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Problem

Current state-of-the-art conversational spoken dialogue
systems are not sufficiently responsive. They produce speech
at detected end-of-utterance (EOU) locations; EOU detection
consists of waiting for 0.5–2.0 seconds .

Goal

Faster online prediction ( ≤0.3 s) of end-of-utterance (EOU)
locations.

The Fundamental Frequency Variation Spectrum

◮ use entire spectrum to quantify variation in F0
◮ sample spectrum at two locations in each frame: −T0 and +T0

relative to midpoint of frame
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◮ define the vanishing-point product at a vanishing point τ
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◮ define the conformal mapping
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and transform gτ (τ ) to yield
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◮ define the linear interpolation
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◮ sample gρ (ρ) at discrete locations to yield
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◮ normalize for energy-indepenendence, and apply filterbank
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◮ apply Karhunen-Loéve whitening transform

Sample “Spectrum” Representation
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Sample “Spectrogram” Representation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−0.4 −0.3 −0.2 −0.1
−2

−1

0

+1

+2

0.8

0.85

0.90

0.95

−0.4 −0.3 −0.2 −0.1

1

2

3

4

5

Modeling

Hidden Markov model for each of SC and ¬SC:

◮ 4 states
◮ 1 Gaussian per state
◮ trained on DEVSET using the Forward-Backward

Algorithm

Online Speaker Change Prediction

Binary classification of each end-of-talkspurt (EOT) location in a
human-human dialogue as either

◮ a speaker change, SC; or as
◮ not a speaker change, ¬SC

using a prosodic description of 500 ms of audio preceeding
the EOT.

500 ms

T t
g,V

EOT at time t

speaker g

speaker f

T t
f ,N

T t
g,N

Reference labels are given by the automatic assignment :

Lt =

{

SC if T t
f ,N − T t

g,N < 0
¬SC, otherwise

In previous work, we have demonstrated that the occurrence of
observed speaker changes at time t t is strongly correlated with
human judgement that they are appropriate.

Data

Swedish Map Task Corpus:

◮ two speakers: a giver, g, and a follower, f
◮ task: g explains directions to f

Duration Dialogue role gData Set
(mn:ss) speakers # EOTs # SCs

DEVSET 77:40 F4,F5,M2,M3 480 222
EVALSET 60:39 F1,F2,F3,M1 317 149

◮ highly interactive dialogues
◮ DEVSET and EVALSET are disjoint in speakers

Automatic Classification

◮ compare two different log-likelihood-ratio classifiers
◮ train 10 HMMs for each of SC and ¬SC, by using different

random seeds prior to Forward-Backward training
◮ classifier 1 : log-likelihood-ratio over mean of 10 model

likelihoods

Lt = arg max
k

P ( x | Mk ) (1)

◮ classifier 2 : log-likelihood-ratio over product of 10 model
likelihoods
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Experimental Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NONAGRESSIVE

AGGRESSIVE

false positive rate (FPR)

tr
ue

 p
os

iti
ve

 r
at

e 
(T

P
R

)

manual baseline
EOT FBold
EOT FBnew
random

Learned Sequences

◮ randomly chosen HMMs, showing transition and (unnormalized)
emmission probabilities:
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◮ normalized emmission probabilities for state C in both models:

State C for SC State C for ¬SC

Conclusions

◮ first exploration of what models of fundamental frequency
variation sequences actually learn

◮ learned models corroborate existing research of human
behavior

◮ represenation appears suitable for direct, principled, continuous
sequence modeling as in SAD and ASR

◮ improved filterbank design yields SC/¬SC classification
accuracy improvements on unseen data of 12-17% relative
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