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In this note we show how the heat method [1] can be used to approximate a solution to the single- or
multiple-source shortest path problem. The reader should be forewarned that this technique is primarily
of theoretical interest: standard schemes like Dijkstra’s algorithm are almost certainly more useful in
practice. Still, it is interesting to see that the heat method can be applied to a problem for which it was not
originally designed. Since the method is formulated in terms of a Riemannian manifold (M, g), the basic
idea is to “thicken” the graph and then apply the original formulation, approximating the constituent PDEs
using piecewise linear basis functions. Empirically, the final solution approximates the graph distance to
within some small factor of the graph diameter. One could potentially improve accuracy by changing the
discretization—though again, the practical motivation for doing so is not clear.

Let G = (V,E) be any graph, and let ` : E → R be an assignment of lengths to edges. If we imagine that
the graph is isometrically embedded in Euclidean Rn as a collection of linear segments, then we can “thicken”
the graph by taking the Minkowski sum with a ball of radius ε > 0; the expressions we ultimately obtain will
not depend on the particular choice of n or ε. If the thickened graph M inherits the Riemannian metric g
induced by the Euclidean embedding, then we can associate to each edge ij ∈ E the subset Uij of points in
M closest to ij, i.e., the geodesic Voronoi cell. We further associate to these cells functions φij : M → R that
vanish outside Uij , and inside Uij interpolate the values 1 at i, and 0 at j. In analogy with Lagrange or “hat”
functions used for discretization on a simplicial domain, the corresponding basis functions at vertices are
given by φi|Uij

:= φij for each edge ij incident on i, and zero otherwise. We will use these basis functions to
discretize the three steps of the heat method, namely
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I. Solve (id− t∆)u = u0

II. Evaluate X ← ∇u/|∇u|

III. Solve ∆φ = ∇ ·X

To discretize the Laplace-Beltrami operator ∆ we integrate over the Voronoi regions Ui associated with
vertices to obtain an expression for the stiffness matrix L ∈ RV×V , namely

(Lu)i :=

∫
Ui

∆u dµ =

∫
Ui

∇ · ∇u dµ =

∫
∂Ui

N · ∇u dν =
∑
ij∈E

V n−1ε

uj − ui
`ij

,

where µ and ν are the usual volume measures on Rn and Rn−1, respectively, N is the outward unit normal
at the region boundary, V nε is the volume of an n-ball of diameter ε, and `ij is the length (or weight) of edge
ij. Note that here we have assumed zero-Neumann boundary conditions, corresponding to zero outflow of
heat through the walls of the thickened graph. The corresponding lumped mass matrix has entries

Mii :=
∑
ij∈E

V n−1ε `ij/2,

where we have ignored the contribution of the small region in the immediate vicinity of the vertex (since it
becomes negligible as ε→ 0). The first step of the heat method is therefore discretized as

(M − tL)u = u0,

where u0 ∈ R|V | is a sum of Kronecker deltas encoding the source vertices. (As in the simplicial case, a
value of 1 already represents an integrated Dirac delta, accounting for the absence of the mass matrix on the
right-hand side.) Note that the constant V n−1ε merely scales the solution, which does not affect subsequent
calculations. The normalized gradient of u is given along each edge by

Xij :=
uj − ui
|uj − ui|

=


+1, uj > ui,

−1, uj < ui

0, otherwise.

In other words, in the case of graphs, the first two steps of the heat method merely determine a relative
ordering of vertices (with respect to distance). Hence, the discrete divergence b ∈ R|V | will just count the
number of edges with “inflow” (positive gradient) minus the number with “outflow” (negative gradient):

bi :=

∫
Ui

∇ ·X dµ =

∫
∂Ui

n ·X dν =
∑
ij∈E

n ·Xij =
∑
ij∈E

sgn(uj − ui).

The final Poisson equation is then discretized via

Lφ = b;

since constant functions are in the kernel of L (i.e., a function is determined by its derivative only up to a
constant), one shifts the solution φ ∈ R|V | such that it equals zero at the source point.

An example solution is shown above on a random graph with 100 vertices and 200 edges where weights
are determined by embedded edge lengths; the black dot marks the source point. Colors plot the distance
relative to the (true) maximum distance dmax with respect to the source point. Though it is difficult to say
anything about accuracy in general, in this example the mean deviation from the true distance is about 5%
relative to dmax . For trees (not surprisingly) we obtain the exact solution.
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