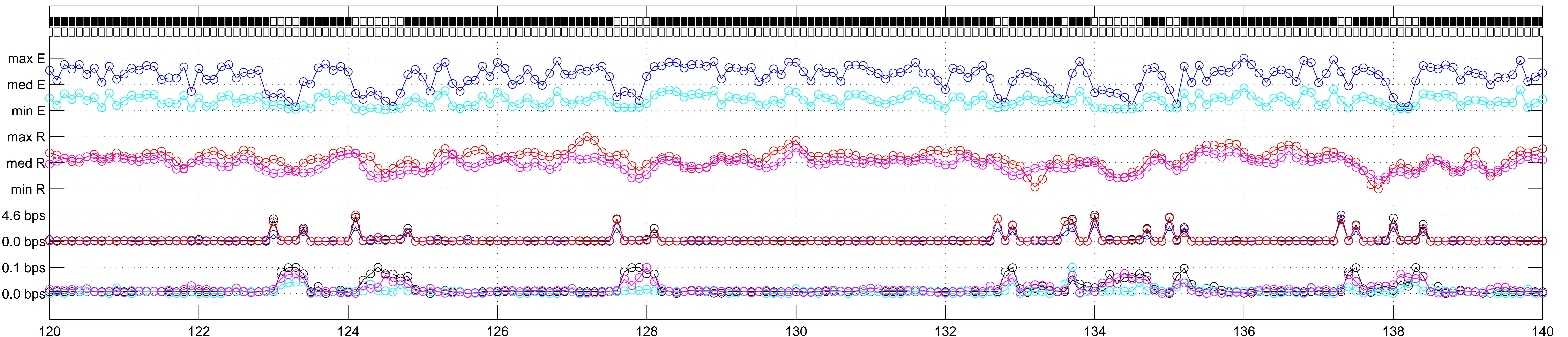


# AN INFORMATION-THEORETIC FRAMEWORK FOR AUTOMATED DISCOVERY OF PROSODIC CUES TO CONVERSATIONAL STRUCTURE

Kornel Laskowski<sup>1,2</sup> and Anna Hjalmarsson<sup>3</sup>


<sup>1</sup> Carnegie Mellon University, Pittsburgh PA, USA

<sup>2</sup> Voci Technologies, Inc., Pittsburgh PA, USA

<sup>3</sup> KTH Speech, Music and Hearing, Stockholm, Sweden

| Goals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Potential Impact                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>PROPOSE &amp; EVALUATE A <b>METHOD</b> FOR:</p> <ul style="list-style-type: none"><li>▶ <b>Quantifying</b> the relationship<br/>past prosody → incipient (turn) structure</li><li>▶ in an <b>automated</b> fashion<ul style="list-style-type: none"><li>▶ manual labeling of turn structure unnecessary</li><li>▶ automatically computable prosodic features</li></ul></li><li>▶ which provides <b>fast and flexible</b> techniques<ul style="list-style-type: none"><li>1. to measure the <b>global</b> predictive power of a feature</li><li>2. to measure the <b>local</b> predictive power of a feature</li><li>3. to identify instants <b>when</b> a feature is most operative</li><li>4. to <b>compare</b> features at global and local levels</li></ul></li></ul> | <ol style="list-style-type: none"><li>1. <b>Discretize the speech activity of each conversant</b> at a framing frequency <math>f</math>.<br/>instant <math>t</math> 1 2 3 4 5 6 7 8 9 ...<br/>Conversant 1: ■ ■ ■ ■ □ □ □ □ ...<br/>Conversant 2: □ □ □ □ □ □ ■ □ ...<br/>Conversant 3: □ □ □ ■ ■ ■ □ □ ...</li><li>2. Model the <b>probability of a conversant speaking at <math>t</math></b>, conditioned on what they and their interlocutors were doing just before <math>t</math>.</li><li>3. Measure the error <math>E</math> between what the model predicts and what actually happens; <math>f \cdot E</math> is the <b>cross-entropy rate</b> in bits per second.</li><li>4. Measure the difference <math>\Delta E</math> of the error <math>E</math>, with and without a feature of interest; <math>f \cdot \Delta E</math> is the <b>conditional mutual information rate</b> in bits per second.</li></ol> | <ol style="list-style-type: none"><li>1. For signal energy:<ul style="list-style-type: none"><li>▶ a correlate of <b>speaking loudness</b></li><li>▶ the proposed framework indicates a <b>considerable effect</b></li><li>▶ scientific literature is much in agreement that loudness is relevant</li></ul></li><li>2. For Mel-spectral flux (MSF):<ul style="list-style-type: none"><li>▶ a correlate of <b>speaking rate</b></li><li>▶ the proposed framework indicates <b>much weaker effect</b></li><li>▶ scientific literature is not in agreement that rate is relevant</li></ul></li><li>3. The methodology is able to <b>quantify the global and local differences</b> between the utilities of the two features.</li><li>4. <b>Does not require manual annotation</b> of conversation structure.<ul style="list-style-type: none"><li>▶ Only per-frame, per-participant, binary speech/non-speech classification</li></ul></li></ol> | <ol style="list-style-type: none"><li>I. No annotation → can perform analysis for <b>very large speech corpora</b>, cheaply and <b>at all instants in time</b>.</li><li>II. Results are <b>theory-agnostic</b> — do not rely on definition of what a “turn” might be.</li><li>III. Can compare <b>prosodic practice across speech domains</b> within a language.</li><li>IV. Can compare <b>prosodic practice across languages</b>.</li></ol> |

An Example: Dialogue 3161 from Switchboard Release 1 Version 2 (neither speaker observed during model training)

