Proof assistants as a
tool for thought

Katherine Ye
@hypotext

Tools for thought workshop, March °16

circa 1700

Disputants unable to agree would not
waste much time in futile argument...

Leibniz (Harrison)

Calculemus!

|. universal language

2. calculus for reasoning

Proof assistant:

Coq

|. universal language

2. calculus for reasoning

|. universal language

2. calculus for reasoning
3. rich environment

High-assurance cryptography
New foundations for math
Program synthesis
Verifying hardware

Proofs as stories
Formally verifying that God exists

Verified correctness and security of OpenSSL HMAC

To appear in 24th Usenix Security Symposium, August 12, 2015

Lennart Beringer Adam Petcher Katherine Q. Ye Andrew W. Appel
Princeton Univ. Harvard Univ. and Princeton Univ. Princeton Univ.
MIT Lincoln Laboratory

Example |:

math, induction

Credit to “Software Foundations,” Pierce et al.

Say we want to prove

something about
adding natural numbers.

Inductive nat : Set := Natural number =

| 0 : nat either O
| S : nat -> nat.

or | + a nat

Inductive nat : Set :=
O : nat
S : nat -> nat.

Fixpoint plus (x y : nat) :=
match x with
O =>y

> S (plus x' y)

O+y=y
(I +x)+y=1+(x+y)

Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.

Fixpoint plus (x y : nat) :=
match x with
=>y

> S (plus x' vy)

“Unit tests™

(*0=08, SO0=1,S (S0) =2 %)
Eval compute in (plus 0 0). (*9 + 0 =0 %*)

Inductive nat : Set :=
| 0 : nat
| S : nat -> nat.

Fixpoint plus (x y : nat)
match x with
y

> S (plus x' y)

in (plus O 0) :: 0
in (plus (S 0) 0).
in (plus 0 (S 0)).

in (plus (S 0) (S O)) I_,____lj 1 f

“Unit tests” aren't enough.
Now we want prove that our
computational plus satisfies the

properties of the mathematical +.

0 is a left identity

Theorem add@ left id :
forall (n : nat), plus O n = n.
Proof.

By definition

Theorem add@ left id :
forall (n : nat), plus O n = n.
Proof.

Theorem add@ left id :
forall (n : nat), plus O n = n.
Proof.

intros n.

simpl.

reflexivity.
Qed.

match x with

0 is a right identity o

| S x' =>S (plus x' vy)
end.

Theorem add@_right_id : 1 subgoals, subgoal 1 (ID 39)
forall (n : nat), plus n 0 = n.

Proof. e ————————

forall n : nat, plus n 0 = n

Theorem add@_right_id : 1 subgoals, subgoal 1 (ID 39)
forall (n : nat), plus n 0 = n.

Proof. e —————————

'0S n. forall n : nat, plus n 0 = n

Theorem add@_right_id : 2 subgoals, subgoal 1 (ID 43)
forall (n : nat), plus n O = n.
Proof.

n. plus 00 =0
'nas [| n'].

subgoal 2 (ID 46) is:

plus (S n')0=Sn'

Theorem add@_right_id : 1 focused subgoals (unfocused: 1)
forall (n : nat), plus n 0 = n. , subgoal 1 (ID 43)
Proof.
n.

nas [| n']. plus 00 =0

(* Base case: n = 0 *)

Theorem add@_right_id : 1 subgoals, subgoal 1 (ID 46)
forall (n : nat), plus n 0 = n.
Proof. subgoal 1 (ID 46) is:
n. plus (S n')0=Sn"
nas [| n'].

(* Base case: n = @ *)

Theorem add@_right_id : 1 1 focused subgoals (unfocused: 0)
forall (n : nat), plus n 0 = n. 2 , subgoal 1 (ID 46)
Proof. 3
n. 4 n' : nat
nas [| n']. 5 IHn' : plus n' 0 = n'
6
I'4

(* Base case: n = 0 *)

plus (S n')0=Sn

(* Inductive case:

1

Given: n' + @ = n'
Show: (1 + n') + 0 =1 + n'") *)

Theorem add@_right_id :
forall (n : nat), plus n 0 = n.
Proof.

n.
nas [| n'].

(* Base case: n = 0 *)

(* Inductive case:

Given: n' + @ = n'
Show: (1 + n') + 0 =1 +n") *)

(* Goal: A +n') +0=1+n"
becomes 1 + (n" +0) =1 + n' *)

N OO A WN -

1 focused subgoals (unfocused: 0)

)

subgoal 1 (ID 48)

n' : nat
IHn" : plus n' 0 = n'

S (plus n" 0) =S n'

Theorem add@_right_id :
forall (n : nat), plus n 0 = n.
Proof.

n.
nas [| n'].

(* Base case: n = 0 *)

(* Inductive case:

Given: n' + @ = n'
Show: (1 + n") + 0 =1 +n") *

(*Goal: A +n'") +0=1+n'
becomes 1 + (n' + @) =1 + n' *)
-> IHn".

N oA WN -

focused subgoals (unfocused: @)
subgoal 1 (ID 49)

n" : nat
IHn®" : plus n' 0 = n'

Theorem add@_right_id :
forall (n : nat), plus n O = n.
Proof.

n.
nas [| n'].

(* Base case: n = 0 *)

(* Inductive case:

1

Given: n' + @ = n'
Show: (1 + n') + 0 =C1 +n') *)

(* Goal: A +n') +0=1+n'
becomes 1 + (n' + @) =1 + n' *)
-> IHn'.

Theorem add@_right_id :
forall (n : nat), plus n O = n.
Proof.

n.
nas [| n'].

(* Base case: n = 0 *)

(* Inductive case:

Given: n' + @ = n'
Show: (1 + n') +0 =1 +n'") *)

(* Goal: (L +n") +0=1+n'
becomes 1 + (n' + Q) =1 + n'" *)
-> IHn'.

Exercise for the reader:

Theorem plus commutativity :
forall (n m : nat), plus n m = plus m n.

Example 2:

large real-world
verification

Verified correctness and security of OpenSSL HMAC

To appear in 24th Usenix Security Symposium, August 12, 2015

Lennart Beringer Adam Petcher Katherine Q. Ye Andrew W. Appel
Princeton Univ. Harvard Univ. and Princeton Univ. Princeton Univ.
MIT Lincoln Laboratory

|. Functional correctness
(logic, program analysis)

2. Security
(math, probability, program analysis)

15. HMAC cryptographic
security property

14. SHA cryptographic 16. | Crypto security
security property proof
(nobody knows 3. Bellare HMAC functional spec

how to prove this) ¢~ 4. Equivalencé
| Proo

1. SHA functional spec 2. FIPS HMAC functional spec

Bold face
indicates new
results in
this paper

End-to-End
machine-checked
crypto-security
_—+ implementation

10. SHA API spec =~ 12. HMAC API spec ~&—

proof

Proof Proof

11. ICorrectness 13. ICorrectness

5. Verifiable C |
program logic

sha.c hmac.c

N/

CompCert

verified optlmlzmg
C compiler

4 \
sha.s hmac.s

Figure 1: Architecture
of our assurance case.

7. | Soundness
Proof

6. C operational
semantics

9. | Correctness
Proof

8. Intel IA-32
operational semantics

5+ months of work by 4 authors

~15,000 lines of Coq code, most of which
will not be read by other people

Time for

cognitive dissonance!

The house believes that

Cogq is an incredible
tool for thought.

The house believes that

Cogq is a terrible tool
for thought.

The house believes that

Cogq is an incredible
tool for thought.

Built on top of:

written notation

Built on top of:

written notation
text editors

Built on top of:

written notation
text editors
Gallina

Built on top of:

written notation
text editors
Gallina

Ltac

Built on top of:

written notation
text editors
Gallina

Ltac

checker

Built on top of:

written notation
text editors
Gallina

Ltac

checker
REPL/IDE

Started from the

bottom, now we here

Proof entrepreneur:

fail fast,
minimum viable proof...

Proof state bookkeeping:
assumptions, definitions, goals

1 focused subgoals (unfocused: @)
, subgoal 1 (ID 48)

n" : nat
IHn' : plus n' 0 = n'

S (plus n" 0) =S n'

Computation,
evaluation,
automation

(*0=0,50=1,S(S0)=2%

Eval in (plus 0 0). (* 0 +
Eval in (plus (S 0) 0). (* 1 +
Eval in (plus 0 (S 0)). (* 0 +
Eval in (plus (S 0) (S 0)).HC*

P PO

+ 0 on o
PR RS
| %\ *

Maybe right!?

/N

Brain says:

icht?
this isn’t right... | think Maybe right

Coq says:

This is locally wrong!
Wrong type /
Can’t prove it /
Can’t use tactic /
Strange computation

Sketching with lemmas

Math as a game

You don’t have to

remember all the rules
yourself.

X +20=y

x +20-20=y-20
Xx=y-20

Civilization advances by extending the
number of important operations which
can be performed without thinking

about them.
Whitehead

Goal: beat the level.
Proof state: inventory.

Tactics: moves.
Checker: walls.

'

l

L

W s T \..u‘.,.

: “ '.u-.‘

'

h

-

-

We need Coq in order

to keep doing math.

A technical argument by a trusted author ...
is hardly ever checked in detail.

Voevodsky
Fields medalist

The only real long-term solution to the
problem is to start using computers in
the verification of mathematical

reasoning.

Voevodsky
Fields medalist

We need proofs that are less error-prone
and more ... mechanically verifiable.

Bellare
cryptographer

Many proofs in cryptography have become
essentially unverifiable. Our field may be
approaching a crisis of rigor.

Bellare
cryptographer

(100+ citations!)

Pro-Coaq:

|. Programmer affordances

2. Math as a game
3.“Crisis of rigor”

The house believes that

Cogq is a terrible tool
for thought.

Calculemus?

Games are designed for
humans to solve.

Math isn’t!

What could go wrong?

Your theorem is:

too specific, so you need to generalize

Your theorem is:

too specific, so you need to generalize
straight-up wrong, so you need a counterexample

Your theorem is:

too specific, so you need to generalize
straight-up wrong, so you need a counterexample

true, but you need to be creative

Your theorem is:

too specific, so you need to generalize
straight-up wrong, so you need a counterexample

true, but you need to be creative
true, but you discarded the One Ring

Work on paper first,

then in computer :(

Cogq blindfolds the intuition.

We're not “Coq natives’’!

Built on top of:

written notation
text editors
Gallina

Ltac

checker
IDE

Started from the bottom...

now we're back.

Coq says:
This is locally wrong!
Wrong type / Tr)’
Fix Can’t prove it /
Can’t use tactic /

Cogq says: Strange computation
This is locally wr@ga says:

WWrong $yRe {s locally wrong! TI")’

Can’t prove Wrong type /

—>

Can’t use tagtic 4 : .
e prove it / Fail

Strange COMPEAHONSe tactic /
Strange computation Coq sa)g:
Tl”)’ This is locally wrong!

Wrong type /

Fail Can’t prove it / Fi
\ al —Camrr e tactic / T IX C:

Strange computation Tr)l Ca

Coq says:

Fix This is locally wrong! 1271
Wrong type /

Can’t prove it /
Can’t use faoticsays:
Strangd kisrisplawailyrwrong! Fail
Wrong type /
Can’t prove it /
Can’t use tactic /

Coq says:
This is locally wrong!
Wrong type /
Can’t prove it /
Can’t use tactic /

REPLs are alive

and make us reactive

Brain says:
this isn’t right...
I think.

Paper is calm

and makes us active

Paper forces us to figure

out what’s going on,
formulate a hypothesis

S0, Coq makes proofs

harder to write.

...ahd harder to read!

“write-only”

Theorem PRF_A_randomFunc_eqg_until_bad :
comp_spec
(fun y1 y2 : bool * (list (D * Bvector eta)) =>
hasDups _ (fst (split (snd yl))) =
hasDups _ (fst (split (snd y2))) /\
(snd yl1))) = false ->
snd yl = snd y2 /\ fst yl = fst y2))
(PRF_A _ _ randomFunc_withDups nil)
(PRF_A _ _
(fun (ls : 1list (D * Bvector eta)) (x : D) =>
r<-$ {0, 1 }eta; ret (r, (x, r) :: 1s)) nil).
Proof.
(fcf_oracle_eg_until_bad

(fun x 4 9))
(fun x => hasDups _ (fst (split x))) eq);

- apply PRF_A_wf.

- unfold randomFunc_withDups.
destruct (arrayLookup D_EgDec a b);
fcf_well_formed.

- fcf_well_formed.

randomFunc_withDups.
(arrayLookup _ x2 a); intuition.

* fcf_irr_r.
fcf_simp.
fcf_spec_ret; simpl.

remember (split
astruct z.
pl in *.

=2

remember (split x2) as z.
2 S 't 2
=2

simpl in *.
astruct (in_dec (EgDec_dec D_EgDec) a 10);

> notInArraylLookupNone in H.

_:Z'ﬁnzip_eq_split in H3.
remember (split x2) as z.
1e€STI T Z.
pairlnv.
simpl in *.

Theorem PRF_A_randomFunc_eqg_until_bad :
comp_spec
(fun y1 y2 : bool * (list (D * Bvector eta)) =>
(snd y1))) =
hasDups _ (fst (split (snd y2))) /\
ChasDups _ (fst (split (snd yl))) = false ->
snd yl = snd y2 /\ fst yl = fst y2))
(PRF_A _ _ randomFunc_withDups nil)
(PRF_A _ _
(fun (1s : 1list (D * Bvector eta)) (x : D) =
r<-$ {0, 1 }eta; ret (r, (x, r) :: 1s)) nil).
Proof.
(fcf_oracle_eg_until_bad
(fun x => hasDups _ (fst (split x)))
(fun x => hasDups _ (fst (split x))) eq);
- apply PRF_A_wf.
- unfold randomFunc_withDups.
destruct (arrayLookup D_EgDec a b);
fcf_well_formed.
- fcf_well_formed.

fe f randomFunc_withDups.
-ase_eq (arraylLookup _ x2 a); intuition.

* fcf_irr_r.
fcf_simp.
fcf_spec_ret; s

eSTruct Z.
:‘H"‘,’V, in *.
trivial.
simpl in *,
remember (split
les z

t

remember (sp]

o
> LIUcC

simpl in

lestruct (in_dec (EgDec_dec D_EgDec) a 1@); intuition.

rewrite notInArraylLookupNone in H.

Eﬁ;f::EAunzip_eq_split in H3.
remember (split x2) as z.
destruct z.

pairlnv.

simpl in *.

<« what are we trying to
provel?

Theorem PRF_A_randomFunc_eqg_until_bad :
comp_spec
(fun y1 y2 : bool * (list (D * Bvector eta)) =>
hasDups _ (fst (split (snd yl))) =
hasDups _ (fst (split (snd y2))) /\
(snd yl1))) = false ->
snd yl = snd y2 /\ fst yl = fst y2))
(PRF_A _ _ randomFunc_withDups nil)
(PRF_A _ _
(fun (ls : 1list (D * Bvector eta)) (x : D) =>
r<-$ {0, 1 }eta; ret (r, (x, r) :: 1s)) nil).
Proof.
(fcf_oracle_eg_until_bad
(fun x => hasDups _ (fst (sp
(fun x => hasDups _ (fst (split x))) eq);
- apply PRF_A_wf.
- unfold randomFunc_withDups.
destruct (arrayLookup D_EgDec a b);
fcf_well_formed.
- fcf_well_formed.

randomFunc_withDups.
(arrayLookup _ x2 a); intuition.

* fcf_irr_r.
fcf_simp.
fcf_spec_ret; simpl.

remember (split
astruct z.
pl in *.

=2

remember (split x2) as z.
2 S 't 2
=2

simpl in *.
astruct (in_dec (EgDec_dec D_EgDec) a 10);

> notInArraylLookupNone in H.

“":;'ﬁnzip_eq_split in H3.
remember (split x2) as z.
1e€STI T Z.
pairlnv.
simpl in *.

€ (Check fcf_oracle eq until bad.
Locate fcf _oracle eq until bad.

Theorem PRF_A_randomFunc_eqg_until_bad :
comp_spec
(fun y1 y2 : bool * (list (D * Bvector eta)) =>
hasDups _ (fst (split (snd yl))) =
hasDups _ (fst (split (snd y2))) /\
(snd yl1))) = false ->
snd yl = snd y2 /\ fst yl = fst y2))
(PRF_A _ _ randomFunc_withDups nil)
(PRF_A _ _
(fun (ls : 1list (D * Bvector eta)) (x : D) =>
r<-$ {0, 1 }eta; ret (r, (x, r) :: 1s)) nil).
Proof.
(fcf_oracle_eg_until_bad
(fun x => hasDups _ (fst (sp
(fun x => hasDups _ (fst (split x))) eq);

- apply PRF_A_wf.

- unfold randomFunc_withDups.
destruct (arrayLookup D_EgDec a b);
fcf_well_formed.

- fcf_well_formed.

randomFunc_withDups.
(arrayLookup _ x2 a); intuition.

* fcf_irr_r.
fcf_simp.
fcf_spec_ret; simpl.

remember (split
astruct z.
pl in *.

=2

remember (split x2) as z.
2 S 't 2
=2

simpl in *.
astruct (in_dec (EgDec_dec D_EgDec) a 10);

> notInArraylLookupNone in H.

“":;'ﬁnzip_eq_split in H3.
remember (split x2) as z.
1e€STI T Z.
pairlnv.
simpl in *.

<«——— Why applied with these arguments?

Theorem PRF_A_randomFunc_eqg_until_bad :
comp_spec
(fun y1 y2 : bool * (list (D * Bvector eta)) =>
hasDups _ (fst (split (snd yl))) =
hasDups _ (fst (split (snd y2))) /\
(snd yl1))) = false ->
snd yl = snd y2 /\ fst yl = fst y2))
(PRF_A _ _ randomFunc_withDups nil)
(PRF_A _ _
(fun (ls : 1list (D * Bvector eta)) (x : D) =>
r<-$ {0, 1 }eta; ret (r, (x, r) :: 1s)) nil).
Proof.
(fcf_oracle_eg_until_bad
(fun x => hasDups _ (fst (sp
(fun x => hasDups _ (fst (split x))) eq);
- apply PRF_A_wf.
- unfold randomFunc_withDups.
destruct (arrayLookup D_EgDec a b);
fcf_well_formed.
- fcf_well_formed.

randomFunc_withDups.
(arrayLookup _ x2 a); intuition.

* fcf_irr_r.
fcf_simp.
fcf_spec_ret; simpl.

remember (split
astruct z.
pl in *.

=2

remember (split x2) as z.
2 S 't 2
=2

simpl in *.
astruct (in_dec (EgDec_dec D_EgDec) a 10);

> notInArraylLookupNone in H.

“":;'ﬁnzip_eq_split in H3.
remember (split x2) as z.
1e€STI T Z.
pairlnv.
simpl in *.

<—— What are all of these subgoals?

Theorem PRF_A_randomFunc_eqg_until_bad :
comp_spec
(fun y1 y2 : bool * (list (D * Bvector eta)) =>
hasDups _ (fst (split (snd yl))) =
hasDups _ (fst (split (snd y2))) /\
(snd yl1))) = false ->
snd yl = snd y2 /\ fst yl = fst y2))
(PRF_A _ _ randomFunc_withDups nil)
(PRF_A _ _
(fun (ls : 1list (D * Bvector eta)) (x : D) =>
r<-$ {0, 1 }eta; ret (r, (x, r) :: 1s)) nil).
Proof.
(fcf_oracle_eg_until_bad
(fun x => hasDups _ (fst (sp
(fun x => hasDups _ (fst (split x))) eq);

- apply PRF_A_wf.

- unfold randomFunc_withDups.
destruct (arrayLookup D_EgDec a b);
fcf_well_formed.

- fcf_well_formed.

randomFunc_withDups.
(arrayLookup _ x2 a); intuition.

* fcf_irr_r.
fcf_simp.
fcf_spec_ret; simpl.

remember (split
astruct z.
pl in *.

=2

remember (split x2) as z.
2 S 't 2
=2

simpl in *.
astruct (in_dec (EgDec_dec D_EgDec) a 10);

> notInArraylLookupNone in H.

“":;'ﬁnzip_eq_split in H3.
remember (split x2) as z.
1e€STI T Z.
pairlnv.
simpl in *.

<——— What hypotbhesis did | use?

Theorem PRF_A_randomFunc_eqg_until_bad :
comp_spec
(fun y1 y2 : bool * (list (D * Bvector eta)) =>
hasDups _ (fst (split (snd yl))) =
hasDups _ (fst (split (snd y2))) /\
(snd yl1))) = false ->
snd yl = snd y2 /\ fst yl = fst y2))
(PRF_A _ _ randomFunc_withDups nil)
(PRF_A _ _
(fun (ls : 1list (D * Bvector eta)) (x : D) =>
r<-$ {0, 1 }eta; ret (r, (x, r) :: 1s)) nil).
Proof.
(fcf_oracle_eg_until_bad
(fun x => hasDups _ (fst (sp
(fun x => hasDups _ (fst (split x))) eq);

- apply PRF_A_wf.

- unfold randomFunc_withDups.
destruct (arrayLookup D_EgDec a b);
fcf_well_formed.

- fcf_well_formed.

randomFunc_withDups.
(arrayLookup _ x2 a); intuition.

* fcf_irr_r.
fcf_simp.
fcf_spec_ret; simpl.

remember (split
astruct z.
pl in *.

=2

remember (split x2) as z.
2 S 't 2
=2

simpl in *.
astruct (in_dec (EgDec_dec D_EgDec) a 10);

> notInArraylLookupNone in H.

“":;'ﬁnzip_eq_split in H3.
remember (split x2) as z.
1e€STI T Z.
pairlnv.
simpl in *.

/ Wait, that proved the theorem???!!

Theorem PRF_A_randomFunc_eqg_until_bad :
comp_spec
(fun y1 y2 : bool * (list (D * Bvector eta)) =>
(snd y1))) =
hasDups _ (fst (split (snd y2))) /\
ChasDups _ (fst (split (snd yl))) = false ->
snd yl = snd y2 /\ fst yl = fst y2))
(PRF_A _ _ randomFunc_withDups nil)
(PRF_A _ _
(fun (1s : 1list (D * Bvector eta)) (x : D) =
r<-$ {0, 1 }eta; ret (r, (x, r) :: 1s)) nil).
Proof.
(fcf_oracle_eg_until_bad
(fun x => hasDups _ (fst (split x)))
(fun x => hasDups _ (fst (split x))) eq);
- apply PRF_A_wf.
- unfold randomFunc_withDups.
destruct (arrayLookup D_EgDec a b);
fcf_well_formed.
- fcf_well_formed.

fe f randomFunc_withDups.
-ase_eq (arraylLookup _ x2 a); intuition.

* fcf_irr_r.
fcf_simp.
fcf_spec_ret; s

eSTruct Z.
:‘H"‘,’V, in *.
trivial.
simpl in *,
remember (split
les z

t

remember (sp]

o
> LIUcC

simpl in

lestruct (in_dec (EgDec_dec D_EgDec) a 1@); intuition.

rewrite notInArraylLookupNone in H.

Eﬁ;f::EAunzip_eq_split in H3.
remember (split x2) as z.
destruct z.

pairlnv.

simpl in *.

No sense of hierarchy,
Importance, narrative.
Where’s the intuition?

Written by computers,

for computers

Proof

The role of the human

iS not to understand,
but to trust.

Text is a

double-edged sword.

Powerful ways to

manipulate and search
text...

...out not pictures.

Machine Checkable Pictorial Mathematics

forall (a b ¢ : object) {p:c » a} {g:c » b} : denote (parse [

" v prjL v prjR v

' bundle

—
e
-ae - -ae -ae - - -ae - -

] ¢ a (bundle a b) b p (factor p q) g projL projR);

Proof by ASCII art

The house believes that

Cogq is an incredible
tool for thought.

Programmers’ affordances:
precise language, instant

feedback (correctness
checking, REPL)

“You don’t have to

know all the rules.”

Our only hope.

The house believes that

Cogq is a terrible tool
for thought.

By computers, for

computers.

Destroys intuition.

Built on top of:

written notation
text editors
Gallina

Ltac

checker
IDE

How can we make

proof assistants
“intuition assistants’ !

Incremental

Improvements

Visualize theorem

dependency tree

Gi_pef_if_close Gi_normal_prf_eq GiLrt_sb_close
PRF_Advantages_lte Gi_rb._bad_collisions Gi_sormal_tb_eq Gi_rb_return_bed_oq Gi_rf_return_bed_cq Gi_rb_f_identical_until_bed
_Advantage 0 GenUpdate_v_outpat_peobabilty T_.-t.;-.i GiLsb_rf_no_bad_same
ned) PRF_Advantage_0_sdmitted GenUpdate_split_close Gi_rb_rf_return_bad_same
compFold_ace < Gitb_sf_rensen_bad_same_admitiod

“Explanatory,”

human-readable proofs:
diff proof states

Translate proofs into English

or a better tactic language

Lemma double_div2: forall n, div2 (double n) = n.
intro n.

induction n.

reflexivity.

unfold double in *|-x%.

simpl.

rewrite <- plus_n_Sm.

rewrite IHn.

reflexivity.

Qed.

Now, we give the same proof using the new declarative language:

Lemma double_div2: forall n, div2 (double n) = n.
proof.
let n:nat.
per induction on n.
suppose it is O.
reconsider thesis as (0=0).
thus thesis.
suppose it is (S m) and Hrec:thesis for m.
have (div2 (double (S m))
= div2 (S (S (double m)))).
“= (S (div2 (double m))).
thus "= (S m) by Hrec.
end induction.
end proof.
Qed.

A Declarative Language For The Coq Proof Assistant, Corbineau

Different interfaces for

different areas of math

One visual interface:
Ancient Greek Geometry

E - new laver

CHALLENGES 0/40

TRTANG ‘
AN LANGLL

INCOMPLETE

Calculemus is necessary—

but not sufficient!

Thanks!

Katherine Ye
@hypotext

Appendix

Example 3:

program equivalence

Theorem if_swap_equiv : forall (b : bool) (x y : nat),
(if b then x else y) = (if (negb b) then y else x).

Proof.

1 subgoals, subgoal 1 (ID 2)

Theorem if_swap_equiv : forall (b : bool) (x y : nat),

(if b then x else y) = (if (negb b) then y else x). R e S
Proof. forall (b : bool) (x
[(if b then x else y)

y : nat),
= (if negb b then y else x)

1 subgoals, subgoal 1 (ID 5)
Theorem if_swap_equiv : forall (b : bool) (x y : nat),
(if b then x else y) = (if (negb b) then y else x).

Proof.

b : bool
X : nat
y : nat

(if b then x else y) = (if negb b then y else x)

1
2
3
4
5
6
/
8

2 subgoals, subgoal 1 (ID 8)
Theorem if_swap_equiv : forall (b : bool) (x y : nat),
(if b then x else y) = (if (negb b) then y else x).

Proof.

X : nat
v : nat

X = (if negb true then y else x)

subgoal 2 (ID 9) 1is:
y = (if negb false then y else x)

1
2
3
4
5
6
/
8
9

1 focused subgoals (unfocused: 1)
Theorem if_swap_equiv : forall (b : bool) (x y : nat), , subgoal 1 (ID 8)
(if b then x else y) = (if (negb b) then y else Xx).
Proof. X : nat
v - nat
b.

X = (if negb true then y else x)

(* Case 1: b = true *)

1 focused subgoals (unfocused: 1)
Theorem if_swap_equiv : forall (b : bool) (x y : nat), , subgoal 1 (ID 10)
(if b then x else y) = (if (negb b) then y else x).
Proof. x : nat
y : nat

b.
X = X

(* Case 1: b = true *)

1 subgoals, subgoal 1 (ID 9)

Theorem if_swap_equiv : forall (b : bool) (x y : nat),
(if b then x else y) = (if (negb b) then y else x). subgoal 1 (ID 9) is:
Proof. y = (if negb false then y else x)

b.

(* Case 1: b = true *)

1 focused subgoals (unfocused: @)
Theorem if_swap_equiv : forall (b : bool) (x y : nat), , Subgoal 1 (ID 9)
(if b then x else y) = (if (negb b) then y else x).
Proof. nat
nat

bo e o o o . e e e e e e B P o B P o P P o B P o o o

y = (if negb false then y else x)

(* Case 1: b

(* Case 2: b

1 focused subgoals (unfocused: @)
Theorem if_swap_equiv : forall (b : bool) (x y : nat), , subgoal 1 (ID 12)
(if b then x else y) = (if (negb b) then y else x).
Proof. . nat

nat
b.

y=Yy
(* Case 1: b

(* Case 2: b

Theorem if_swap_equiv : forall (b : bool) (x y : nat),
(if b then x else y) = (if (negb b) then y else x).
Proof.

b.

(* Case 1: b

(* Case 2: b

No more subgoals.

1
2
3 (dependent evars:)

| U:%%- *response* All L1 (Coq Response)

if_swap_equiv 1s defined

| U:%%- *response* All L1 (Cog Response)

Theorem if_swap_equiv_fast :
forall (b : bool) (x y : nat),
(if b then x else y) = (if (negb b) then y else x).
Proof.
lestruct b;

Qed:'

