Supplemental Information
for
Spin Transformations of Discrete Surfaces

Keenan Crane, Ulrich Pinkall, and Peter Schroder

ACM Transactions on Graphics (SIGGRAPH 2011)

1 Performance

The main computational cost when computing conformal deformations is solving
the eigenvalue problem

(D = p)A=7A
for the smallest eigenvalue v and corresponding eigenvector A. In practice,
however, a good solution can often be found by solving a single linear
system.

More specifically, let X = A*A be the matrix used in the standard eigenvalue
problem. This matrix is symmetric and positive-semidefinite with only about 7
nonzeros in each row/column, which means it can be efficiently inverted using
standard methods like Cholesky factorization or the conjugate gradient method.
A simple algorithm for computing the smallest eigenvector is then:

Algorithm 1 The Inverse Power Method
Require: Initial guess Ag.

1: fOI’i:L...,k do

2: Solve X\; = \;_1

4: end for

Starting from a random initial guess this procedure tends to produce good
results after only a few iterations (see Figure 1). A more intelligent initial guess
sets A = 1 at each vertex, which corresponds to the identity transformation. In
this case we often get very close to the solution after only a single iteration,
requiring only a single linear solve (see Figure 2).

The figures below depict two tests: bumpy, where we add random bumps
to a sphere, and moon, where we paint a face on a disk. On a 2.4 GHz Core 2
Duo laptop, a single iteration (using ml1divide in MATLAB) takes 0.3 seconds
on a mesh with 8k faces (bumpy) and 1.26 seconds on a mesh with 33k faces
(moon).

(reference)

Bumpy Sphere

quasi-conformal error

(reference)

2 25 3

Y a5
number of power iterations (k)

Man in the Moon

quasi-conformal error

Figure 1: Left: solutions for bumpy and moon found after k iterations of the in-
verse power method. Right: quasi-conformal distortion as a function of iteration
count. A random initial guess was used in both tests.

Bumpy Sphere w/ Initial Guess.

max
mean

k=1 k=2 k=3 k=4 (reference) ,
Q
I 15 114
I 125 g 112
. E 1.1
H
p § 108
4 1.08
1.04
1.0
(veference)

3
number of power iterations (k)

35

Man in the Moon wi Iitial Guess

Q
I
I 125
L

k=1 k=2 k=3 k=4

quasi-conformal error

max

s 35

2 25 3
number of power ferations (k)

Figure 2: The same test depicted in Figure 1 but using a constant initial guess.
Note that after the first iteration we obtain a solution that is virtually indistin-

guishible from the reference solution.

2 Further Performance Enhancements

Suppose a good initial guess Ag is known (e.g., Ag = 1). Then the Rayleigh
quotient

ATX N
PY W

should provide a good estimate 7y of the smallest eigenvalue. One can there-
fore improve the rate of convergence of the inverse power method by using the
shifted matrix X’ = X — vl in place of the usual matrix X (where | is the
identity).

3 Building the Eigenvalue System

In practice it may be convenient to build the matrix X directly (rather than
building it up from constituent matrices). The following algorithm provides a
simple facewise construction of X:

Algorithm 2 Facewise Construction of Eigenvalue System
1. for k=1,...,|F| do
1

2 a <— v

3 b« p/6

4 c— p2A/9

5. for all (4,5) € {1,2,3} x {1,2,3} do
6: Xij+ = aee; +ble; —e;) +c

7 end for
8: end for

Here k is the index of the current face, A is its area, and p is the desired
change in mean curvature half-density. The inner loop visits all ordered pairs of
edges e1, e, eg of the current face. In C++, the algorithm might look something
like Listing 1.

Listing 1: Facewise Construction of Eigenvalue System in C+-+

void buildEigenvalueProblem(const vector<Face>& faces,
const vector<Vertex>& vertices,
QuaternionSparseMatrix& E)

// allocate a sparse |V|x|V| matrix
int nV = vertices.size();
E.resize(nvV, nV);

// visit each face
for(size_t k = 0; k < faces.size(); k++)
{

double A facel[k] .area();

double rho = facel[k].rho;

// compute coefficients
double a = -1. / (4.%A);
double b = rho / 6.;
double ¢ = Axrhoxrho / 9.;

// get vertex indices

int I[3] =

{
faces[k] .vertex[0],
faces|[k] .vertex[1],
faces[k] .vertex[2]

bi

// compute edges across from each vertex
Quaternion e[3];

for(int i = 0; i < 3; i++)
{
e[i] = vertices[I[(i+2) % 3 1] -
vertices[I[(i+1) % 3 1] ;

// increment matrix entry for each ordered pair of vertices
for(int i = 0; i < 3; 1i++)
for(int j = 0; J < 3; Jj++)
{
E(I[i],I[Jj]) += axel[il*e[j] + bx(e[jl-eli]) + c;

