

CODING FOR ERRORS IN INTERACTIVE COMMUNICATION

Jason MacDonald

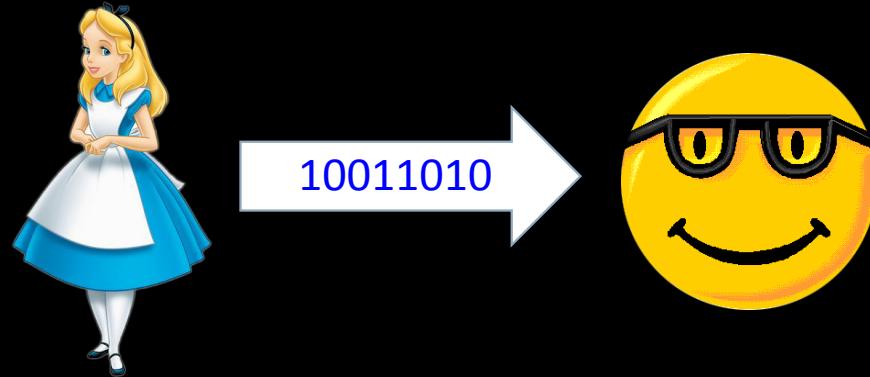
OVERVIEW

- Background
- Definitions
- Protocol
- Analysis

BACKGROUND

BACKGROUND

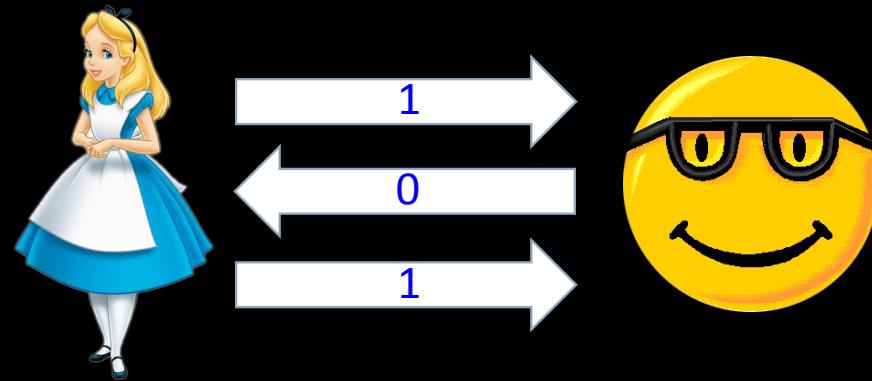
- Alice wants to send an n -bit message to Bob, but is worried that some of bits might get corrupted



- Possible solution?
 - Use an error-correcting code to encode the message with $O(n)$ bits as long as $< 1/4$ bits are received incorrectly
 - Discovered by Shannon in 1948

BACKGROUND

- Alice and Bob want to send each other multiple 1-bit messages but are worried that some of bits (messages) might get corrupted



- Can no longer use Shannon's error-correcting codes
 - Must use protocol that allows for “interactive communication”

INTERACTIVE COMMUNICATION

- Communication where each party sends many messages back and forth and can change what they want to say based on the other party's responses
- Proceeds in rounds
 - Each party takes turns sending/receiving



INTERACTIVE COMMUNICATION

Schulman's *Coding for Interactive Communication* (1996)

- Any protocol with N bits of interactive communication can be encoded with a constant-sized alphabet
- Bits exchanged in the protocol are determined one at a time, dynamically in the course of the interaction
- Purpose was to model a noisy communication link between two interacting computer processors
- Tolerates at most error rate of $1/240$

INTERACTIVE COMMUNICATION

Braverman and Rao's *Towards coding for maximum errors in interactive communication* (2011)

- New protocol that builds and improves on Schulman's work and also uses a constant-sized alphabet of size $O(1/\varepsilon)$
- Tolerates at most error rate of $1/4 - \varepsilon$
- Error rate is based off “worst-case scenario” errors, e.g., can have an adversary that knows the protocol choose which bits to corrupt

COMPARISON

Schulman's error rate: 1/240

joyaqcdxlpatvjrukqzqyndgenjcqgactxkwz
ojpebwemklnjknipbeaxiztwyqbixctrnpez
wskevjsiuglrlucmigmmitpldmjnuiuaygbiuws
zquldhztnyirvctfjvikodupsqrhbveedlmddk
aubvvaprtamfskyodvkypnpcarauhnheurxy
kohsghsspzwkzftqwemrrqcemltvdhqqrrok
shcumtateqatogwsqbbehmxjfvmcdkuekjbn
klsjxwarsnzplmmhznbrzxfaxpxsogbqksiue
ppollwzlhjtjpxbinyvizwssqreiecwuysjwgif
yxvrhnjxrrfmpqqliwvffaaaiuofbdqudn
uspgkxucjaugunvevlbmkepiebeibohrirvqx
pwciwxfbnjfnxvneqvruejsacvkaxpyifojtf
xnxlkxmqznuwzhxlttqhqsitzvfjzztbop

COMPARISON

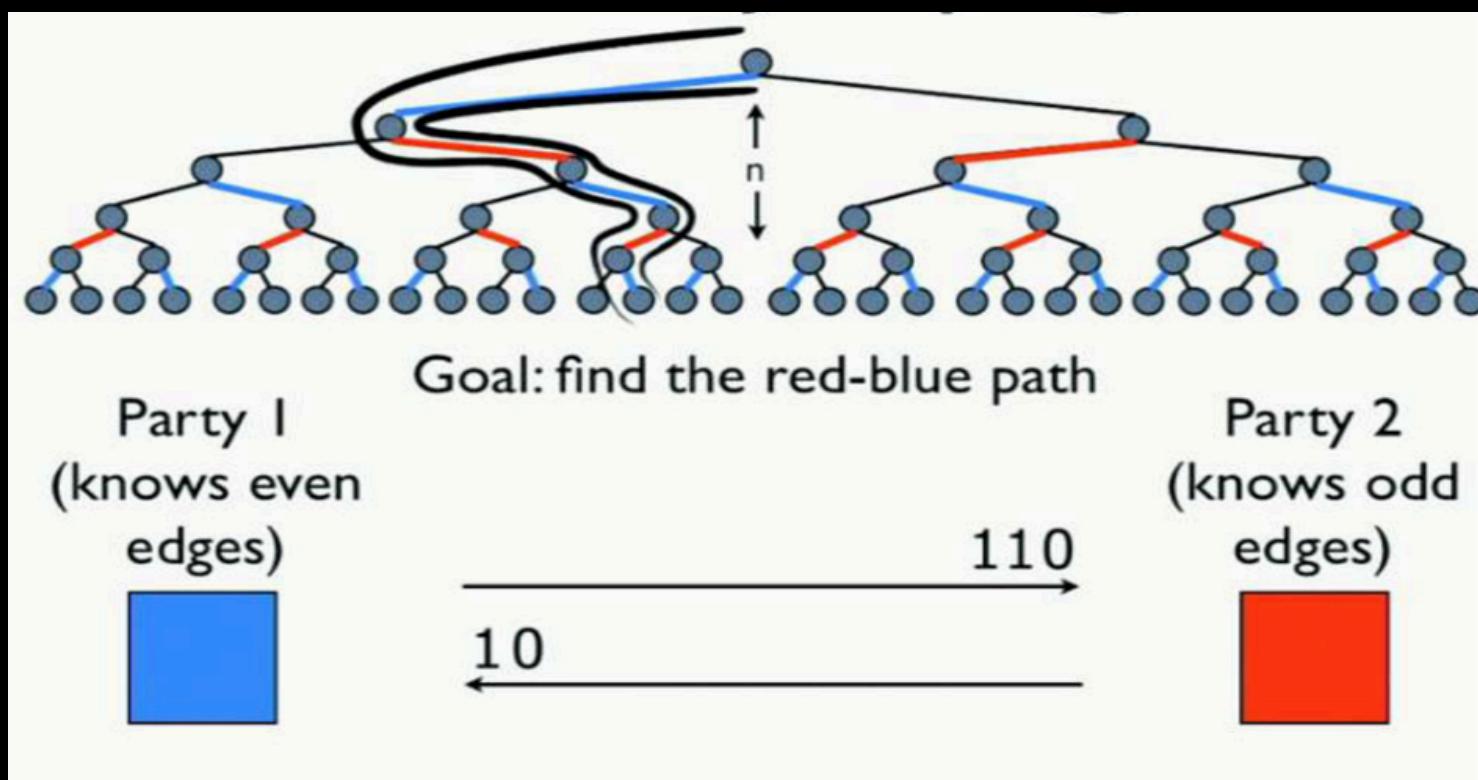
Braverman and Rao's error rate: $1/4 - \varepsilon$

joyaqcdxlpatvjrukqzqyndgenjcqgactxkwz
ojpebwzemklnjknipbeaxiztwyqbixctrnpez
wskevjsiuglrlucmigmmitpldmjnuiuaygbiuws
zquldhztnyirvctfjvikodupsqrhbveedlmddk
aubvvaprtamfskyodvkypnpscaraupnheurxy
kohsghssspzwkzftqwemrrqcemltvdhqqrrok
shcumtateqatogwsqbehmxjfvmcdkuekjbn
klsjxwarsnzplmmhznbrzxfaxpxsogbqksiue
ppollwzlhjtjpxbinyvizwssqreiecwuysjwgif
yxvrhnjxrrfmpqqliwvffaaiuofbdqudndyu
uspgkxucjaugunvevlbmkepiebeibohrirvqx
pwciwxfbnjfnxvneqvruejsacvkaxpyifojtf
xnxlkxmqznuwzhxlttqhqsitzvfjzztbop

DEFINITIONS

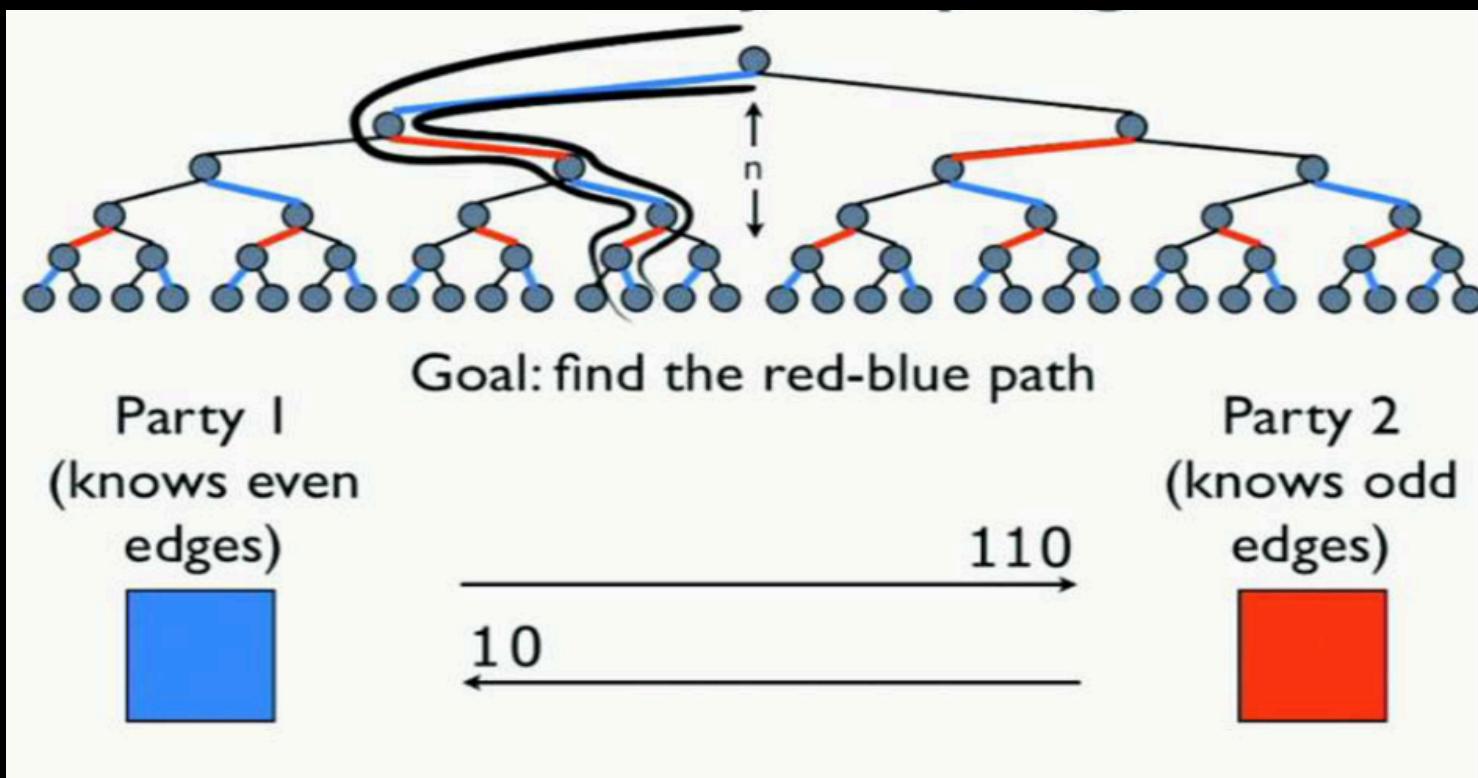
POINTER JUMPING

- Binary tree of height n
- Goal: find the **red-blue** path
 - Represents communication between the two parties



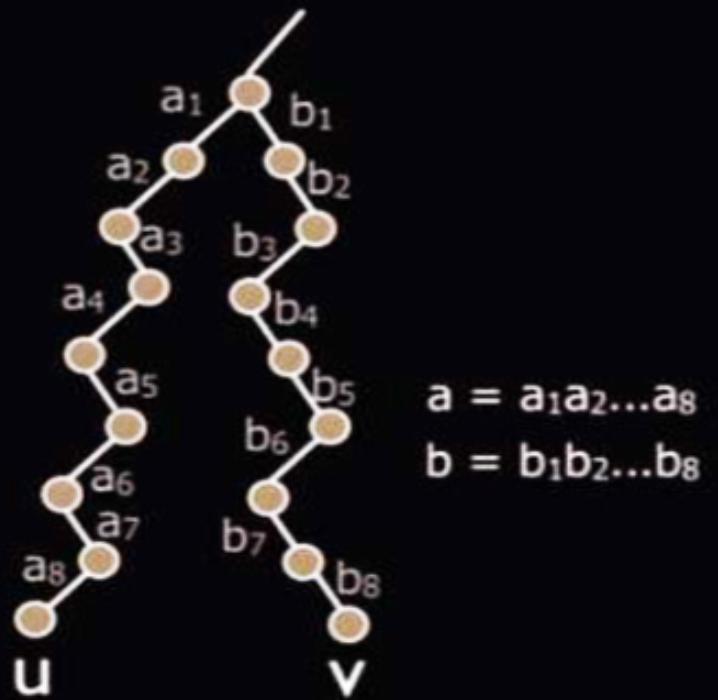
POINTER JUMPING

- 0 = left edge; 1 = right edge
- Party 1 communicates the bits 0, 1, 1
- Party 2 communicates the bits 0, 1



d -ARY TREE CODES

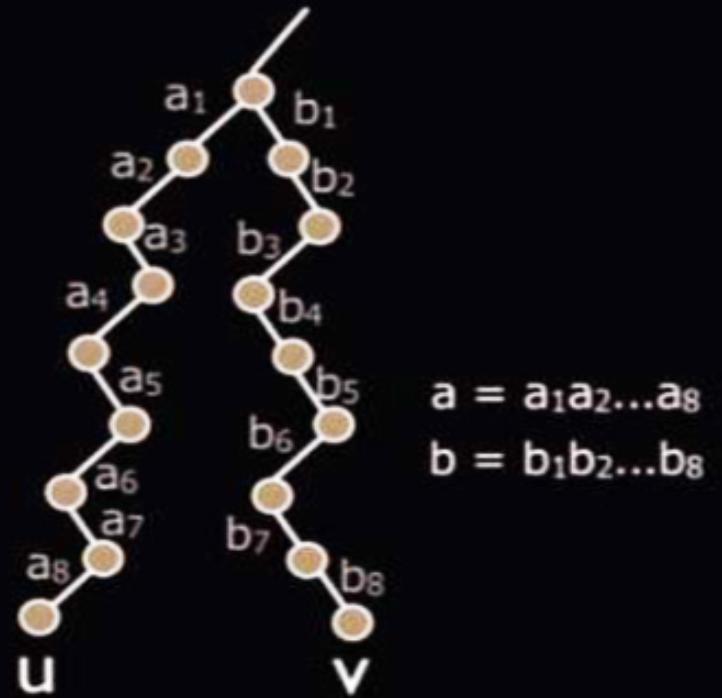
- d -ary tree – each vertex has d children
- Each edge labeled by a symbol from our alphabet Σ
- $L(u, v)$ = distance from u and v to their closest common ancestor
- $\Delta(u, v)$ = hamming distance between symbols in paths from root to u and v
- We say tree code has “distance” $(1 - \varepsilon)$



Tree code restriction:
 $\Delta(u, v) < (1 - \varepsilon)L(u, v)$

d -ARY TREE CODES

- Example:
 - Let $\varepsilon = 1/6$
 - a and b must differ in more than $(1 - \varepsilon) * 8 = (5/6) * 8 = 6.667$ places
 - Bad coding:
 - $a = 10000011$
 - $b = 11110100$
 - Good coding:
 - $a = 10001011$
 - $b = 11110100$

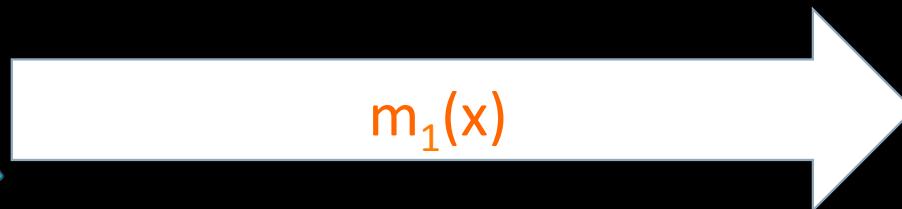


Tree code restriction:
 $\Delta(u, v) < (1 - \varepsilon)L(u, v)$

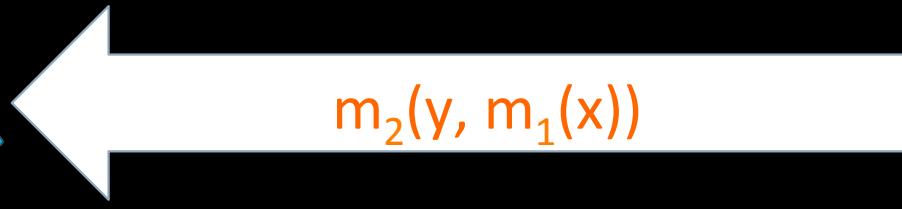
PROTOCOL

PROTOCOL

- Alice wants to send message x to Bob
 - She sends it encoded as $m_1(x)$



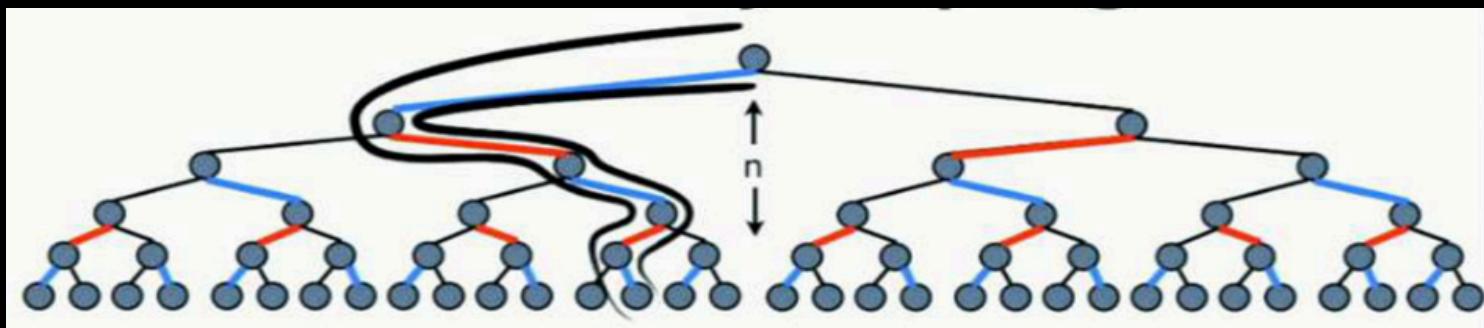
- Then Bob wants to reply with message y
 - He sends it encoded as $m_2(y, m_1(x))$



PROTOCOL

- Takes a given binary protocol (modeled by a binary tree T) between **Alice** and **Bob** and converts it into one that is error resistant, allowing an error rate of $1/4 - \varepsilon$
- **Alice** knows set of edges X in T of even depth
- **Bob** knows set of edges Y in T of odd depth
- Goal is to communicate the vertex reachable by the edges in X and Y

Binary tree T



PROTOCOL

- Construct a d -ary tree code and encoding/decoding function that converts between our tree code alphabet, Π , and our protocol's alphabet, Σ .
- **Alice**: knows set $X = \cup X_i$, receives set Y'_i from Bob each round
- **Bob**: knows set $Y = \cup Y_i$, receives set X'_i from Alice each round
- For $i = 1, \dots, H/\varepsilon$, where H is the height of our binary tree T :
 - **Alice** calculates her best interpretation of X and Y'_i , and transmits an encoding of this interpretation, $m(X \cup Y'_i)$
 - **Bob** calculates his best interpretation of Y and X'_i , and transmits an encoding of this interpretation, $m(Y \cup X'_i)$
- At the end, both Alice and Bob will have calculated the vertex reachable by $X \cup Y$

ANALYSIS

ANALYSIS

Schulman showed:

- For every $0 < \varepsilon < 1$,
a d -ary tree code with distance $(1 - \varepsilon)$ exists
using an alphabet of size $d^{O(1/\varepsilon)}$
- An explicit construction of tree codes, but takes
 $\Theta(1/\log n)$ time

ANALYSIS

Braverman and Rao showed:

- For every $0 < \varepsilon < 1$, any binary protocol can be simulated using a protocol with an alphabet of size $O(1/\varepsilon)$ if the error rate is at most $1/4 - \varepsilon$
- For every $0 < \varepsilon < 1$, any binary protocol can be simulated using a binary protocol if the error rate is at most $1/8 - \varepsilon$

But still haven't found a constant-rate construction of tree codes to date – remains a major open problem.

REFERENCES

- C. Shannon. A mathematical theory of communication. Bell Systems Technical Journal, pages 623-656, 1948.
- L. Schulman. Coding for interactive communication. IEEE Transactions on Information Theory, pages 17451756, 1996.
- M. Braverman and A. Rao. Towards coding for maximum errors in interactive communication. STOC, 2011.