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Goals

Stochastic turn-taking models

?

past speech activity
using that speaker’s

predict a speaker’s future
speech activity

and their interlocutor’s past speech activity

QUESTION: Can past loudness values, e.g.

be exploited to improve prediction?

Problems & Proposed Approach

Speech activity is discrete-valued (binary).

dummy
∴ speech activity trajectories are discrete-valued.
∴ past models were implemented as N-grams.

But loudness is continuous-valued .

dummy

STEP 1:Re-implement speech activity N-grams
using feed-forward neural networks (NNs).

STEP 2:Apply the NN architecture to loudness.

STEP 3:Determine how to:
◮measure loudness
◮normalize loudness
◮model loudness trajectories

STEP 4:Combine speech activity and loudness for
improved prediction.

STEP 1: From N-grams to NNs

dummy

◮one hidden layer
◮J hidden units
◮speaker-independent results on 200

conversations in Switchboard-I
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◮ turn-taking models can be efficiently
implemented using NNs

◮performance approaches N-gram performance
asymptotically, as J grows

STEPS 2 & 3: From speech activity to loudness

Q: reference speech activity chronogram

E: computed loudness chronogram

use logarithm of weighted sum-squared amplitude of
the signal, or “energy”, in each channel as an
approximation to loudness
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By itself, E much weaker than Q.

Conclusions
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1.NN turn-taking models offer asymptotically
identical performance to N-gram turn-taking
models, with far fewer parameters.

2.Loudness and speech activity should be
combined in feature space .

3.Modeling loudness in addition to speech activity
reduces cross entropy on unseen data by 0.031
bits per 100-ms frame .

4.The main benefit comes from the very quiet
speech frames, i.e. those hardest to identify in
practice.

5.Sensitivity to loudness relaxes attentiveness
requirements: same performance is achieved
with 20% memory storage and 10% latency .

Impact
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I.Demonstrably functional infrastructure for
automatically exploring other continuous-
valued cues to turn-taking , including pitch,
speaking rate, probability of voicing, etc.

II.Proof of concept for the prediction of
discrete-valued quantities using mixed
continuous- valued histories; applicable for
example to prosody-dependent language
modeling .

III.Results indicate a need to develop detectors
for particularly quiet speech .

IV.Observed reductions in latency, memory
storage, and requisite levels of attentiveness
can be achieved by dialogue systems that
implement the proposed framework.

STEP 4: Fusion of speech activity and loudness

dummy
◮Mask out non-speech E using Q
◮Concatenation of Q and E features
◮ Interpolation of Q and E model predictions
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Some Analysis

Comparison of Q-only and Q-with-E performance, as
a function of the number of 100-ms frames in the
conditioning history:
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◮{Q, E} with 100ms of history yields better
predictions than Q with 1000ms of history

◮need to remember 5 times fewer values
◮need to wait 10 times shorter
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