
Verified Correctness and Security
of mbedTLS HMAC-DRBG

Katherine Ye, Matthew Green, Naphat Sanguansin,
Lennart Beringer, Adam Petcher, and Andrew Appel

Princeton / CMU, Johns Hopkins, Princeton / Dropbox,
Princeton, Oracle, Princeton

1
ACM CCS 2017

Most modern cryptosystems rely on
high-quality randomness.

e.g. RSA generates random big primes
that are used to compute a private key

2

1100101

PRG

01111111011111101001010110011010001000111101111110101110001010101000110001110100

3

Pseudorandom number generator

1100101

PRG

00001011100110101011000010110010000011111101111000111110011011101000000001000011

01111111011111101001010110011010001000111101111110101110001010101000110001110100
≈

4

Pseudorandom number generator

1100101

PRG

00001011100110101011000010110010000011111101111000111110011011101000000001000011

01111111011111101001010110011010001000111101111110101110001010101000110001110100
! ≈

5

Pseudorandom number generator

Reducing the entropy of a cryptosystem’s
pseudorandom number generator (PRG) is an
easy way to break the entire cryptosystem.

6

7

Dual-EC-DRBG

Debian OpenSSL PRG

https://www.xkcd.com/424/

8

• Removed sources of system
entropy → only 32,767 choices
(process ID!)

• Predictable SSL/SSH keys (Spotify,
Yandex...)

• Can read encrypted traffic, log
into remote servers, forge
messages

https://freedom-to-tinker.com/blog/kroll/software-transparency-debian-openssl-bug/

https://www.xkcd.com/424/#
https://freedom-to-tinker.com/blog/kroll/software-transparency-debian-openssl-bug/

We need secure PRGs

9

10

But how?

Proved functional correctness and
cryptographic security of a widely used
implementation of a PRG

mbedTLS HMAC-DRBG

Verified Software Toolchain
Foundational Crypto Framework

11

Our work

PRG security property

• Proved that output is indistinguishable
from random to a computationally
bounded adversary, subject to assumptions

• Typical real/ideal indistinguishability proof
in the computational model, using a hybrid
argument on number of PRG calls

• Derived a concrete bound on advantage

12

Foundational
Cryptography
Framework

Coq framework for reasoning
about the security of cryptographic
schemes using a probabilistic
programming language

13

The Foundational Cryptography Framework, Petcher and Morrisett (POST ‘15)

Coq framework for verifying the
correctness of C programs (pointers,
mutable state, etc.)

Program Logics for Certified Compilers, Appel et al. (2014)

Our work

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

x → y:
x implements y

14

transcribe

Our work

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

x → y:
x implements y

15

transcribe

prove with FCF

Our work

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

x → y:
x implements y

16

transcribe

mbedTLS
implementation

of HMAC-DRBG

prove with FCF

prove with VST

Our work

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

x → y:
x implements y

17

transcribe

mbedTLS
implementation

of HMAC-DRBG

security!

correctness!

Our work

18

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

transcribe

mbedTLS
HMAC-DRBG

security!

correctness!

Verified
assembly

CompCert verified
compiler

Our work

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

x → y:
x implements y

19

transcribe

mbedTLS
implementation

of HMAC-DRBG

Modular proofs!

Modular proofs

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

20

transcribe

mbedTLS
implementation

of HMAC-DRBG

More theoremsMore theorems

Modular proofs

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

21

transcribe

mbedTLS
implementation

of HMAC-DRBG

More theoremsMore theorems

Other
implementation

of HMAC-DRBG

Other
implementation

of HMAC-DRBG

Modular proofs

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

22

transcribe

mbedTLS
implementation

of HMAC-DRBG

More theoremsMore theorems

Other
implementation

of HMAC-DRBG

Other
implementation

of HMAC-DRBG

re-prove

Modular proofs

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

23

transcribe

mbedTLS
implementation

of HMAC-DRBG

More theoremsMore theorems

Other
implementation

of HMAC-DRBG

Other
implementation

of HMAC-DRBG

HMAC-DRBG
(keyed-hash message authentication code

deterministic random bit generator)

24

Generic pseudorandom number generator

http://pit-claudel.fr/clement/blog/how-random-is-pseudo-random-testing-pseudo-random-number-generators-and-measuring-randomness/

25

(PRG is synonymous with PRNG)

http://pit-claudel.fr/clement/blog/how-random-is-pseudo-random-testing-pseudo-random-number-generators-and-measuring-randomness/

Generic pseudorandom number generator

http://pit-claudel.fr/clement/blog/how-random-is-pseudo-random-testing-pseudo-random-number-generators-and-measuring-randomness/

Instantiate	
Generate	(bits)	

Reseed	(add	entropy)	
Update	(internal	state)

26

http://pit-claudel.fr/clement/blog/how-random-is-pseudo-random-testing-pseudo-random-number-generators-and-measuring-randomness/

Typical PRG use
User/Adversary:	

Instantiate,	

Generate	10	blocks,	
		Update	K	and	V	

Generate	20	blocks,	
		Update	K	and	V	

Generate	1	block,	
		Update	K	and	V,	

Generate	10000000	blocks,	
		Update	K	and	V,	
		RESEED,	

Generate	1	block,	
		Update	K	and	V,	
...

27

k = secret key; v = initialization vector (internal state)

f = hash function (e.g. HMAC)

rand_bits	=	
f(k,	v)	
||	f(k,	f(k,	v))	
||	f(k,	(f(k,	f(k,	v)))...

Generate

outputs used again as inputs

28

The outputs are used as inputs

29

30

Generating bits

31

Generating bits

32

Updating the internal state

33

Updating the internal state

34

HMAC-DRBG in use

35

HMAC-DRBG in use

36

HMAC-DRBG in use

Our proof of indistinguishability
from random

(HMAC-DRBG security)

37

38

Previously, we built a machine-
checked proof that HMAC is a PRF,
subject to the usual assumptions

Verified correctness and security of OpenSSL HMAC, Beringer et al, USENIX Security ‘15

Our work

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

x → y:
x implements y

39

transcribe

mbedTLS
implementation

of HMAC-DRBG

proof of indistinguishability
Structurally similar to
Security Analysis of DRBG
Using HMAC in NIST SP 800-90,
Hirose (2008)
(though done independently)

40

Combine Generate and Update

41

Combine Generate and Update

42

Combine Generate and Update

43

Real-world and ideal-world hybrids

44

Real-world and ideal-world hybrids

45

Real-world and ideal-world games

Is this output
truly random?

46

Real-world and ideal-world games
Prove that it’s hard to tell the difference!

Is this output
truly random?

Bridging the real-world and
ideal-world definitions with

hybrids

47

Is this output
truly random?

48

Real-world and ideal-world games
Prove that it’s hard to tell the difference!

Is this output
truly random?

49

Hybrids
real-world hybrid

50

replace PRF with
random function

Hybrids

51

sample all outputs
truly randomly

Hybrids

repeat for each
call to the PRG

52

Hybrids

repeat for each
call to the PRG

53

Hybrids

ideal-world hybrid

Why are the games close?
The hybrid argument

54

Repeatedly applying the triangle inequality

To distinguishing distributions:

D1 D2

A

AdvD1 ,D2 (A) ≤ AdvD1 ,H(A) + AdvH,D2 (A)

H

H0 H4

H1

H2

H3

55

H0 H4

H1

H2

H3

H0 H4

H1

H2

H3

For the HMAC-DRBG construction, the main hybrids are:

56

(omitting random functions)

Distinguishing a pseudorandom
function from a random function

57

58

Hybrids

the chance of
distinguishing between
these two hybrids

Recall: HMAC is a pseudorandom function.

What’s a random function again?

59

60

Random function as lookup table

sample
random
output

61

Random function as lookup table

look up without resamplingquery again

62

Random function as lookup table

look up without resamplingquery again

63

Random function as lookup table

Pseudorandom function
(e.g. HMAC)

64

PRF advantage
Find the fake!

PRF RF
65

PRF

RF
Box
two?

66

PRF

RF
Box
two?

67

Distinguishing a random
function from true randomness

(as used in HMAC-DRBG)

68

69

Hybrids

the chance of
distinguishing between
these two hybrids

Random function vs. true randomness:
only noticeable if you call the
function on the same input twice

(which we prove is unlikely, as used in
HMAC-DRBG)

70

The outputs are used as inputs

71

collision!

Random function vs. true randomness:
only noticeable if you call the
function on the same input twice

(which we prove is unlikely, as used in
HMAC-DRBG)

Formalizing the proof of
indistinguishability

72

Method

• Code-based game-playing proofs (Bellare and
Rogaway, 2008)

• Programs written in a probabilistic programming
language; use Hoare-style logic for relating pairs
of programs

• Use “identical until bad” lemma

• Machine-checked proof in FCF and Coq

73

74

Proof tree

75

Full proof tree (to give a sense of the structure)

Verifying correctness
of the mbedTLS C program

76

For brevity, we discuss HMAC here.
See Verified Correctness and Security of OpenSSL HMAC (Beringer et al, USENIX Security ’15) for details.

Our work

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

x → y:
x implements y

77

transcribe

mbedTLS
implementation

of HMAC-DRBG

proof of functional correctness

Proofs	about	functions	in	Coq

78

Fixpoint map {A B} (f: A->B) (al: list A) :=
match al with
| a::r => f a :: map f r
| nil => nil
end

Fixpoint cat {A} (al bl: list A) :=
match al with
| a::r => a :: cat r bl
| nil => nil
end.

Theorem distr_map_cat: forall {A B} (f: A->B) (al bl: list A),
 map f (cat al bl) = cat (map f al) (map f bl).

Proof. intros A B f al bl. induction al. reflexivity. simpl. rewrite IHal. reflexivity. Qed.

This is a rather trivial theorem. A more interesting one is,
“The HMAC-DRBG algorithm, expressed as a function in Gallina,
produces cryptographically strong pseudorandom output.”

Proofs	about	C	programs

79

struct list catenate (struct list *p, struct list *q) {
 if (p==NULL) return q;
 while (p->tail != NULL) p=p->tail;
 p->tail=q;
 return p;
}

DECLARE _catenate
WITH p: val, q: val, ��1: list val, ��2: list val
PRE [_p OF tptr (tstruct _list), _p OF tptr (tstruct _list)]
 PROP() LOCAL (temp _p p; temp _q q) SEP (listrep ��1 p; listrep ��2 q)
POST [tptr (tstruct _list)]
 EX v: val, PROP() LOCAL (temp ret_temp v) SEP (listrep (cat ��1 ��2) v).

This is a rather trivial theorem. A more interesting one is,
“The mbedTLS implementation of HMAC-DRBG correctly implements
the HMAC-DRBG algorithm expressed as a function in Gallina.”

Proofs	about	C	programs

80

struct list catenate (struct list *p, struct list *q) {
 if (p==NULL) return q;
 while (p->tail != NULL) p=p->tail;
 p->tail=q;
 return p;
}

DECLARE _catenate
WITH p: val, q: val, ��1: list val, ��2: list val
PRE [_p OF tptr (tstruct _list), _p OF tptr (tstruct _list)]
 PROP() LOCAL (temp _p p; temp _q q) SEP (listrep ��1 p; listrep ��2 q)
POST [tptr (tstruct _list)]
 EX v: val, PROP() LOCAL (temp ret_temp v) SEP (listrep (cat ��1 ��2) v).

This is a rather trivial theorem. A more interesting one is,
“The mbedTLS implementation of HMAC-DRBG correctly implements
the HMAC-DRBG algorithm expressed as a function in Gallina.”

Functional spec

HMAC	function

81

Definition	HmacCore		
				IP	OP	txt	(key:	list	byte):	list	Z	:=		
				OUTER	OP	key	(INNER	IP	key	txt).

https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/sha/HMAC_functional_prog.v
https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/hmacdrbg/HMAC_DRBG_algorithms.v

https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/sha/HMAC_functional_prog.v
https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/hmacdrbg/HMAC_DRBG_algorithms.v

HMAC-DRBG	Generate	function

82

Function	HMAC_DRBG_generate_helper_Z		
		(HMAC:	list	Z	->	list	Z	->	list	Z)		
(key	v:	list	Z)(requested_number_of_bytes:	Z)		
{measure	Z.to_nat	requested_number_of_bytes}	:	(list	Z	*	list	Z)	:=	

		if	0	>=?	requested_number_of_bytes	then	(v,	[])	
		else	
				let	len	:=	32%nat	in	
				let	(v,	rest)	:=	HMAC_DRBG_generate_helper_Z	HMAC	key	v					
																					(requested_number_of_bytes	-	(Z.of_nat	len))	in	
				let	v	:=	HMAC	v	key	in	
				let	temp	:=	v	in	
				(v,	rest	++	temp).

https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/sha/HMAC_functional_prog.v
https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/hmacdrbg/HMAC_DRBG_algorithms.v

https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/sha/HMAC_functional_prog.v
https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/hmacdrbg/HMAC_DRBG_algorithms.v

HMAC	API	in	C

unsigned char *HMAC (
 unsigned char *key,
 int key_len,
 unsigned char *d,
 int n,
 unsigned char *md);

83

Key input

Message input

Message-digest
output

API	Spec	of	HMAC

84

DECLARE _HMAC
WITH kp: val, key:DATA, KV:val, msgVal: val, MSG:DATA, shmd: share, md: val
PRE [_key OF char*, _key_len OF int, _d OF char*, _n OF int, _md OF char*]
 PROP(writable share shmd;
 has lengthK (LEN key) (CONT key);
 has lengthD 512 (LEN msg) (CONT msg))
 LOCAL(temp _md md; temp _key kp; temp _d msgVal;
 temp _key_len (Vint (Int.repr (LEN key)));
 temp _n (Vint (Int.repr (LEN msg)));
 var _K256 (tarray tuint 64) KV)
 SEP(data-block Tsh (CONT key) kp;
 data-block Tsh (CONT msg) msgVal;
 K-vector KV;
 memory-block shmd (Int.repr 32) md)
POST [tvoid]
 SEP(K-vector KV;
 data-block shmd (HMAC (CONT msg) (CONT key)) md;
 data-block Tsh (CONT key) kp;
 data-block Tsh (CONT msg) msgVal)

Logical
Propositions

Local/global
variable bindings

Spatial (memory)
predicates

PR
EC

ON
DI

TI
ON

PO
ST

CO
N

DI
TI

ON

Common logical variables

Functional spec

Our work

85

First end-to-end formal security-
and-correctness verification of a
real-world PRG.

Our work

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

x → y:
x implements y

86

transcribe

mbedTLS
implementation

of HMAC-DRBG

security!

correctness!

Modular proofs

NIST paper spec
of HMAC-DRBG

Functional
specifications of
HMAC-DRBG

Theorems about
crypto properties

87

transcribe

mbedTLS
implementation

of HMAC-DRBG

More theoremsMore theorems

Other
implementation

of HMAC-DRBG

Other
implementation

of HMAC-DRBG

Open problem

• Security of HMAC-DRBG Instantiate
relies on HMAC being an entropy
extractor

• It is not known whether HMAC is an
entropy extractor (the way that HMAC-
DRBG uses it)!

88

Future work

Prove more security properties of
PRGs, e.g. backtracking resistance and
prediction resistance

89

Lessons learned

• NIST design decisions: the good (PRF re-key
method), the bad (Instantiate key with entropy
in PRF as input, not key), the ugly (re-key
location)

• Verification helps deal with tricky indices and
typos in argument

90

Lessons learned

• Stitch together proofs via machine-checking
(see KRACK)

• Formal specifications are useful and necessary!

91

Key Reinstallation Attacks:
Forcing Nonce Reuse in WPA
(Vanhoef and Piessens, CCS ’17)

Don’t believe us?
Check out the artifact:

github.com/PrincetonUniversity/VST/tree/master/hmacdrbg

92

Thanks!

http://github.com/PrincetonUniversity/VST/tree/master/hmacdrbg

Appendix

93

94

Questions
• What’s the trusted code base?

• What bugs or attacks does your method not prevent? What about side-
channels?

• How well does your method scale to larger codebases?

• Is your proof still valid if the underlying mbedTLS code changes?

• Can I apply your method to verify other faster or better DRBGs, like AES-
DRBG?

• Would your method have prevented real-world incidents like the Debian
OpenSSL fiasco or the Juniper bugs?

95

Questions
• How would you prove other security properties of DRBGs, like

backtracking resistance and prediction resistance?

• How does your proof link with other proofs that might involve
HMAC-DRBG, like proving security of TLS?

• What does the bound on your proof mean? Concretely, how long
would it take an adversary to break HMAC-DRBG indistinguishability
by brute force?

• So your proof means everyone should be using mbedTLS HMAC-
DRBG, right?

96

Questions

• Did your proof involve any new math? How does it differ from
Hirose’s proof?

• Does it matter that you assume a nonadaptive adversary?

• How does assuming an ideal Instantiate (without entropy) weaken
your proof? What about the additional input?

• Why use the logics of PRHL and Verifiable C?

97

