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Current state-of-the-art conversational spoken dialogue
systems are not sufficiently responsive. They produce speech

at detected end-of-utterance (EOU) locations; EOU detection
consists of waiting for 0.5-2.0 seconds

o

Faster online prediction (  <0.3 s) of end-of-utterance (EOU)
locations.
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Modeling

» randomly chosen HMMs, showing transition and (unnormalized)

emmission probabillities:
Hidden Markov model for each of SC and —SC.:

» 4 states
» 1 Gaussian per state

» trained on DEVSET using the Forward-Backward
Algorithm

Online Speaker Change Prediction

Binary classification of each end-of-talkspurt (EOT) location in a
human-human dialogue as either
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using a prosodic description of 500 ms of audio preceeding
» define the conformal mapping the EOT.
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» define the linear interpolation
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» two speakers: a giver, g, and a follower, f

» task: g explains directions to f

» normalized emmission probabilities for state C in both models:

» normalize for energy-indepenendence, and apply filterbank Conclusions
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» first exploration of what models of fundamental frequency
variation sequences actually learn

Data Set | Duration Dialogue role g
(mn:ss) speakers # EOTs o
DEVSET | 7740 |F4 F5 M2 M3 480 » learned models corroborate existing research of human
EVALSET 60:39 |F1,F2,F3M1 317 behavior

» represenation appears suitable for direct, principled, continuous
» highly interactive dialogues sequence modeling as in SAD and ASR

» DEVSET and EVALSET are disjoint in speakers
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» improved filterbank design yields SC/—SC classification

» apply Karhunen-Loéve whitening transform accuracy improvements on unseen data of 12-17% relative

Automatic Classification
Sample “Spectrum” Representation

» compare two different log-likelinood-ratio classifiers

» train 10 HMMs for each of SC and —SC, by using different
random seeds prior to Forward-Backward training

» classifier 1 : log-likelihood-ratio over mean of 10 model
likelihoods

Li = argmax P (x| M)
K

» classifier 2 : log-likelihood-ratio over product of 10 model
likelihoods
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