf{P} \left(\downarrow \right)$
LAMA@1	1.90	1.37	LAMA@1	3.81	0.00
LAMA@10	5.14	2.27	LAMA@10	64.29	47.31
ParaRel	0.77	0.94	ParaRel	2.66	-0.51
K-Prompts	2.34	5.47	K-Prompts	0.00	-7.54
KaRR	0.67	0.82	KaRR	1.94	-14.94

⁽a) Evaluation variance towards varied prompts.

⁽b) Spurious correlation of knowledge assessment.

KaRR Scores on 20 LLMs

- Most small and medium-sized LLMs struggle with generating correct facts consistently.
- Vicuna's KaRR score Finetuning LLMs with data from more knowledgeable models can enhance knowledge.

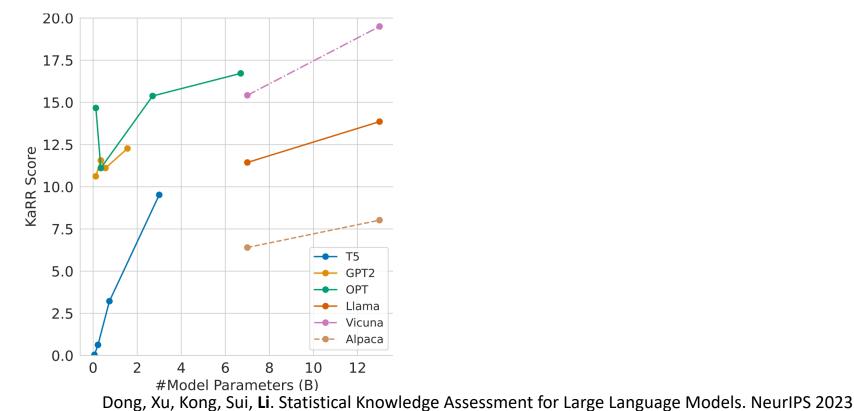
Model	Size	KaRR Score	Model	Size	KaRR Score
GPT	0.12B	9.57	GLM	10B	5.59
XLNet	0.12B	5.86	Dolly	12B	15.60
T5-large	0.74B	3.22	LLaMA	13B	13.86
Phi-1.5	1.3B	10.58	Alpaca	13B	8.24
GPT2-XL	1.56B	12.27	Vicuna	13B	19.50
GPT-NEO	2.65B	13.44	WizardLM	13B	16.90
T5-3B	3B	9.52	Moss	16B	11.20
Falcon	7B	7.97	LLaMA	65B	14.56
BLOOM	7B	7.72	LLaMA2	65B	19.71
LLaMA	7B	12.37	OPT	175B	23.06

Scaling Effect on Knowledge

larger models generally hold more factual knowledge.

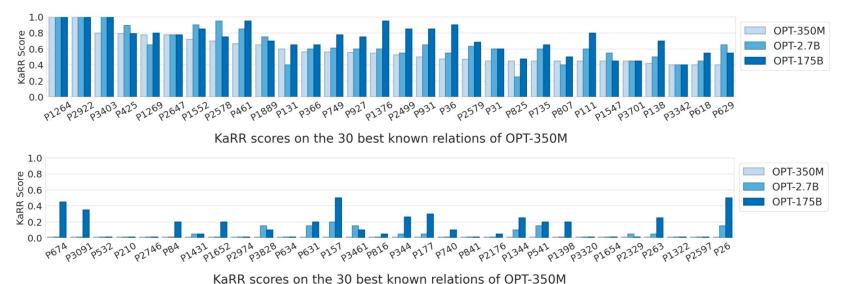
Scaling benefits vary among models. E.g., T5-small to T5-

3B.



Scaling Effect on Knowledge

- Larger models exhibit better and more consistent knowledge-correct generation ability.
- Larger models surpass small models in terms of knowledge on a wider range of relations.



Summary and takeaway of KaRR

- Distinguishing the knowledge symbols and textual forms helps us build the graphical model for knowledge assessment.
- Most small and medium-sized LLMs struggle with generating correct facts consistently.
- Larger models exhibit better and more consistent knowledge-correct generation ability.

Outline

- InstructScore: Explainable Text Generation Evaluation
- Assessing Knowledge in LLMs (KaRR)

Input: Translate "一个餐等了一个半小时。" into English.

LLM's output:

A meal had been waiting for an hour and a half.

What feedback can we give to LLM?

Input: Translate "一个餐等了一个半小时。" into English.

LLM's output:

A meal had been waiting for an hour and a half.

Ask LLM to improve?

Source: 一个餐等了一个半小时。

Translation: A meal had been waiting for an hour and a half.

Please Improve current translation.

Input: Translate "一个餐等了一个半小时。" into English.

LLM's output:

A meal had been waiting for an hour and a half.

Use binary feedback to guide LLM?

Source: 一个餐等了一个半小时。

Translation: A meal had been waiting for an hour and a half.

Your translation contains errors. Please improve current

translation.

Input: Translate "一个餐等了一个半小时。" into English.

LLM's output:

A meal had been waiting for an hour and a half.

Use scalar feedback to guide LLM?

Source: 一个餐等了一个半小时。

Translation: A meal had been waiting for an hour and a half.

Your translation has score of 70/100. Please improve current

translation.

Input: Translate "一个餐等了一个半小时。" into English.

LLM's output:

A meal had been waiting for an hour and a half.

Use fine-grained feedback to guide LLM!

Source: 一个餐等了一个半小时。

Translation: A meal had been waiting for an hour and a half.

"A meal has been waiting" is a major mistranslation error.

Please improve current translation.

When can we accept refined proposal?

Source: 一个餐等了一个半小时。

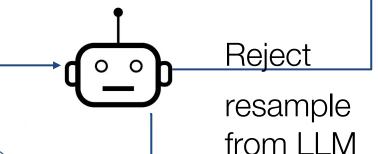
Translation: A meal had been waiting for an hour and a half.

"A meal has been waiting" is a major mistranslation error.

Please improve current translation.

LLM's proposal:

A meal waited an hour and a half.



Repeat above steps for n iterations

Accept

cept

LLM's final output:

I've waited one and half hours for one meal.

Source Translation: 一个餐等了一个半小时。

A meal had been waiting for an hour and a half.

A meal had been waiting an hour and a half.

Algorithm

Algorithm 1: Simulated Annealing for Iterative Refinement

```
Input: Input prompt x, Feedback model F, Base
            model M
1 Initialize: y_0 \leftarrow greedy\_decode(M(x)), T_0, n \#
     Initialize candidate, temperature, constant
2 for i = 0..n do
        f_i \leftarrow F(x, y_i) # generate feedback for the
          current candidate proposal
        c_i \leftarrow Sampling(M(x, y_i, f_i)) \text{ # Sample next}
          candidate based on prior one and feedback
        p_{\text{acc}} \leftarrow \min(1, e^{\frac{s(F(c_i)) - s(F(y_i))}{n * T_i}})
 5
        if Accept then
          y_{i+1} \leftarrow c_i
        else
          y_{i+1} \leftarrow y_i
        T_{i+1} = max(T_i - c * T_i, 0) # update
10
          temperature for the next iteration
```

Output: Sampled sequence y_n with n iterations

Source Translation: 一个餐等了一个半小时。

A meal had been waiting for an hour and a half.

A meal took an hour and a half to arrive.

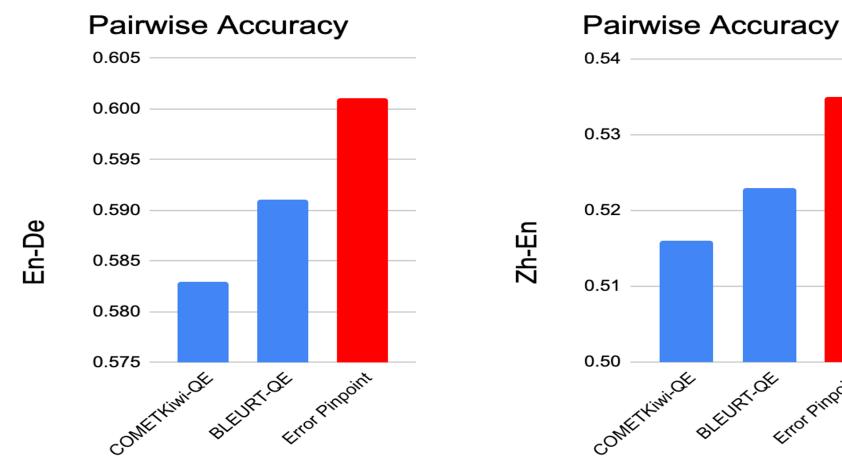
A meal had been waiting an hour and a half.

A meal waited an hour and a half.

COT: "A meal had been waiting for an hour and a half." is a major mistranslation error. The correct translation should be: "A meal waited an hour and a half."

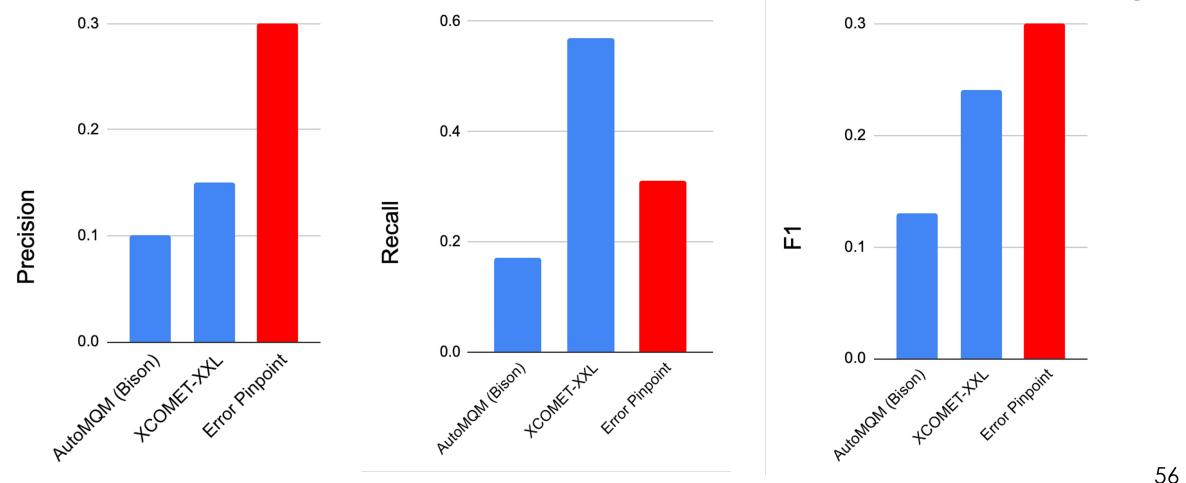
RQ1: How well does our error pinpoint model align with human annotations of generation

quality? Our correlation to human judgements are high!

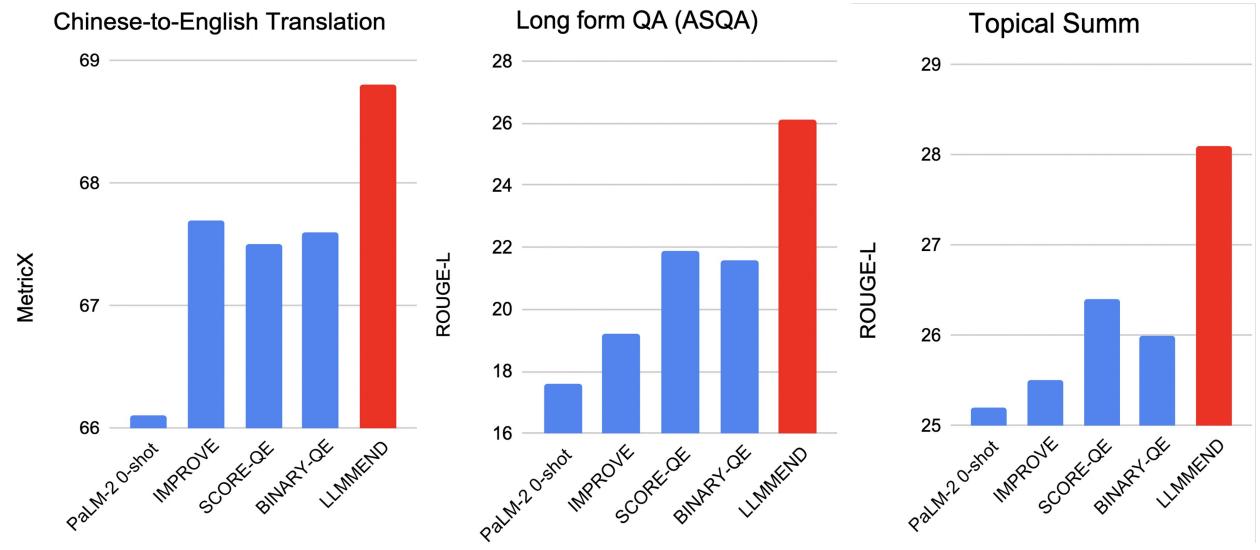


RQ1: How well does our error pinpoint model align with human annotations of translation

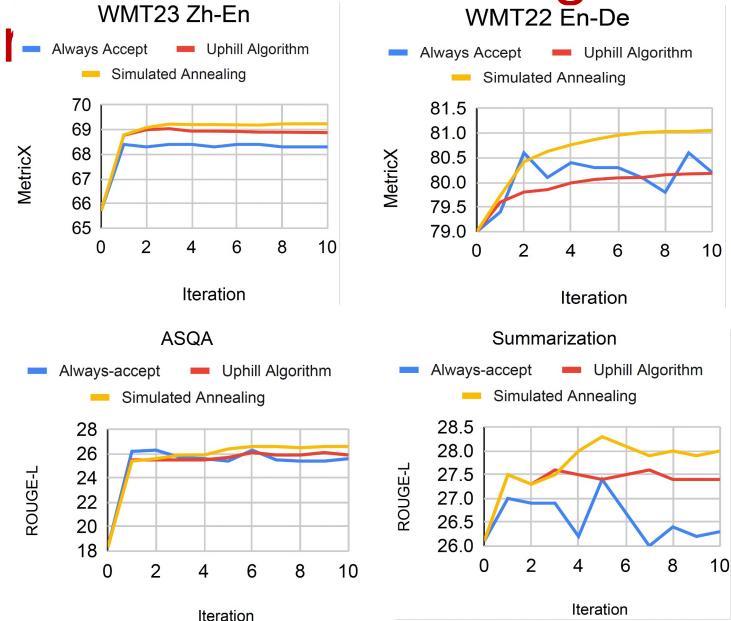
quality? Our span-level precision and F1 are high at Chinese-to-English



RQ2: Does fine-grained feedback result in better downstream translations than more coarse feedback?

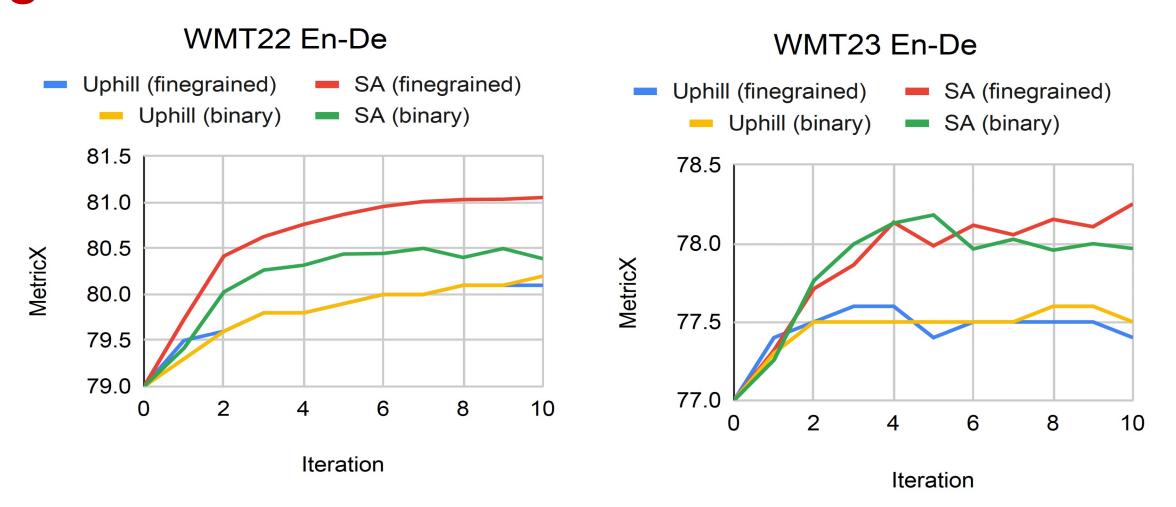


Simulated Annealing can boost iterative



Simulated annealing outperforms always-accept and uphill algorithm significantly across MT, Summ and QA

Simulated annealing can boost performance of both coarse and fine-grained feedback



Human Evaluation further validates our results

Our fine-grained has all win/lose ratios greater than 1

WMT22 En-De	Win/lose ratio
0-shot	2.34
Improve	2.44
BLEURT-Score-QE	2.79
BLEURT-Binary-QE	1.76
Score-QE	1.23
Binary-QE	1.84

Our SA has all win/lose ratios greater than 1

WMT22 En-De	Win/lose ratio
Always-Accept	1.56
Greedy Uphill	1.38

Summary

- InstructScore: Explainable Text Generation Evaluation
- Assessing Knowledge in LLMs (KaRR)
- Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback

Reference

- Xu, Wang, Pan, Song, Freitag, Wang, Li. INSTRUCTSCORE: Explainable Text Generation Evaluation with Finegrained Feedback. EMNLP 2023. https://arxiv.org/abs/2305.14282
- Dong, Xu, Kong, Sui, Li. Statistical Knowledge Assessment for Large Language Models. NeurIPS 2023. https://arxiv.org/abs/2305.10519
- Xu, Deutsch, Finkelstein, Juraska, Zhang, Liu, Wang, Li, Freitag.
 LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback. NAACL 2024.

https://arxiv.org/abs/2311.09336