

Regret Minimization and the Price of Total Anarchy

Paul Schultz

Overview

- Basic Terms
- The Cost of Disorganization
- Traditional Approach
- New Approach
- Results and Conclusions

Basic Terms

- Game
 - Players
 - Available moves
 - Payoff specifications
- Disorganized system
 - Limited information
 - Net social cost?

Basic Terms

- Nash Equilibrium
 - State in which no player wants to switch strategies
- Regret
 - Difference between a player's total payoff and the optimal total payoff if the player had chosen a different strategy

Example: Prisoner's Dilemma

	Confess	Don't Confess
Confess	5 years - 5 years	0 years - 10 years
Don't Confess	10 years - 0 years	2 years - 2 years

The Cost of Disorganization

- Social welfare: objective function
- What can we say about the net social cost when players act selfishly and with limited information?

Traditional Approach

- Traditional assumption:
 - Selfish players play according to Nash equilibria
 - All players act selfishly
- Price of Anarchy:
 - Ratio between optimum social value and the worst Nash equilibrium social value:

$$\frac{OPT}{NASH}$$

Traditional Approach

- Disadvantages:
 - Calculating Nash equilibria is expensive
 - Unclear that selfish players should play according to Nash equilibria

A New Approach

- Instead, assume that selfish players minimize their **regret**
- Do *not* assume that all players act selfishly
- Advantages:
 - Fast calculation
 - Reasonable for systems where a single player's decisions have little effect on others

New Approach: Motivation

- What makes for a good strategy?
 - Adversary can't counter
 - Extracts as much payoff as possible
- Winning as much as possible means adapting to opponent strategies.

New Approach: Motivation

- What makes for a good strategy?
 - Adversary can't counter
 - Extracts as much payoff as possible
- Winning as much as possible means adapting to opponent strategies.

Regret minimization does this!

... But it has limitations

Regret Minimization

- Idea:
 - Start with a set of *experts* and weight each one's advice.
 - Adjust weights during each round
 - converge toward optimal payoff over time

Conclusions

- Under appropriately constrained systems, *regret minimization* is a reasonable prescription for self-interested behavior.
- For some games, can show results as strong as traditional approach.
- Can prove results that apply even in the presence of arbitrary or adversarial players

References

- *Regret Minimization and the Price of Total Anarchy*, by Avrim Blum, Mohammad Taghi Hajiaghayi, Katrina Ligett and Aaron Roth (STOC 2008)
- *Slides: On decision-making without regret, routing games, and convergence to equilibria*, by Avrim Blum
- *The Complexity of Computing a Nash Equilibrium*, by Constantinos Daskalakis, Paul Goldberg, Christos Papadimitriou
- *Algorithmic Game Theory*, by Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay Vazirani (2007)