
Proof assistants as a
tool for thought

Katherine Ye

Tools for thought workshop, March ’16

@hypotext

circa 1700

	

 Disputants unable to agree would not
waste much time in futile argument...

Leibniz (Harrison)

Calculemus!

1. universal language
2. calculus for reasoning

Proof assistant:
Coq

1. universal language
2. calculus for reasoning

1. universal language
2. calculus for reasoning

3. rich environment

High-assurance cryptography
New foundations for math

Program synthesis
Verifying hardware
Proofs as stories

Formally verifying that God exists
...

Example 1:
math, induction

Credit to “Software Foundations,” Pierce et al.

Say we want to prove
something about

adding natural numbers.

Inductive	
 nat	
 :	
 Set	
 :=
	
 	
 |	
 O	
 :	
 nat
	
 	
 |	
 S	
 :	
 nat	
 -­‐>	
 nat.

Fixpoint	
 plus	
 (x	
 y	
 :	
 nat)	
 :=
	
 	
 match	
 x	
 with
	
 	
 |	
 O	
 =>	
 y
	
 	
 |	
 S	
 x'	
 =>	
 S	
 (plus	
 x'	
 y)
	
 	
 end.

Natural number =
either 0

or 1 + a nat

Inductive	
 nat	
 :	
 Set	
 :=
	
 	
 |	
 O	
 :	
 nat
	
 	
 |	
 S	
 :	
 nat	
 -­‐>	
 nat.

Fixpoint	
 plus	
 (x	
 y	
 :	
 nat)	
 :=
	
 	
 match	
 x	
 with
	
 	
 |	
 O	
 =>	
 y
	
 	
 |	
 S	
 x'	
 =>	
 S	
 (plus	
 x'	
 y)
	
 	
 end.

0 + y = y
(1 + x’) + y = 1 + (x’ + y)

Inductive	
 nat	
 :	
 Set	
 :=
	
 	
 |	
 O	
 :	
 nat
	
 	
 |	
 S	
 :	
 nat	
 -­‐>	
 nat.

Fixpoint	
 plus	
 (x	
 y	
 :	
 nat)	
 :=
	
 	
 match	
 x	
 with
	
 	
 |	
 O	
 =>	
 y
	
 	
 |	
 S	
 x'	
 =>	
 S	
 (plus	
 x'	
 y)
	
 	
 end.

(*	
 O	
 =	
 0,	
 S	
 O	
 =	
 1,	
 S	
 (S	
 O)	
 =	
 2	
 *)
Eval	
 compute	
 in	
 (plus	
 O	
 O).	
 	
 	
 	
 	
 (*	
 0	
 +	
 0	
 =	
 0	
 *)

“Unit tests”

Inductive	
 nat	
 :	
 Set	
 :=
	
 	
 |	
 O	
 :	
 nat
	
 	
 |	
 S	
 :	
 nat	
 -­‐>	
 nat.

Fixpoint	
 plus	
 (x	
 y	
 :	
 nat)	
 :=
	
 	
 match	
 x	
 with
	
 	
 |	
 O	
 =>	
 y
	
 	
 |	
 S	
 x'	
 =>	
 S	
 (plus	
 x'	
 y)
	
 	
 end.

“Unit tests” aren't enough.
Now we want prove that our

computational `plus` satisfies the
properties of the mathematical +.

Theorem	
 add0_left_id	
 :	

forall	
 (n	
 :	
 nat),	
 plus	
 O	
 n	
 =	
 n.
Proof.
	
 	
 intros	
 n.
	
 	
 simpl.
	
 	
 reflexivity.
Qed.

0 is a left identity

Theorem	
 add0_left_id	
 :	

forall	
 (n	
 :	
 nat),	
 plus	
 O	
 n	
 =	
 n.
Proof.
	
 	
 intros	
 n.
	
 	
 simpl.
	
 	
 reflexivity.
Qed.

Fixpoint	
 plus	
 (x	
 y	
 :	
 nat)	
 :=
	
 	
 match	
 x	
 with
	
 	
 |	
 O	
 =>	
 y
	
 	
 |	
 S	
 x'	
 =>	
 S	
 (plus	
 x'	
 y)
	
 	
 end.

By definition

Theorem	
 add0_left_id	
 :	

forall	
 (n	
 :	
 nat),	
 plus	
 O	
 n	
 =	
 n.
Proof.
	
 	
 intros	
 n.
	
 	
 simpl.
	
 	
 reflexivity.
Qed.

Fixpoint	
 plus	
 (x	
 y	
 :	
 nat)	
 :=
	
 	
 match	
 x	
 with
	
 	
 |	
 O	
 =>	
 y
	
 	
 |	
 S	
 x'	
 =>	
 S	
 (plus	
 x'	
 y)
	
 	
 end.

0 is a right identity
Fixpoint	
 plus	
 (x	
 y	
 :	
 nat)	
 :=
	
 	
 match	
 x	
 with
	
 	
 |	
 O	
 =>	
 y
	
 	
 |	
 S	
 x'	
 =>	
 S	
 (plus	
 x'	
 y)
	
 	
 end.

Exercise for the reader:

Theorem	
 plus_commutativity	
 :
forall	
 (n	
 m	
 :	
 nat),	
 plus	
 n	
 m	
 =	
 plus	
 m	
 n.

Example 2:
large real-world

verification

1. Functional correctness
(logic, program analysis)

2. Security
(math, probability, program analysis)

5+ months of work by 4 authors

~15,000 lines of Coq code, most of which
will not be read by other people

Time for
cognitive dissonance!

The house believes that
Coq is an incredible

tool for thought.

The house believes that
Coq is a terrible tool

for thought.

The house believes that
Coq is an incredible

tool for thought.

Built on top of:

written notation

Built on top of:

written notation
text editors

Built on top of:

written notation
text editors
Gallina

Built on top of:

written notation
text editors
Gallina
Ltac

Built on top of:

written notation
text editors
Gallina
Ltac
checker

Built on top of:

written notation
text editors
Gallina
Ltac
checker
REPL/IDE

Started from the
bottom, now we here

Proof entrepreneur:
fail fast,

minimum viable proof...

Proof state bookkeeping:
assumptions, definitions, goals

Computation,
evaluation,
automation

Try

Brain says:
this isn’t right... I think

Fail Fix

Maybe right?

Maybe right?

Try

Coq says:
This is locally wrong!

Wrong type /
Can’t prove it /

Can’t use tactic /
Strange computation

Fail Fix

Sketching with lemmas

Goal

Lemma 1 Lemma 2

Lemma 4 Lemma 5

Lemma 3

Coq: OK!

admitted admitted admitted

admitted

admitted admitted

Coq: OK! Coq: OK!

Coq: OK! Coq: OK!

Goal

Lemma 1 Lemma 2

Lemma 4 Lemma 5

Lemma 3

Coq: OK!

QED

Coq: OK! Coq: OK!

Coq: OK! Coq: OK!

QED QED

QED

QED QED

Math as a game

You don’t have to
remember all the rules

yourself.

x + 20 = y

x = y - 20

x + 20 = y
x + 20 - 20 = y - 20

x = y - 20

	

 Civilization advances by extending the
number of important operations which
can be performed without thinking
about them.
	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 Whitehead

Goal: beat the level.
Proof state: inventory.

Tactics: moves.
Checker: walls.

We need Coq in order
to keep doing math.

	

 A technical argument by a trusted author ...
is hardly ever checked in detail.

Voevodsky
Fields medalist

	

 The only real long-term solution to the
problem is to start using computers in
the verification of mathematical
reasoning.

Voevodsky
Fields medalist

	

 We need proofs that are less error-prone
and more ... mechanically verifiable.

Bellare
cryptographer

	

 Many proofs in cryptography have become
essentially unverifiable. Our field may be
approaching a crisis of rigor.

Bellare
cryptographer

(100+ citations!)

1. Programmer affordances
2. Math as a game
3. “Crisis of rigor”

Pro-Coq:

The house believes that
Coq is a terrible tool

for thought.

Calculemus?

Games are designed for
humans to solve.

Math isn’t!

What could go wrong?

Your theorem is:

too specific, so you need to generalize
straight-up wrong, so you need a counterexample
true, but you need to be creative
true, but you discarded the One Ring

Your theorem is:

too specific, so you need to generalize
straight-up wrong, so you need a counterexample
true, but you need to be creative
true, but you discarded the One Ring

Your theorem is:

too specific, so you need to generalize
straight-up wrong, so you need a counterexample
true, but you need to be creative
true, but you discarded the One Ring

Your theorem is:

too specific, so you need to generalize
straight-up wrong, so you need a counterexample
true, but you need to be creative
true, but you discarded the One Ring

Work on paper first,
then in computer :(

Coq blindfolds the intuition.
We’re not “Coq natives”!

Built on top of:

written notation
text editors
Gallina
Ltac
checker
IDE

Started from the bottom...
now we’re back.

Try

Coq says:
This is locally wrong!

Wrong type /
Can’t prove it /

Can’t use tactic /
Strange computation

Fail Fix
Try

Fail Fix

Try

Fail Fix

Fail Fix

Try

Fix

Coq says:
This is locally wrong!

Wrong type /
Can’t prove it /

Can’t use tactic /
Strange computation

Coq says:
This is locally wrong!

Wrong type /
Can’t prove it /

Can’t use tactic /
Strange computation

Coq says:
This is locally wrong!

Wrong type /
Can’t prove it /

Can’t use tactic /
Strange computation

Coq says:
This is locally wrong!

Wrong type /
Can’t prove it /

Can’t use tactic /
Strange computation

Try

Coq says:
This is locally wrong!

Wrong type /
Can’t prove it /

Can’t use tactic /
Strange computation

Coq says:
This is locally wrong!

Wrong type /
Can’t prove it /

Can’t use tactic /
Strange computation

Coq says:
This is locally wrong!

Wrong type /
Can’t prove it /

Can’t use tactic /
Strange computation

????

REPLs are alive
and make us reactive

Try

Brain says:
this isn’t right...

I think.

Fail Fix

Paper is calm
and makes us active

Paper forces us to figure
out what’s going on,

formulate a hypothesis

So, Coq makes proofs
harder to write.

...and harder to read!

“write-only”

what are we trying to
prove??

Check	
 fcf_oracle_eq_until_bad.
Locate	
 fcf_oracle_eq_until_bad.

Why applied with these arguments?

What are all of these subgoals?

What hypothesis did I use?

Wait, that proved the theorem???!!

No sense of hierarchy,
importance, narrative.
Where’s the intuition?

Written by computers,
for computers

Intuition Intuition

Proof

Intuition Intuition

Proof

Ok Ok

???

The role of the human
is not to understand,

but to trust.

Text is a
double-edged sword.

Powerful ways to
manipulate and search

text...

...but not pictures.

Machine Checkable Pictorial Mathematics

Proof by ASCII art

The house believes that
Coq is an incredible

tool for thought.

Programmers’ affordances:
precise language, instant
feedback (correctness

checking, REPL)

“You don’t have to
know all the rules.”

Our only hope.

The house believes that
Coq is a terrible tool

for thought.

By computers, for
computers.

Destroys intuition.

Built on top of:

written notation
text editors
Gallina
Ltac
checker
IDE

How can we make
proof assistants

“intuition assistants”?

Incremental
improvements

Visualize theorem
dependency tree

“Explanatory,”
human-readable proofs:

diff proof states

Translate proofs into English
or a better tactic language

A Declarative Language For The Coq Proof Assistant, Corbineau

Different interfaces for
different areas of math

One visual interface:
Ancient Greek Geometry

Calculemus is necessary—
but not sufficient!

Thanks!
Katherine Ye
@hypotext

Appendix

Example 3:
program equivalence

