

Verified Correctness and Security of mbedTLS HMAC-DRBG

Katherine Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher, and Andrew Appel

Princeton / CMU, Johns Hopkins, Princeton / Dropbox, Princeton, Oracle, Princeton Most modern cryptosystems rely on high-quality randomness.

e.g. RSA generates random big primes that are used to compute a private key

Pseudorandom number generator

Pseudorandom number generator

Pseudorandom number generator

! ≈

Reducing the entropy of a cryptosystem's pseudorandom number generator (PRG) is an easy way to break the entire cryptosystem.

Dual-EC-DRBG

Debian OpenSSL PRG

- Removed sources of system entropy → only 32,767 choices (process ID!)
- Predictable SSL/SSH keys (Spotify, Yandex...)
- Can read encrypted traffic, log into remote servers, forge messages

https://www.xkcd.com/424/

https://freedom-to-tinker.com/blog/kroll/software-transparency-debian-openssl-bug/

We need secure PRGs

But how?

DILBERT By Scott Adams

Our work

Verified Software Toolchain Foundational Crypto Framework Proved functional correctness and cryptographic security of a widely used implementation of a PRG HMAC-DRBG

PRG security property

- Proved that output is indistinguishable from random to a computationally bounded adversary, subject to assumptions
- Typical real/ideal indistinguishability proof in the computational model, using a hybrid argument on number of PRG calls
- Derived a concrete bound on advantage

Foundational Cryptography Framework

Coq framework for reasoning about the security of cryptographic schemes using a probabilistic programming language

Verified
Software
Toolchain

Coq framework for verifying the correctness of C programs (pointers, mutable state, etc.)

The Foundational Cryptography Framework, Petcher and Morrisett (POST '15)

Program Logics for Certified Compilers, Appel et al. (2014)

Our work

Functional specifications of HMAC-DRBG

transcribe **◀----**

NIST paper spec of HMAC-DRBG

Our work

Our work

Our work

Theorems about crypto properties

Functional specifications of HMAC-DRBG

transcribe

◀-----

NIST paper spec of HMAC-DRBG

correctness!

mbedTLS implementation of HMAC-DRBG

Our work

Our work

Theorems about crypto properties

Modular proofs!

Functional specifications of HMAC-DRBG

transcribe **◄----**

NIST paper spec of HMAC-DRBG

mbedTLS implementation of HMAC-DRBG

HMAC-DRBG

(keyed-hash message authentication code deterministic random bit generator)

Generic pseudorandom number generator

(PRG is synonymous with PRNG)

Generic pseudorandom number generator

Instantiate
 Generate (bits)
Reseed (add entropy)
Update (internal state)

Typical PRG use

```
User/Adversary:
Instantiate,
Generate 10 blocks,
  Update K and V
Generate 20 blocks,
  Update K and V
Generate 1 block,
  Update K and V,
Generate 10000000 blocks,
  Update K and V,
  RESEED,
Generate 1 block,
 Update K and V,
• • •
```

Generate

The outputs are used as inputs

Inner loop of Generate

Generating bits

Generating bits

Updating the internal state

Updating the internal state

[3, 1, 2]

HMAC-DRBG in use

HMAC-DRBG in use

HMAC-DRBG in use

Our proof of indistinguishability from random (HMAC-DRBG security)

Previously, we built a machinechecked proof that HMAC is a PRF, subject to the usual assumptions

Verified correctness and security of OpenSSL HMAC, Beringer et al, USENIX Security '15

 $x \rightarrow y$: x implements y

Our work

Theorems about crypto properties

proof of indistinguishability

Structurally similar to Security Analysis of DRBG Using HMAC in NIST SP 800-90, Hirose (2008) (though done independently)

Functional specifications of HMAC-DRBG

transcribe **◄----**

NIST paper spec of HMAC-DRBG

mbedTLS implementation of HMAC-DRBG

Combine Generate and Update

Combine Generate and Update

Combine Generate and Update

Real-world and ideal-world hybrids

Real-world and ideal-world hybrids

Real-world and ideal-world games

Real-world and ideal-world games

Prove that it's hard to tell the difference!

Bridging the real-world and ideal-world definitions with hybrids

Real-world and ideal-world games

Prove that it's hard to tell the difference!

real-world hybrid

Hybrids

HMAC-DRBG Instantiate $\xrightarrow{k_0 \ \nu_0}$ GenUpdate $\xrightarrow{k_1 \ \nu_1}$ GenUpdate $\xrightarrow{k_2 \ \nu_2}$ GenUpdate $\xrightarrow{k_3 \ \nu_3}$

HMAC-DRBG

GenUpdate'

replace PRF with random function

Hybrids

HMAC-DRBG Instantiate $\xrightarrow{k_0 \ v_0}$ GenUpdate $\xrightarrow{k_1 \ v_1}$ GenUpdate $\xrightarrow{k_2 \ v_2}$ GenUpdate $\xrightarrow{k_3 \ v_3}$ HMAC-DRBG k₀ v₀ GenUpdate' HMAC-DRBG Instantiate GenUpdate' $k_1 v_1$ GenUpdate $k_2 v_2$

Hybrids

sample all outputs truly randomly

repeat for each call to the PRG

Hybrids

repeat for each call to the PRG

Hybrids

ideal-world hybrid

Why are the games close? The hybrid argument

Repeatedly applying the triangle inequality

To distinguishing distributions:

$$Adv_{D_1,D_2}(A) \le Adv_{D_1,H}(A) + Adv_{H,D_2}(A)$$

For the HMAC-DRBG construction, the main hybrids are:

(omitting random functions)

Distinguishing a pseudorandom function from a random function

Hybrids

HMAC-DRBG

the chance of distinguishing between these two hybrids

Recall: HMAC is a pseudorandom function.

What's a random function again?

Input	Output

sample random output

Input	Output

Pseudorandom function (e.g. HMAC)

PRF advantage Find the fake!

Distinguishing a random function from true randomness (as used in HMAC-DRBG)

Hybrids

the chance of

these two hybrids

distinguishing between

Random function vs. true randomness: only noticeable if you call the function on the same input twice

(which we prove is unlikely, as used in HMAC-DRBG)

The outputs are used as inputs

Inner loop of **Generate**

Random function vs. true randomness: only noticeable if you call the function on the same input twice

(which we prove is unlikely, as used in HMAC-DRBG)

Formalizing the proof of indistinguishability

Method

- Code-based game-playing proofs (Bellare and Rogaway, 2008)
- Programs written in a probabilistic programming language; use Hoare-style logic for relating pairs of programs
- Use "identical until bad" lemma
- Machine-checked proof in FCF and Coq

Gray denotes program equivalence proofs.

Proof tree

Full proof tree (to give a sense of the structure)

Verifying correctness of the mbedTLS C program

For brevity, we discuss HMAC here.

See Verified Correctness and Security of OpenSSL HMAC (Beringer et al, USENIX Security '15) for details.

 $x \rightarrow y$: x implements y

Our work

Theorems about crypto properties

Functional specifications of HMAC-DRBG

transcribe **∢----**

NIST paper spec of HMAC-DRBG

proof of functional correctness

mbedTLS implementation of HMAC-DRBG

Proofs about functions in Coq

```
Fixpoint map {A B} (f: A->B) (al: list A) := match al with 
| a::r => f a :: map f r 
| nil => nil end
```

```
Fixpoint cat {A} (al bl: list A) := match al with | a::r => a :: cat r bl | nil => nil end.
```

```
Theorem distr_map_cat: forall {A B} (f: A->B) (al bl: list A), map f (cat al bl) = cat (map f al) (map f bl).

Proof. intros A B f al bl. induction al. reflexivity. simpl. rewrite IHal. reflexivity. Qed.
```

This is a rather trivial theorem. A more interesting one is, "The HMAC-DRBG algorithm, expressed as a function in Gallina, produces cryptographically strong pseudorandom output."

Proofs about C programs

```
struct list catenate (struct list *p, struct list *q) {
  if (p==NULL) return q;
  while (p->tail != NULL) p=p->tail;
  p->tail=q;
  return p;
}
```

```
DECLARE _catenate WITH p: val, q: val, \sigma_1: list val, \sigma_2: list val PRE [ _p OF tptr (tstruct _list), _q OF tptr (tstruct _list)] PROP() LOCAL (temp _p p; temp _q q) SEP (listrep \sigma_1 p; listrep \sigma_2 q) POST [ tptr (tstruct _list) ] EX v: val, PROP() LOCAL (temp ret_temp v) SEP (listrep (cat \sigma_1 \sigma_2) v).
```

This is a rather trivial theorem. A more interesting one is, "The mbedTLS implementation of HMAC-DRBG correctly implements the HMAC-DRBG algorithm expressed as a function in Gallina."

Proofs about C programs

```
struct list catenate (struct list *p, struct list *q) {
  if (p==NULL) return q;
  while (p->tail != NULL) p=p->tail;
  p->tail=q;
  return p;
}
```

```
DECLARE _catenate WITH p: val, q: val, \sigma_1: list val, \sigma_2: list val PRE [ _p OF tptr (tstruct _list), _q OF tptr (tstruct _list)] PROP() LOCAL (temp _p p; temp _q q) SEP (listrep \sigma_1 p; listrep \sigma_2 q) POST [ tptr (tstruct _list) ] Functional spec EX v: val, PROP() LOCAL (temp ret_temp v) SEP (listrep (\cot \sigma_1 \sigma_2) v).
```

This is a rather trivial theorem. A more interesting one is, "The mbedTLS implementation of HMAC-DRBG correctly implements the HMAC-DRBG algorithm expressed as a function in Gallina."

HMAC function

```
Definition HmacCore
    IP OP txt (key: list byte): list Z :=
    OUTER OP key (INNER IP key txt).
```

HMAC-DRBG Generate function

HMAC API in C

```
unsigned char *HMAC (
  unsigned char *key,
                               Key input
  int key_len,
  unsigned char *d,
                               Message input
  int n,
  unsigned char *md);
                               Message-digest
                               output
```

API Spec of HMAC

```
DECLARE _HMAC
                                   Common logical variables
   WITH kp: val, key:DATA, KV:val, msgVal: val, MSG:DATA, shmd: share, md: val
   PRE [_key OF char*, _key_len OF int, _d OF char*, _n OF int, _md OF char*]
     PROP(writable share shmd;
                                                              Logical
           has lengthK (LEN key) (CONT key);
                                                              Propositions
            has lengthD 512 (LEN msg) (CONT msg))
PRECONDITION
     LOCAL(temp_md md; temp_key kp; temp_d msgVal;
             temp _key_len (Vint (Int.repr (LEN key)));
                                                                 Local/global
             temp_n (Vint (Int.repr (LEN msg)));
                                                                 variable bindings
             var _K256 (tarray tuint 64) KV)
     SEP(data-block Tsh (CONT key) kp;
          data-block Tsh (CONT msg) msgVal;
                                                         Spatial (memory)
          K-vector KV;
                                                         predicates
          memory-block shmd (Int.repr 32) md)
   POST [tvoid]
POSTCONDITION
                           Functional spec
      SEP(K-vector KV;
          data-block shmd (HMAC (CDNT msg) (CONT key)) md;
          data-block Tsh (CONT key) kp;
          data-block Tsh (CONT msg) msgVal)
```

Our work

First end-to-end formal securityand-correctness verification of a real-world PRG.

Our work

Theorems about crypto properties

Functional specifications of HMAC-DRBG

transcribe

◄----

NIST paper spec of HMAC-DRBG

correctness!

mbedTLS implementation of HMAC-DRBG

Modular proofs

Open problem

- Security of HMAC-DRBG Instantiate relies on HMAC being an entropy extractor
- It is not known whether HMAC is an entropy extractor (the way that HMAC-DRBG uses it)!

Future work

Prove more security properties of PRGs, e.g. backtracking resistance and prediction resistance

Lessons learned

- NIST design decisions: the good (PRF re-key method), the bad (Instantiate key with entropy in PRF as input, not key), the ugly (re-key location)
- Verification helps deal with tricky indices and typos in argument

Lessons learned

- Stitch together proofs via machine-checking (see KRACK)
- Formal specifications are useful and necessary!

Key Reinstallation Attacks: Forcing Nonce Reuse in WPA (Vanhoef and Piessens, CCS '17)

Thanks!

Don't believe us? Check out the artifact:

github.com/PrincetonUniversity/VST/tree/master/hmacdrbg

Appendix

HMAC_DRBG Instantiate Process:

1. $seed_material = entropy_input || nonce || personalization_string.$

2. $Key = 0x00\ 00...00$. Comment: outlen bits.

3. $V = 0x01\ 01...01$. Comment: outlen bits.

Comment: Update *Key* and *V*.

- 4. $(Key, V) = HMAC_DRBG_Update (seed_material, Key, V)$.
- 5. $reseed\ counter = 1$.
- 6. Return *V*, *Key* and *reseed_counter* as the *initial_working_state*.

HMAC_DRBG Update Process:

- 1. $K = \mathbf{HMAC}(K, V \parallel 0x00 \parallel provided_data)$.
- 2. V = HMAC(K, V).
- 3. If $(provided_data = Null)$, then return K and V.
- 4. $K = \mathbf{HMAC}(K, V \parallel 0x01 \parallel provided_data)$.
- 5. $V = \mathbf{HMAC}(K, V)$.
- 6. Return K and V.

Questions

- What's the trusted code base?
- What bugs or attacks does your method not prevent? What about sidechannels?
- How well does your method scale to larger codebases?
- Is your proof still valid if the underlying mbedTLS code changes?
- Can I apply your method to verify other faster or better DRBGs, like AES-DRBG?
- Would your method have prevented real-world incidents like the Debian OpenSSL fiasco or the Juniper bugs?

Questions

- How would you prove other security properties of DRBGs, like backtracking resistance and prediction resistance?
- How does your proof link with other proofs that might involve HMAC-DRBG, like proving security of TLS?
- What does the bound on your proof mean? Concretely, how long would it take an adversary to break HMAC-DRBG indistinguishability by brute force?
- So your proof means everyone should be using mbedTLS HMAC-DRBG, right?

Questions

- Did your proof involve any new math? How does it differ from Hirose's proof?
- Does it matter that you assume a nonadaptive adversary?
- How does assuming an ideal Instantiate (without entropy) weaken your proof? What about the additional input?
- Why use the logics of PRHL and Verifiable C?