
Supplemental Information
for

Spin Transformations of Discrete Surfaces

Keenan Crane, Ulrich Pinkall, and Peter Schröder

ACM Transactions on Graphics (SIGGRAPH 2011)

1 Performance

The main computational cost when computing conformal deformations is solving
the eigenvalue problem

(D − ρ)λ = γλ

for the smallest eigenvalue γ and corresponding eigenvector λ. In practice,
however, a good solution can often be found by solving a single linear
system.

More specifically, let X = A?A be the matrix used in the standard eigenvalue
problem. This matrix is symmetric and positive-semidefinite with only about 7
nonzeros in each row/column, which means it can be efficiently inverted using
standard methods like Cholesky factorization or the conjugate gradient method.
A simple algorithm for computing the smallest eigenvector is then:

Algorithm 1 The Inverse Power Method

Require: Initial guess λ0.
1: for i = 1, . . . , k do
2: Solve Xλi = λi−1

3: λi ← λi/||λi||
4: end for

Starting from a random initial guess this procedure tends to produce good
results after only a few iterations (see Figure 1). A more intelligent initial guess
sets λ = 1 at each vertex, which corresponds to the identity transformation. In
this case we often get very close to the solution after only a single iteration,
requiring only a single linear solve (see Figure 2).

The figures below depict two tests: bumpy, where we add random bumps
to a sphere, and moon, where we paint a face on a disk. On a 2.4 GHz Core 2
Duo laptop, a single iteration (using mldivide in MATLAB) takes 0.3 seconds
on a mesh with 8k faces (bumpy) and 1.26 seconds on a mesh with 33k faces
(moon).

1

1 1.5 2 2.5 3 3.5 4
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

number of power iterations (k)

qu
as

i−
co

nf
or

m
al

 e
rro

r

Bumpy Sphere

max
mean

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

8

number of power iterations (k)

qu
as

i−
co

nf
or

m
al

 e
rro

r

Man in the Moon

max
mean

Figure 1: Left: solutions for bumpy and moon found after k iterations of the in-
verse power method. Right: quasi-conformal distortion as a function of iteration
count. A random initial guess was used in both tests.

1 1.5 2 2.5 3 3.5 4
1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

number of power iterations (k)

qu
as

i−
co

nf
or

m
al

 e
rro

r

Bumpy Sphere w/ Initial Guess

max
mean

1 1.5 2 2.5 3 3.5 4
1.05

1.1

1.15

1.2

1.25

1.3

number of power iterations (k)

qu
as

i−
co

nf
or

m
al

 e
rro

r

Man in the Moon w/ Initial Guess

max
mean

Figure 2: The same test depicted in Figure 1 but using a constant initial guess.
Note that after the first iteration we obtain a solution that is virtually indistin-
guishible from the reference solution.

2

2 Further Performance Enhancements

Suppose a good initial guess λ0 is known (e.g., λ0 = 1). Then the Rayleigh
quotient

λH
0 Xλ0

λH
0 λ0

should provide a good estimate γ0 of the smallest eigenvalue. One can there-
fore improve the rate of convergence of the inverse power method by using the
shifted matrix X′ = X − γ0I in place of the usual matrix X (where I is the
identity).

3 Building the Eigenvalue System

In practice it may be convenient to build the matrix X directly (rather than
building it up from constituent matrices). The following algorithm provides a
simple facewise construction of X:

Algorithm 2 Facewise Construction of Eigenvalue System

1: for k = 1, . . . , |F | do
2: a← − 1

4A
3: b← ρ/6
4: c← ρ2A/9
5: for all (i, j) ∈ {1, 2, 3} × {1, 2, 3} do
6: Xij+ = aeiej + b(ej − ei) + c
7: end for
8: end for

Here k is the index of the current face, A is its area, and ρ is the desired
change in mean curvature half-density. The inner loop visits all ordered pairs of
edges e1, e2, e3 of the current face. In C++, the algorithm might look something
like Listing 1.

3

Listing 1: Facewise Construction of Eigenvalue System in C++

void buildEigenvalueProblem(const vector<Face>& faces,
const vector<Vertex>& vertices,
QuaternionSparseMatrix& E)

{
// allocate a sparse |V|x|V| matrix
int nV = vertices.size();
E.resize(nV, nV);

// visit each face
for(size_t k = 0; k < faces.size(); k++)
{

double A = face[k].area();
double rho = face[k].rho;

// compute coefficients
double a = -1. / (4.*A);
double b = rho / 6.;
double c = A*rho*rho / 9.;

// get vertex indices
int I[3] =
{

faces[k].vertex[0],
faces[k].vertex[1],
faces[k].vertex[2]

};

// compute edges across from each vertex
Quaternion e[3];
for(int i = 0; i < 3; i++)
{

e[i] = vertices[I[(i+2) % 3]] -
vertices[I[(i+1) % 3]] ;

}

// increment matrix entry for each ordered pair of vertices
for(int i = 0; i < 3; i++)
for(int j = 0; j < 3; j++)
{

E(I[i],I[j]) += a*e[i]*e[j] + b*(e[j]-e[i]) + c;
}

}
}

4

