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Most modern cryptosystems rely on 
high-quality randomness. 

e.g. RSA generates random big primes 
that are used to compute a private key
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1100101

PRG

01111111011111101001010110011010001000111101111110101110001010101000110001110100
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Pseudorandom number generator



1100101

PRG

00001011100110101011000010110010000011111101111000111110011011101000000001000011 

01111111011111101001010110011010001000111101111110101110001010101000110001110100
≈
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Pseudorandom number generator



1100101

PRG

00001011100110101011000010110010000011111101111000111110011011101000000001000011 

01111111011111101001010110011010001000111101111110101110001010101000110001110100
! ≈
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Pseudorandom number generator



Reducing the entropy of a cryptosystem’s 
pseudorandom number generator (PRG) is an 
easy way to break the entire cryptosystem.
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Dual-EC-DRBG



Debian OpenSSL PRG

https://www.xkcd.com/424/
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• Removed sources of system 
entropy → only 32,767 choices 
(process ID!) 

• Predictable SSL/SSH keys (Spotify, 
Yandex...) 

• Can read encrypted traffic, log 
into remote servers, forge 
messages

https://freedom-to-tinker.com/blog/kroll/software-transparency-debian-openssl-bug/

https://www.xkcd.com/424/#
https://freedom-to-tinker.com/blog/kroll/software-transparency-debian-openssl-bug/


We need secure PRGs
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But how?



Proved functional correctness and 
cryptographic security of a widely used 
implementation of a PRG

mbedTLS HMAC-DRBG

Verified Software Toolchain
Foundational Crypto Framework
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Our work



PRG security property

• Proved that output is indistinguishable 
from random to a computationally 
bounded adversary, subject to assumptions

• Typical real/ideal indistinguishability proof 
in the computational model, using a hybrid 
argument on number of PRG calls

• Derived a concrete bound on advantage
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Foundational 
Cryptography 
Framework

Coq framework for reasoning 
about the security of cryptographic 
schemes using a probabilistic 
programming language 
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The Foundational Cryptography Framework, Petcher and Morrisett (POST ‘15) 

Coq framework for verifying the 
correctness of C programs (pointers, 
mutable state, etc.)

Program Logics for Certified Compilers, Appel et al. (2014)



Our work

NIST paper spec 
of HMAC-DRBG

Functional 
specifications of 
HMAC-DRBG

x → y:
x implements y
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HMAC-DRBG 
(keyed-hash message authentication code 

deterministic random bit generator)
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Generic pseudorandom number generator

http://pit-claudel.fr/clement/blog/how-random-is-pseudo-random-testing-pseudo-random-number-generators-and-measuring-randomness/
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(PRG is synonymous with PRNG)

http://pit-claudel.fr/clement/blog/how-random-is-pseudo-random-testing-pseudo-random-number-generators-and-measuring-randomness/


Generic pseudorandom number generator

http://pit-claudel.fr/clement/blog/how-random-is-pseudo-random-testing-pseudo-random-number-generators-and-measuring-randomness/

Instantiate	
Generate	(bits)	

Reseed	(add	entropy)	
Update	(internal	state)
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http://pit-claudel.fr/clement/blog/how-random-is-pseudo-random-testing-pseudo-random-number-generators-and-measuring-randomness/


Typical PRG use
User/Adversary:	

Instantiate,	

Generate	10	blocks,	
		Update	K	and	V	

Generate	20	blocks,	
		Update	K	and	V	

Generate	1	block,	
		Update	K	and	V,	

Generate	10000000	blocks,	
		Update	K	and	V,	
		RESEED,	

Generate	1	block,	
		Update	K	and	V,	
...
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k = secret key; v = initialization vector (internal state) 

f = hash function (e.g. HMAC) 

rand_bits	=	 
f(k,	v)	 
||	f(k,	f(k,	v))	 
||	f(k,	(f(k,	f(k,	v)))...

Generate

outputs used again as inputs
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The outputs are used as inputs
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Generating bits
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Generating bits
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Updating the internal state
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Updating the internal state
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HMAC-DRBG in use
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HMAC-DRBG in use
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HMAC-DRBG in use



Our proof of indistinguishability 
from random 

(HMAC-DRBG security)
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Previously, we built a machine-
checked proof that HMAC is a PRF, 
subject to the usual assumptions

Verified correctness and security of OpenSSL HMAC, Beringer et al, USENIX Security ‘15
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Using HMAC in NIST SP 800-90,  
Hirose (2008) 
(though done independently) 
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Combine Generate and Update
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Combine Generate and Update
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Combine Generate and Update
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Real-world and ideal-world hybrids
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Real-world and ideal-world hybrids
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Real-world and ideal-world games



Is this output
truly random?
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Real-world and ideal-world games
Prove that it’s hard to tell the difference!

Is this output
truly random?



Bridging the real-world and 
ideal-world definitions with 

hybrids
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Is this output
truly random?
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Real-world and ideal-world games
Prove that it’s hard to tell the difference!

Is this output
truly random?
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Hybrids
real-world hybrid



50

replace PRF with 
random function

Hybrids
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sample all outputs  
truly randomly

Hybrids



repeat for each 
call to the PRG
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Hybrids



repeat for each 
call to the PRG
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Hybrids

ideal-world hybrid



Why are the games close?  
The hybrid argument
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Repeatedly applying the triangle inequality

To distinguishing distributions:

D1 D2

A

AdvD1 ,D2 (A) ≤ AdvD1 ,H(A) + AdvH,D2 (A)

H

H0 H4

H1

H2

H3
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H0 H4

H1

H2

H3

H0 H4

H1

H2

H3

For the HMAC-DRBG construction, the main hybrids are:
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(omitting random functions)



Distinguishing a pseudorandom 
function from a random function
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Hybrids

the chance of 
distinguishing between 
these two hybrids



Recall: HMAC is a pseudorandom function. 

What’s a random function again?
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Random function as lookup table



sample
random
output
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Random function as lookup table



look up without resamplingquery again
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Random function as lookup table



look up without resamplingquery again
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Random function as lookup table



Pseudorandom function 
(e.g. HMAC)
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PRF advantage
Find the fake!

PRF RF
65



PRF

RF
Box
two?
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PRF

RF
Box
two?
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Distinguishing a random 
function from true randomness 

(as used in HMAC-DRBG)
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Hybrids

the chance of 
distinguishing between 
these two hybrids



Random function vs. true randomness:  
only noticeable if you call the  
function on the same input twice 

(which we prove is unlikely, as used in 
HMAC-DRBG)

70

The outputs are used as inputs



71

collision!

Random function vs. true randomness:  
only noticeable if you call the  
function on the same input twice 

(which we prove is unlikely, as used in 
HMAC-DRBG)



Formalizing the proof of 
indistinguishability
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Method

• Code-based game-playing proofs (Bellare and 
Rogaway, 2008) 

• Programs written in a probabilistic programming 
language; use Hoare-style logic for relating pairs 
of programs 

• Use “identical until bad” lemma 

• Machine-checked proof in FCF and Coq
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Proof tree



75

Full proof tree (to give a sense of the structure)



Verifying correctness  
of the mbedTLS C program
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For brevity, we discuss HMAC here. 
See Verified Correctness and Security of OpenSSL HMAC (Beringer et al, USENIX Security ’15) for details.
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Proofs	about	functions	in	Coq

78

Fixpoint map {A B} (f: A->B) (al: list A) := 
match al with 
| a::r => f a :: map f r 
| nil => nil 
end

Fixpoint cat {A} (al bl: list A) := 
match al with 
| a::r => a :: cat r bl 
| nil => nil 
end.

Theorem distr_map_cat:   forall {A B} (f: A->B) (al bl: list A), 
  map f (cat al bl) = cat (map f al) (map f bl). 

Proof. intros A B f al bl. induction al. reflexivity. simpl. rewrite IHal. reflexivity. Qed.

This is a rather trivial theorem.  A more interesting one is, 
“The HMAC-DRBG algorithm, expressed as a function in Gallina, 
produces cryptographically strong pseudorandom output.”



Proofs	about	C	programs
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struct list catenate (struct list *p, struct list *q) { 
 if (p==NULL) return q; 
 while (p->tail != NULL) p=p->tail; 
 p->tail=q; 
 return p; 
}

DECLARE _catenate 
WITH p: val, q: val, ��1: list val, ��2: list val 
PRE [ _p OF tptr (tstruct _list), _p OF tptr (tstruct  _list)] 
  PROP() LOCAL (temp _p p; temp _q q) SEP (listrep ��1 p; listrep ��2  q) 
POST [ tptr (tstruct _list) ] 
  EX v: val, PROP() LOCAL (temp ret_temp v) SEP (listrep (cat ��1 ��2) v).

This is a rather trivial theorem.  A more interesting one is, 
“The mbedTLS implementation of HMAC-DRBG correctly implements  
the HMAC-DRBG algorithm expressed as a function in Gallina.”



Proofs	about	C	programs
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struct list catenate (struct list *p, struct list *q) { 
 if (p==NULL) return q; 
 while (p->tail != NULL) p=p->tail; 
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“The mbedTLS implementation of HMAC-DRBG correctly implements  
the HMAC-DRBG algorithm expressed as a function in Gallina.”

Functional spec



HMAC	function
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Definition	HmacCore		
				IP	OP	txt	(key:	list	byte):	list	Z	:=		
				OUTER	OP	key	(INNER	IP	key	txt).

https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/sha/HMAC_functional_prog.v 
https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/hmacdrbg/HMAC_DRBG_algorithms.v 

https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/sha/HMAC_functional_prog.v
https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/hmacdrbg/HMAC_DRBG_algorithms.v


HMAC-DRBG	Generate	function

82

Function	HMAC_DRBG_generate_helper_Z		
		(HMAC:	list	Z	->	list	Z	->	list	Z)		
(key	v:	list	Z)(requested_number_of_bytes:	Z)		
{measure	Z.to_nat	requested_number_of_bytes}	:	(list	Z	*	list	Z)	:=	

		if	0	>=?	requested_number_of_bytes	then	(v,	[])	
		else	
				let	len	:=	32%nat	in	
				let	(v,	rest)	:=	HMAC_DRBG_generate_helper_Z	HMAC	key	v					
																					(requested_number_of_bytes	-	(Z.of_nat	len))	in	
				let	v	:=	HMAC	v	key	in	
				let	temp	:=	v	in	
				(v,	rest	++	temp).

https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/sha/HMAC_functional_prog.v 
https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/hmacdrbg/HMAC_DRBG_algorithms.v 

https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/sha/HMAC_functional_prog.v
https://github.com/PrincetonUniversity/VST/blob/8750fdd00c8a3156e5103d2f9924b9de3c6ca7b2/hmacdrbg/HMAC_DRBG_algorithms.v


HMAC	API	in	C

unsigned char *HMAC ( 
    unsigned char *key,  
    int key_len,  
    unsigned char *d, 
    int n,  
    unsigned char *md);

83

Key input

Message input

Message-digest 
output



API	Spec	of	HMAC
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DECLARE _HMAC 
WITH kp: val, key:DATA, KV:val, msgVal: val, MSG:DATA, shmd: share, md: val 
PRE [ _key OF char*, _key_len OF int, _d OF char*,  _n OF int, _md OF char*] 
    PROP(writable share shmd; 
                 has lengthK (LEN key) (CONT key); 
                 has lengthD 512 (LEN msg) (CONT msg)) 
    LOCAL(temp _md md; temp _key kp; temp _d msgVal;  
                    temp _key_len (Vint (Int.repr (LEN key))); 
                    temp _n (Vint (Int.repr (LEN msg))); 
                    var _K256 (tarray tuint 64) KV) 
     SEP(data-block Tsh (CONT key) kp; 
              data-block Tsh (CONT msg) msgVal; 
              K-vector KV; 
              memory-block shmd (Int.repr 32) md) 
POST [ tvoid ] 
      SEP(K-vector KV; 
               data-block shmd (HMAC (CONT msg) (CONT key)) md; 
               data-block Tsh (CONT key) kp; 
               data-block Tsh (CONT msg) msgVal)

Logical 
Propositions

Local/global 
variable bindings

Spatial (memory) 
predicates

PR
EC

ON
DI

TI
ON

PO
ST

CO
N

DI
TI

ON

Common logical variables

Functional spec



Our work

85

First end-to-end formal security-
and-correctness verification of a 
real-world PRG.
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Open problem

• Security of HMAC-DRBG Instantiate 
relies on HMAC being an entropy 
extractor 

• It is not known whether HMAC is an 
entropy extractor (the way that HMAC-
DRBG uses it)!
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Future work

Prove more security properties of 
PRGs, e.g. backtracking resistance and 
prediction resistance
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Lessons learned

• NIST design decisions: the good (PRF re-key 
method), the bad (Instantiate key with entropy 
in PRF as input, not key), the ugly (re-key 
location) 

• Verification helps deal with tricky indices and 
typos in argument
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Lessons learned

• Stitch together proofs via machine-checking 
(see KRACK) 

• Formal specifications are useful and necessary!
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Key Reinstallation Attacks:  
Forcing Nonce Reuse in WPA  
(Vanhoef and Piessens, CCS ’17)



Don’t believe us? 
Check out the artifact:

github.com/PrincetonUniversity/VST/tree/master/hmacdrbg
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Thanks! 

http://github.com/PrincetonUniversity/VST/tree/master/hmacdrbg


Appendix
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Questions
• What’s the trusted code base? 

• What bugs or attacks does your method not prevent? What about side-
channels? 

• How well does your method scale to larger codebases? 

• Is your proof still valid if the underlying mbedTLS code changes? 

• Can I apply your method to verify other faster or better DRBGs, like AES-
DRBG? 

• Would your method have prevented real-world incidents like the Debian 
OpenSSL fiasco or the Juniper bugs?
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Questions
• How would you prove other security properties of DRBGs, like 

backtracking resistance and prediction resistance? 

• How does your proof link with other proofs that might involve 
HMAC-DRBG, like proving security of TLS? 

• What does the bound on your proof mean? Concretely, how long 
would it take an adversary to break HMAC-DRBG indistinguishability 
by brute force? 

• So your proof means everyone should be using mbedTLS HMAC-
DRBG, right?
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Questions

• Did your proof involve any new math? How does it differ from 
Hirose’s proof?  

• Does it matter that you assume a nonadaptive adversary? 

• How does assuming an ideal Instantiate (without entropy) weaken 
your proof? What about the additional input? 

• Why use the logics of PRHL and Verifiable C?
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