
A Survey of Algorithms for Geodesic Paths and Distances

KEENAN CRANE, Carnegie Mellon University, USA
MARCO LIVESU, CNR IMATI, Italy
ENRICO PUPPO, University of Genoa, Italy
YIPENG QIN, Cardiff University, UK

Numerical computation of shortest paths or geodesics on curved domains, as well as the associated geodesic
distance, arises in a broad range of applications across digital geometry processing, scientific computing, com-
puter graphics, and computer vision. Relative to Euclidean distance computation, these tasks are complicated
by the influence of curvature on the behavior of shortest paths, as well as the fact that the representation of
the domain may itself be approximate. In spite of the difficulty of this problem, recent literature has developed
a wide variety of sophisticated methods that enable rapid queries of geodesic information, even on relatively
large models. This survey reviews the major categories of approaches to the computation of geodesic paths
and distances, highlighting common themes and opportunities for future improvement.

CCS Concepts: • Mathematics of computing → Graphs and surfaces; • Theory of computation →
Computational geometry; • Computing methodologies→ Shape modeling; Scientific visualization.

Additional Key Words and Phrases: datasets, neural networks, gaze detection, text tagging

ACM Reference Format:
Keenan Crane, Marco Livesu, Enrico Puppo, and Yipeng Qin. 2020. A Survey of Algorithms for Geodesic Paths
and Distances. 1, 1 (July 2020), 56 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The ability to rapidly compute shortest paths and/or distances between pairs or sets of points is a
fundamental operation in computational science. This survey considers algorithms for computing
geodesic paths and distances, i.e., paths through curved domains that arise in a broad range of tasks
across digital geometry processing, scientific computing, computer graphics, and computer vision.
Relative to computing distance on Euclidean domains, this problem is complicated by the influence
of curvature, as well as the fact that the domain itself may not be known exactly.
Several problems arise in this context, which have different applications, and are best tackled

with different techniques: from tracing a geodesic line given a starting point and a direction; to
computing the shortest path between a pair of points; to computing the distance function over
a whole surface, with respect to a source point or set; to provide a framework to rapidly extract
the shortest path between any pair of points. Broadly speaking, there are two major classes of
methods: those rooted in computational geometry, which view a polyhedral surface as an exact
description of the geometry, and those rooted in scientific computing, which view a polyhedron as
an approximation of a smooth surface. Neither class of approaches is universally “better”: each may
be best-suited to a particular task (e.g., finding geodesics on a CAD model, versus approximating
geodesic distance on a scanned surface), and in a particular setting, according to a wide variety of
trade offs in terms of accuracy, storage cost, run time performance, and scalability.
In general one might wish to compute geodesics and geodesic distances on many different

data structures (point clouds, voxelizations, etc.), though in this survey we focus primarily on

Authors’ addresses: Keenan Crane, Carnegie Mellon University, Pittsburgh, USA, kmcrane@cs.cmu.edu; Marco Livesu,
CNR IMATI, Genoa, Italy, marco.livesu@gmail.com; Enrico Puppo, University of Genoa, Genoa, Italy; Yipeng Qin, Cardiff
University, Cardiff, UK.

2020. XXXX-XXXX/2020/7-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: July 2020.

ar
X

iv
:2

00
7.

10
43

0v
1

 [
cs

.G
R

]
 2

0
Ju

l 2
02

0

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Crane, et al.

polyhedral surfaces, represented as triangle meshes. The survey is organized according to the
different geodesic distance problems and the attendant classes of approaches to their solution
(see Table ?? for a summary). After introducing the basic problems in Sec. 1.1 and providing the
necessary background in Sec. 2, we review major classes of algorithms in Secs. 3, 4 and 5. In Sec. 6,
we examine the relationship between mesh quality and geodesic computation. In Sec. 7, we provide
a partial evaluation of the reviewed methods, on the basis of available implementations. Finally, in
Sec. 8, we draw some conclusions and we highlight common themes and opportunities for future
improvement in geodesic algorithms.

Previous surveys. Our focus in this survey is on practical algorithms and their behavior on
real-world datasets. A relatively recent survey by Bose et al. [15] deals primarily with theoretical
aspects of one particular problem (the polyhedral shortest path problem), with a focus on asymptotic
time complexity and approximation bounds, as well as special cases such as convex polyhedra.
Less attention is devoted to broader problems (such as geodesic distance transforms) or issues such
as real-world performance, mesh quality, etc.; in this respect, such a survey is complementary to
ours. Patané [76] provides a detailed survey on the specific topic of Laplacian spectral kernels
and distances, which is likewise complementary to our account of PDE-based methods. Peyré and
colleagues [79, 80] provide a nice overview of several aspects of PDE-based methods, though the
last few years have seen major advancements in PDE-based methods, which we discuss in Sec. 3.

1.1 GeodesicQueries
Tasks in geometry processing may require a variety of different queries about geodesics and
geodesic distances; though seemingly similar, these queries must be answered via very different
algorithms. We review several important cases here.
Initial Value Problems. Perhaps the simplest type of problem is the initial value problem, which
traces out a geodesic starting at a given point in a given direction. In the Euclidean case, the
solution is simply a straight ray through space, though in general one must of course account for
the influence of curvature; in the discrete setting one also encounters some difficulty in defining
which ray is most “straight” (see Section 2.2). Computationally this problem, which we will refer to
as Geodesic Tracing (GT), tends to be among the easiest of geodesic queries; we examine it in detail
in Sec. 5.
Boundary Value Problems. In boundary value problems, a set of points on the domain is given as
input, and one seeks (for instance) geodesic paths between these points, or geodesic distances to all
these points. This type of problem is generally not as easy as an initial value problem since, for
instance, one cannot simply shoot a geodesic ray from one point and hope to hit a particular target
point. We consider in particular the following problems:

• Point-to-Point Geodesic Path (PPGP): given two distinct points p,q, find any shortest geodesic
γ between them. (Note that in general the solution may not be unique—see Sec. 2.)
• Single Source Geodesic Distance / Shortest Path (SSGD/SSSP): given a source pointp, compute
a scalar function φ(q) that provides the length of the shortest path from p to each point q. In
SSGD, only the distance function is provided; in SSSP, the shortest paths are also explicitly
computed.
• Multiple Source Geodesic Distance / Shortest Path (MSGD/MSSP): in this case the source is
no longer just a single point p, but rather a collection S of points, curves, etc.. The result is a
function ϕ(p) which for each point p gives the distance to the closest point in the set; this
query is also sometimes called a distance transform. In MSSP, paths are also provided.
• All-Pairs Geodesic Distances / Shortest Paths (APGD/APSP): given a source set S , compute
the shortest distance/paths between all pairs of points in S .

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 3

In Sections 3 and 4, we review the methods for solving these problems, categorized according to
their basic algorithmic approach they take. Most methods that solve the SSGD/SSSP problems also
provide a solution to PPGP as a byproduct; several easily generalize to MSGD/MSSP; only few
methods address the APGD/APSP problems. In Section 4.2, we review some algorithms that are
specifically developed to solve PPGP.
Note that most methods in the literature assume that initial points or boundary conditions are

specified at vertices of an input triangulation, though some methods allow direct evaluation of
geodesic queries at arbitrary points of the domain. For algorithms that only support queries at
vertices, a pragmatic approach is to locally refine the mesh by splitting faces or edges at the query
point.

1.2 Polyhedral vs. Smooth Geodesic Problem
When thinking about algorithms for computing geodesics, it is important to consider what our
domain represents: does it exactly represent the geometry of interest, or is it merely an approxima-
tion of the true domain? The answer to this question depends on context. For instance, in problems
like animation or CAD/CAM, where surfaces are designed by artists or engineers, we may have
an exact boundary representation and want to compute exact paths along this surface. On the
other hand, when a mesh is obtained via, say, 3D scanning or numerical simulation, it can only
provide an approximation of the true domain, i.e., the real physical surface of interest. In this case,
the accuracy of geodesic computation is fundamentally limited by the accuracy of the domain
representation itself. The choice of application therefore influences how we talk about error, and
also which algorithms are best suited to a given task.

a

b

c

d

In the context of polyhedral surfaces, a common misconception is that the
“correct” answer is obtained by considering piecewise linear paths through the
domain – though of course these paths may only be approximations of true
(smooth) geodesic curves. A simple 1D example is illustrated in the inset. What
is the “correct” distance between the point a and the point c? If we view the
polygon as an exact representation of the geometry (i.e., if we wish to compute
distance along the square itself), then the geodesic distance is obtained by
summing the two edge lengths |ab | + |bc | = 2

√
2 ≈ 2.82. On the other hand,

if we view the polygon as an approximation of the smooth circle, the distance should just be the
arc length between a and c , i.e., π ≈ 3.14. Not surprisingly, the polygonal geodesic distance is an
underestimate of the smooth geodesic distance, since each straight segment takes a “short cut” from
point to point. This same phenomenon occurs on triangulated surfaces: the polyhedral geodesic
distance generally underestimates the smooth geodesic distance (for instance, the distance along
a cube provides a poor approximation of the distance along the circumscribed sphere). To make
the distinction clear in this survey, we therefore distinguish between two versions of the geodesic
problem:
• Polyhedral Geodesic Problem — view a discrete surface as an exact description of the
geometry, and aim to compute exact geodesics or exact distances along this polyhedral
surface.
• Smooth Geodesic Problem — view a discrete surface as an approximation of the true
geometry, and aim to compute the most accurate possible approximation of geodesics or
geodesic distances.

The polyhedral problem captures the standard viewpoint of computational geometry; the smooth
problem encapsulates the standard viewpoint of scientific computing. These two problems interact
of course: for instance, one can use the exact polyhedral distance to approximate the true smooth

, Vol. 1, No. 1, Article . Publication date: July 2020.

4 Crane, et al.

Fig. 1. When a polyhedral surface is an approximation of a smooth surface, the “exact” polyhedral distance
still does not recover the true distance of the smooth surface. For instance, even for very nice triangulations
of the smooth sphere, algorithms from computational geometry improve accuracy by only one order relative
to PDE-based methods (from linear to quadratic).

distance. Surprisingly enough, however, the best strategy for approximating the smooth geodesic
distance may not be to simply compute the exact polyhedral distance. For instance, even on a nicely
triangulated sphere, the polyhedral distance gives only an O(h2) approximation of the smooth
distance (Fig. 1); greater accuracy can be achieved by considering the distance along a spline or
subdivision surface that approximates the same sampling of the domain [30, 72]. The fact that
one can do better than the exact polyhedral distance should not come as a surprise: higher-order
geometric elements (e.g., spline or subdivision patches) use a much larger stencil of information than
individual triangles, which correspond to linear elements (consider, for instance, approximating the
circle by four Bézier curves rather than four straight segments). On the other hand, higher-order
interpolation provides no benefit for the polyhedral geodesic problem, where one is interested in
the exact distance along a particular piecewise linear surface.

2 BACKGROUND
In this section we provide some basic concepts and definitions that will facilitate our discussion of
algorithms—for a more thorough introduction, see [36] in the smooth setting (especially Chapter
4, Sections 4–4, 4–6, and 4–7), and [26] for the discrete setting. At a high level, geodesics can
be characterized as curves that are in some sense straightest and (locally) shortest, though one
must be careful about the relationship between these two characterizations (Sec. 4.1), especially on
polyhedra where they may lead to different discrete definitions [81]. We first give some standard
background in the smooth setting (Sec. 2.1), followed by a discussion of geodesics on polyhedral
surfaces (Sec. 2.2).

2.1 Smooth Setting
Intrinsic vs. Extrinsic Geometry. When studying geodesics, how should we describe the shape
of the domain? An important feature of geodesics is that they depend only on distances along the
surface, and not at all how the surface sits in space. As a concrete example, consider a piece of
paper rolled up into a tube (Fig. 2): a straight line ℓ1 drawn between two nearby points p and q on
the flat piece of paper is still a shortest curve on the tube (see Fig. 2). One can find an even shorter
path by drawing a straight line through space, but this line is no longer a path along the surface.
Likewise, there are many other ways we could bend the tube without changing the shape or length
of shortest paths—for this reason, when studying geodesics we really want to ignore the extrinsic

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 5

Fig. 2. A geodesic is any “straight” curve between two points p and q, and are a feature of the intrinsic
geometry of the surface: they do not change if we bend the surface, so long as there is no stretching, shearing,
or ripping. Though the shortest path will always be a geodesic (here, ℓ1), a geodesic is not necessarily the
shortest path (consider ℓ2).

geometry of the surface (how it sits in space), and focus purely on its intrinsic geometry (only
those things that can be measured by walking along the surface). The desire to compute shortest
intrinsic (rather than extrinsic) paths is of course quite natural: for instance, the “shortest” route
between two cities is the one that best avoids mountains and valleys—not the one that tunnels
straight through the Earth!

Shortest vs. Straightest Curves. The tube example also helps to illustrate another feature of
geodesics: shortest implies straight, but straight does not necessarily imply shortest. Consider, for
instance, a long straight line ℓ2 from p that “goes off the edge of the map” before returning to q.
This curve is still a geodesic, but it is not a shortest geodesic—in particular, it is not as short as ℓ1.
Finally, the word “shortest” does not imply that there is a unique geodesic of minimal length. For
instance, there may be two equally short ways to go around a hill; in fact, there may be infinitely
many shortest paths between two given points, such as the north and south pole of a sphere.
Unfortunately, finding geodesics is not as simple as just “unrolling” a smooth surface into the

plane and finding straight lines (as we did with the tube), since most surfaces cannot be flattened
without distorting distances. Consider for instance the many different map projections used by
cartographers (Mercator, Robinson, etc.), none of which preserve geodesic distances. However, we
can nonetheless reason about shortness and straightness of curves: for instance, a curve on an
embedded surface is “straight” if there is no acceleration as we travel along the curve, except in the
normal direction—in other words, if we only turn by the bare minimum amount needed to remain
on the surface. Alternatively, we can adopt the perspective of Riemannian geometry, which allows
one to reason about intrinsic geometry without thinking about how it is embedded in space.

2.1.1 Smooth Surfaces. In the intrinsic picture, our main object of study is a smooth surface M
with Riemannian metric д. The fact that M is smooth implies that at each point p ∈ M we have
a tangent space TpM , where each tangent vector X ∈ TpM specifies a vector pointing “along” the
surface, i.e., all possible directions we can travel away from p. Since we have no information about
how the surface sits in space, the one and only way to measure lengths and angles of tangent
vectors is via the Riemannian metric, which for tangent space TpM provides a positive-definite
inner product дp : TpM × TpM → R≥0. For instance, the length of any tangent vector X ∈ TpM
is given by |X | :=

√
дp (X ,X); the angle between any two tangent vectors X ,Y ∈ TpM is given

by arccos(дp (X ,Y)/|X | |Y |), just as in ordinary Euclidean Rn . In fact, whenever the surface M is
sitting in space, the Riemannian metric and Euclidean inner product coincide. When the meaning
is understood from context, or when working with a vector field X (i.e., a choice of vector in each
tangent space), we can drop the subscript p.

, Vol. 1, No. 1, Article . Publication date: July 2020.

6 Crane, et al.

2.1.2 Shortest Curves. The Riemannian metric enables us to easily define geodesic curves in terms
of conditions on length. In particular, consider any differentiable map γ from an interval [a,b] of
the real line into the surfaceM , and let Ûγ (t) := d

dt γ (t); we say that γ is arc-length parameterized if
| Ûγ (t)| = 1 for all t ∈ [a,b]. We can express the length of any curve γ as

L(γ) :=
∫ b

a
| Ûγ (t)| dt =

∫ b

a

√
дγ (t) (Ûγ (t), Ûγ (t)) dt .

The geodesic distance ϕ(p,q) between any two points p,q ∈ M is the infimum of length over all
curves γ such that γ (a) = p and γ (b) = q. An arc-length parameterized curve γ is a shortest geodesic
if it achieves this infimal length. An arc-length parameterized curve γ is a geodesic if it is “locally
shortest,” i.e., if there is some δ > 0 such that γ is a shortest geodesic when restricted to any interval
[t1, t2] ⊂ [a,b] such that t2 − t1 ≤ δ . Intuitively, a shortest geodesic is a curve that cannot be made
any shorter (without moving its endpoints); a geodesic is a curve that cannot be made shorter by
adjusting any small piece of it.

2.1.3 Straightest Curves. We can also characterize geodesics in terms of straightness rather than
shortness. This perspective is best understood from a dynamic point of view: imagine we are driving
along a road at constant speed, and never turn our wheel left or right. Although we may encounter
hills and valleys along the way, our trajectory is in some sense as straight as it possibly could be. In
the extrinsic setting the only acceleration we experience is in the direction normal to the surface,
i.e., the minimal possible acceleration needed to keep our vehicle on the ground. In the intrinsic
setting, we do not need to worry about this normal acceleration since our surface is not sitting in
space—instead, we just say that a geodesic is a curve of zero acceleration.

How can we measure the acceleration of a curve γ (t) in a surfaceM? In the Euclidean plane, we
can just take the second derivative of γ with respect to t . In the Riemannian setting, however, the
velocity vectors γ ′(t1) and γ ′(t2) at two different times t1, t2 will in general belong to two different
tangent spaces Tγ (t1)M,Tγ (t2)M , and hence cannot be compared directly. Instead, we can use the
Levi-Civita connection or covariant derivative ∇XY , which (intuitively) uses the metric д to measure
how much Y is turning as we move along the direction X . In particular, a curve γ is a geodesic if its
tangent Ûγ exhibits zero turning as we move along the tangent direction, i.e., if

∇ Ûγ (t) Ûγ (t) = 0

at all times t ∈ [a,b]. (Since the covariant derivative is local, it does not help us define shortest
geodesics.) More generally, for any arc-length parameterized curve γ (s) we have

∇ Ûγ (s) Ûγ (s) = κд(s)n(s),
where for each time t , the vector n(t) ∈ Tγ (t)M is the unit normal to the curve (i.e., a unit vector
orthogonal to the tangent), and the scalar κд(t) ∈ R is the geodesic curvature, which measures the
rate at which the curve is bending. A geodesic is then a curve with zero geodesic curvature.

We can also understand geodesic curvature from an extrinsic point of view. Suppose we have a
map f : M → R3 assigning each point of the surfaceM a location in space, and letN : M → S2 ⊂ R3

be the corresponding Gauss map giving the unit normal at each point. A curve γ : [a,b] → M on the
surface can now be realized as a curve γ̄ := f ◦ γ in Euclidean space. Assuming γ̄ is parameterized
by its arc-length s , its unit tangent is given by T̄ (s) := d

ds γ̄ (s); we will use n := T × N to denote
the normal to the curve (as opposed to the normal N of the surface). The derivative of T in turn
describes the curvature of the curve, which can be decomposed into two scalar components:

κд := ⟨n, ddsT ⟩,
κN := ⟨N , ddsT ⟩.

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 7

Fig. 3. Extrinsically, the curvature of a curve γ̄ can be decomposed into the normal and geodesic curvatures
κN ,κд , which measure the change in the tangent in the direction of the surface normal N and the curve
normal n, respectively (left). A “wiggly” but planar curve will have zero normal curvature and nonzero geodesic
curvature (center), whereas a great arc on a sphere has zero geodesic curvature but nonzero normal curvature
(right).

Note that there is no derivative in theT direction, since γ̄ is arc-length parameterized and hence its
tangent doesn’t change length. In other words, the geodesic curvature κд describes how much the
curve γ is bending “in plane”; the normal curvature κN describes how much γ is bending “out of
plane.” Geodesics are again curves of zero geodesic curvature, i.e., those that go straight along the
surface (and bend purely to remain on the surface). An illustration is provided in Fig. 3.

2.1.4 Exponential Map. At any pointp ∈ M and any unit vectorX ∈ TpM , there is a unique geodesic
traveling away from p in the direction X , i.e., such that Ûγ = X (this perspective leads to the tracing
algorithms discussed in Sec. 5). More generally, the exponential map expp : TpM → M takes any
tangent vector X at p to the point q ofM reached by walking in the direction X/|X | a distance |X |.
In general, however, this map is not invertible: there can be distinct points q1 , q2 that are reached
by starting at p and walking along geodesics in different directions (or for different distances). Any
neighborhoodU of p over which expp is invertible is called a normal neighborhood of p; on any such
neighborhood, the inverse of the exponential map defines the logarithmic map logp : U → TpM .
The logarithmic map provides local coordinates around p called normal coordinates, by effectively
“flattening out” a small patch of the surface onto its tangent space. Polar coordinates on the tangent
space are sometimes called geodesic polar coordinates; here, geodesics can be characterized (locally)
as lines of constant angle. Circles in this tangent plane are mapped by the exponential map to
geodesic circles, which orthogonally intersect geodesic rays from p (Gauss’ lemma).

Away from a normal neighborhood, geodesics may start behaving in less intuitive and undesirable
ways. We review some global aspects of geodesics in Sec. 4.1.

2.1.5 Geodesic Distance. Many of the algorithms discussed in this survey aim not to compute
individual geodesic curves, but rather the geodesic distance function ϕ : M ×M → R over the entire
surface. In particular, for any two points x ,y ∈ M , ϕ(x ,y) is the smallest length of any geodesic
between x and y. This function satisfies all the properties of a distance metric, i.e., nonnegativity
(ϕ(x ,y) ≥ 0), nondegeneracy (ϕ(x ,y) = 0 ⇐⇒ x = y), symmetry (ϕ(x ,y) = ϕ(y,x)) and triangle
inequality (ϕ(x ,y) + ϕ(y, z) ≥ ϕ(x , z)); these properties will be important to keep in mind when
studying numerical approximations of geodesic distance. A geodesic ball Bp (r) is the set of all points
q ∈ M such that ϕ(p,q) < r .

Cut locus. For a given point p, the injectivity radius is the radius r > 0 of the largest geodesic ball
Bp (r) such that there is a unique shortest path from any point q ∈ Bp (r) back to p. Outside this
radius, there are points q with two or more shortest paths to p. The collection of all such points is

, Vol. 1, No. 1, Article . Publication date: July 2020.

8 Crane, et al.

called the cut locus. More generally, for any source set Ω (e.g., a collection of isolated points, or a
network of curves, surfaces, etc.) the cut locus is the set of points q for which there is not a unique
shortest path to some point in Ω. The geodesic distance function ϕ(x ,y) is smooth away from the
cut locus. In most situations, it is not particularly important that geodesic distance algorithms
accurately reconstruct the cut locus: only that the distance values or paths computed at each point
are accurate. However, some applications (e.g., computing the medial axis of a shape) may require
an accurate cut locus.

2.2 Polyhedral Setting
Geodesics on polyhedral surfaces behave somewhat differently from geodesics on smooth surfaces—
especially in the vicinity of vertices, where the surface fails to be smooth. Methods coming from
computational geometry (Sec. 4) must therefore carefully consider the specific behavior of polyhe-
dral geodesic paths; methods based on the finite element viewport (Sec. 3) largely side-step these
questions by approaching geodesic computation from the perspective of function approximation
rather than explicit path tracing.

A polyhedral surface is, roughly speaking, a collection of Euclidean (planar)
polygons glued together to form a surface. Since any planar polygon can
be triangulated (and the choice of triangulation has no effect on geodesics),
we will assume that the combinatorics of any polyhedron are encoded by a
simplicial complex M with vertices V, edges E, and faces F. For simplicity we
also assume that this complex is manifold, i.e., the link Lk(i) of every vertex
i ∈ V interior vertex is a single closed loop; the link of every boundary vertex
is a single path (see inset figure).
The geometry of a polyhedral surface can be specified in one of two ways: either extrinsically,

using vertex coordinates f : V → Rn which are linearly interpolated over each triangle, or
intrinsically, by specifying positive edge lengths ℓ : E→ R>0 that satisfy the triangle inequality
in each face: ℓi j + ℓjk ≥ ℓki for all ijk ∈ F. Of course, one can always obtain edge lengths from

Fig. 4. Intrinsically, a vertex i of a polyhedral surface looks like either a circular cone, a flat disk, or a saddle,
depending on the sign of the angle defect Ωi .

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 9

vertex coordinates (ℓi j := | fj − fi |), though the vast majority of geodesic algorithms can in principle
be implemented without reference to vertex coordinates—reflecting the fact that geodesics are a
purely intrinsic object. Instead, quantities like triangle areas Ai jk and interior angles θ jki at triangle
corners can be computed directly from edge lengths (using expressions like Heron’s formula and the
law of cosines). This fact is especially useful given that in some geometric problems (e.g., manifold
learning) one may have distances between points, but not an explicit embedding in Rn .
For each vertex i ∈ V, the angle defect is the quantity

Ωi := 2π −
∑
i jk ∈F

θ jki ,

where θ jki denotes the interior angle at vertex i of triangle ijk , and the sum is taken over all triangles
ijk containing vertex i . Intuitively, this quantity captures the “flatness” of the vertex, and is often
viewed as a discrete analogue of the Gaussian curvature. An important mental image is provided in
Fig. 4: imagine that the triangles around a vertex i ∈ V are flat pieces of paper glued together along
edges. Depending on the value of Ωi , these triangles can be bent into a smooth circular cone, a flat
circular disk, or a saddle-like figure, all without changing geodesic distance. We will therefore refer
to vertices with positive, zero, and negative angle defect as spherical or cone-like, Euclidean, and
hyperbolic or saddle-like, respectively. This local picture nicely encapsulates the intrinsic geometry
of any polyhedron: it is smooth and intrinsically flat away from the vertices—even the location of
edges is irrelevant when it comes to thinking about geodesics and geodesic distance, since the edges
are effectively invisible to an intrinsic observer. The sign of Ω plays an especially important role
in the context of polyhedral geodesics, since shortest geodesics will often pass through vertices
where Ωi < 0, but can never pass through vertices where Ωi > 0 (as will be discussed in Sec. 2.2.1).

Working with polyhedral rather than smooth surfaces has some interesting geometric con-
sequences. On the one hand, since each individual triangle is flat, we can study geodesics by
“unfolding” local neighborhoods into the plane, i.e., by finding an arrangement of vertices in R2 that
agrees with the intrinsic edge lengths—several examples are shown in Fig. 4. This picture makes
it clear that, locally, geodesics on polyhedral surfaces can be constructed by simply drawing line
segments in the Euclidean plane. The main computational challenge, therefore, is answering more
global questions: for example, which sequence of triangles must we unfold to find the shortest such
line? An analogous perspective is not generally not available for smooth surfaces, since any local
flattening will invariably distort lengths (i.e., geodesics are rarely straight lines in local coordinates).
On the other hand, the fact that our surface is no longer smooth makes the definition of polyhedral
geodesics somewhat more nuanced—especially in the vicinity of vertices.

2.2.1 Shortest vs. Straightest. In the smooth setting we had two equivalent characterizations of
geodesic curves: they are both straightest (Sec. 2.1.3) and locally shortest (Sec. 2.1.2). As studied by
Polthier & Schmies [81], these two characterizations are no longer equivalent in the polyhedral
setting. This situation reflects a common “no free lunch” scenario in the discretization of objects
from differential geometry [27], namely that one typically cannot find a single definition (in this
case, for discrete geodesics) that exactly captures all the key properties of the original smooth
object (in this case, both straightest and locally shortest).

Locally, polyhedral geodesics essentially behave the same as in the smooth setting. Consider for
instance a pair of points p,q contained in the same triangle—here geodesics are just ordinary line
segments, which are both shortest and straightest. Likewise, for two points p,q close to a common
edge (and away from any vertex) we can simply unfold the two incident triangles into the plane
and connect them by the unique shortest, straightest segment (see Fig. 5, left). Globally, however,
the situation is more complicated due to non-smooth points at vertices.

, Vol. 1, No. 1, Article . Publication date: July 2020.

10 Crane, et al.

Straightest. To find the straightest path leaving a point p ∈ M in a direction u ∈ TpM, we can
simply apply the local observations made above: inside a given triangle the shortest path is found
by extending a straight ray along u; to continue this path into the next triangle we can imagine
unfolding neighboring triangles into the plane and extending this ray into the next triangle. The
resulting path corresponds to a straight line along a strip of planar triangles, as depicted in Fig. 5,
right. (Note that for very long paths we may encounter the same triangle more than once, in
which case we would have multiple copies of this triangle in the unfolding.) This tracing operation
effectively defines a discrete version of the exponential map discussed in Sec. 2.1.4.
What should we do if our path enters a vertex i ∈ V? In particular, which

outgoing direction describes the “straightest” curve? Unless the angle defect Ωi is
equal to zero, we cannot simply unfold triangles into the plane. An idea considered
by Polthier & Schmies [81] is to instead pick the outgoing direction such that there
is “equal angle” on either side. More precisely, let u be the incoming direction; we
can define the outgoing direction v as the one such that the total angle between u
and v is exactly half the sum Θi :=

∑
i jk θ

jk
i of interior angles θ jki at vertex i (see

inset figure). Equivalently, one can work in a local polar coordinate system where
angles θ jki are normalized to sum to 2π ; this viewpoint has been carefully studied
by Troyanov [95], and was later adopted in geometry processing for problems
involving polyhedral geodesics [81] and tangent vector fields at vertices [111];
Sharp et al. [91, Section 5.2] provides a concise description. As in the smooth case,
this definition of straightness yields a unique solution to the initial value problem, even for paths
through vertices with nonzero angle defect.
Shortest. In contrast, the behavior of shortest curves on a polyhedral surface depends critically on
the sign of the angle defect Ωi . Consider for instance two points a,b directly opposite a cone-like
vertex (Ωi > 0), as depicted in Fig. 6. By symmetry, one might expect that the shortest route
between these points is to walk along the straightest possible path γ from a to i , then from i to b.
However, one can find an even shorter path by walking “around” the cone—just as one might find a
shorter path by walking around a hill, rather than walking over it. In particular, if we cut the cone
from the boundary through the point a and up to the vertex i , then the straight line segment from
b to either copy of a gives us a shortest path. Hence, straightest curves on a polyhedral surface are
not always shortest. In this case, γ is not even locally shortest, since even in a tiny region around i
would can make it slightly shorter by going around vertex i , instead of through it. In general, it is
never be advantageous (in terms of path length) to pass through a spherical vertex. Therefore, the
only shortest geodesics passing through a positive vertex i are those terminating at i .

On the other hand, if i is a saddle vertex (Ωi < 0), one can often find much
shorter paths by passing through vertices. Some basic intuition is provided by
Fig. 4, bottom right: to go from one side of a saddle region to another, it is much
quicker to go straight through the vertex than to travel across numerous “ripples.”
In fact, starting with a straight line ℓ from a point p ∈ M to a saddle vertex i ,
there will be infinitely many outgoing directions v that yield a shortest path;
these directions form a wedge-like region of angle |Ωi | around the incoming
direction u (see inset figure). The union of the incoming path ℓ with the wedge
is sometimes called a funnel, and is the starting point for a large family of
algorithms reviewed in Sec. 4.1. Again the “shortest” and “straightest” pictures
disagree: a straightest geodesic passing through a saddle vertex must bisect the
funnel, whereas a shortest geodesic can include any from i contained in the

funnel.

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 11

Fig. 5. Any pair of adjacent triangles can be unfolded into the plane without distorting distance (left). A
geodesic on a polyhedral surface is therefore equivalent to a straight line along some planar triangle strip—so
long as it does not pass through any vertices.

Fig. 6. The triangles around any vertex i with positive angle defect Ωi > 0 (left) are intrinsically no different
from a smooth cone (center). Therefore, the shortest path between two points a,b on a polyhedral surface will
never pass through a positive vertex: we can always cut open the cone in a way that lets us draw a straight
line from a to b without passing through i . When i sits directly between a and b, this path will not even be
unique (right).

2.2.2 Discrete Exponential Map. The analysis above has important implications for the exponential
map on a polyhedral surface. Consider for instance tracing straightest geodesics in every possible
direction from a vertex i ∈ V. When paths hit a spherical vertex j , they split into two groups which
meet discontinuously on the opposite side of j. When paths hit a saddle
vertex k , they again split into two groups, which do not completely cover
the funnel opposite k . In either case, the exponential map fails to be injective
as soon as we hit any non-flat vertex; in other words, the injectivity radius
is simply the distance to the closest vertex. Moreover, every spherical vertex
of a polyhedral surface is contained in the cut locus. As explored by Itoh &
Sinclair [47], this means that algorithms which exactly compute distance on
a polyhedral surface will (surprisingly enough) do a very poor job of approx-
imating the cut locus of the smooth surface it approximates. For instance, the
cut locus on a polyhedral sphere will contain every single vertex, whereas the cut locus of a smooth
sphere consists of just a single point.

3 PDE-BASED METHODS
A large number of methods for computing geodesic distance are based on formulating the problem
in terms of partial differential equations (PDEs) on a smooth manifold, then discretizing and solving
these PDEs via, e.g., finite element methods (FEM) or other numerical techniques. These methods
are generally suitable for computing the single or multiple source geodesic distance (SSGD/MSGD);
explicit geodesic can subsequently be obtained by, e.g., tracing curves through the gradient of
the distance function (though such tracing requires careful consideration in order to achieve
accurate results; see Sec. 5). Some of these methods are also quite attractive for solving all-pairs
geodesic distance problems (APGD), since their solutions are well-approximated by precomputing a

, Vol. 1, No. 1, Article . Publication date: July 2020.

12 Crane, et al.

relatively small collection of eigenfunctions (Sec. 3.3.1). PDE-based methods are attractive because
they are built on top of well-established techniques from scientific computing (such as FEM), as
opposed to computational geometry methods (Sec. 4) which must be built “from the ground up.”
As a result, such techniques often come with a clearer picture of, e.g., convergence rates under
refinement, making them particularly well-suited for the smooth geodesic problem (Section Sec. 1.2).
Moreover, they easily generalize to problems involving multiple or curved sources, and can often
be implemented on data structures beyond triangulations (as shown in Fig. 7). On the other hand,
since these methods compute only the geodesic distance ϕ, additional work must be done if one
wishes to extract geodesic paths, as discussed in Sec. 5.

PDE-based methods can be categorized according to the type of equation used to characterize
geodesic distance. Different starting points will lead to different numerical treatments, which
subsequently have different computational trade offs (e.g., different mesh or solver requirements).
At a high level there are two basic classes of methods:
• Wavefront-based. The basic principle behind wavefront-based methods resembles (in spirit)
classical methods like Dijkstra’s algorithm, or the window-basedmethods discussed in Section
4: information about distance propagates outward from a given source point. In the continuous
setting, this perspective corresponds to hyperbolic PDEs, i.e., those that describe the evolution
of a wavefront emanating from the source.
• Diffusion-based. Diffusion-based methods more closely resemble problems arising in, say,
spectral graph theory: information about distance is obtained by way of functions associated
with a discrete Laplace operator, computed via a process that looks more like repeated local
averaging rather than wavefront propagation. In the continuous setting, this perspective
corresponds to elliptic and parabolic PDEs such as Poisson equations and heat diffusion.

Trade offs. Historically, wavefront-based methods were developed prior to most diffusion-based
algorithms; as a result, a wide variety of higher-order accurate strategies have been developed for
regular grids on Euclidean domains (e.g., [1]), motivated in large part by accurate numerical solvers
for level set equations [74]. However, most of these techniques do not immediately generalize to
the setting of curved surfaces, where one typically does not have a regular, uniform tessellation
of the domain needed to support (for instance) larger finite difference stencils. Diffusion-based
algorithms tend to have some nice performance advantages, since they are largely based on solving
easy linear elliptic equations rather than more difficult nonlinear hyperbolic ones, though solutions
can sometimes be over-regularized (e.g., near the cut locus of the geodesic distance function). A
particularly nice feature of linear methods is that one can often pre-factor the associated matrices,
which in practice yields about an order of magnitude improvement in amortized performance using
modern direct solvers [21, 89].
Meshing requirements for elliptic methods also tend to be less stringent than for hyperbolic

ones; see Sec. 6 for further discussion. As discussed in Sec. 1.2, the accuracy of all PDE-based
methods (as well as all methods from computational geometry) is fundamentally limited by the
accuracy of the domain representation itself (e.g., the use of linear elements to approximate curved
surfaces). The only real resolution to this issue is to compute geodesic distance on higher-order
surface representations such as splines and subdivision surfaces; several authors have recently
considered this approach [30, 72].

Overall, there is a rather nice viewpoint that unifies all current PDE-based methods: they are all
effectively trying to minimize the residual of the eikonal equation

∫
M (|∇|

2 − 1)2 dA, albeit by very
different means (see especially the discussion at the end of Sec. 3.3.3. Since this energy is nonlinear
and nonconvex, it is not surprising to find that many different computational strategies have been
proposed: hyperbolic methods like fast marching deal with nonlinearity by taking advantage of

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 13

Fig. 7. Unlike methods from computational geometry, which are specially tailored to triangulations, PDE-
based methods can easily be implemented on a variety of data structures by applying standard discrete
differential operators. Here, we show a variety of implementations of the heat method using different discrete
Laplace operators.

special update orderings, whereas elliptic methods like the heat method decompose the problem into
two linear pieces connected by a nonlinear change of variables. Very little work has been done on
synthesizing these perspectives (e.g., combining fast linear approximations with carefully-ordered
updates), though is likely to be fruitful, especially given the diverse range of application problems
and machine architectures on which geodesic distance queries are needed.

3.1 Laplace-Beltrami and Cotan Laplace
PDE-based methods for geodesic distance computation all have a close relationship to the Laplace-
Beltrami operator ∆, which is discretized by a (weighted) graph Laplacian. In particular, for a graph
G = (V ,E) with edge weights w : E → R, the graph Laplacian is encoded by a real symmetric
matrix L ∈ R |V |× |V | with off-diagonal entries

Li j =

{
−wi j , ij ∈ E,
0, otherwise,

and diagonal entries

Lii =
∑
i j ∈E

wi j .

A simple choice of edge weights is just wi j = 1, though of course these weights do not capture
much geometric information. When the vertices i ∈ V have associated vertex positions fi ∈ R3, the
edge weights can be determined by some function of the edge lengths; one common choice is to
use Gaussian edge weightswi j = e−|fj−fi |

2/t (for some small parameter t > 0), which is motivated
by the close connection between the Laplace-Beltrami operator and the Euclidean heat kernel (see
Sec. 3.3). Finally when the edges of the graph come from the edges of a triangulated surface, one

, Vol. 1, No. 1, Article . Publication date: July 2020.

14 Crane, et al.

typically adopts the cotangent weights

wi j =
1
2 (cotαi j + cot βi j),

where αi j , βi j are the interior angles opposite edge ij (or zero, for edges on the domain boundary).
More broadly, these discrete Laplacians are only the tip of the iceberg: discrete Laplace operators
have been developed for a large variety of geometric data structures, providing a wide variety of
options for implementing PDE-based geodesic schemes (see especially the discussion in Sec. 3.3.3).
Some methods, such as those based on diffusion (Sec. 3.3) easily generalize to these settings by
just “plugging in” a different Laplace matrix; other methods, such as fast marching (Sec. 3.2.1)
do not immediately generalize since they may depend on particular features of a discretization
(e.g., the fact that values at the vertices of a simplex uniquely determine an interpolating affine
function). Note that since the Laplace-Beltrami operator depends only on the intrinsic geometry
of the domain (i.e., its metric) and not the way it sits in space, any distance algorithm defined in
terms of the Laplacian (including all the methods we consider here) will automatically be isometry
invariant.

3.2 Wavefront Propagation
The basic prototype for wavefront-based methods is the linear hyperbolic wave equation

d2

dt 2ut = ∆ut , (1)

where for each time t , ut is a real-valued function on a manifoldM , and ∆ is the Laplace-Beltrami
operator onM (forM = Rn , ∆ is just the standard Laplacian). The intuitive connection to geodesic
distance is that a perturbation at some initial point (e.g., a small stone dropped in a pond) will send
out a wavefront that maintains a constant distance from the source point. Hence, the arrival time
of the wavefront is correlated with the geodesic distance. Though a few methods extract distance
information from the classical wave equation [92] or the quantum mechanical (Schrödinger) wave
equation [43], by far the most common approach is to consider the nonlinear hyperbolic eikonal
equation

|∇ϕ |2 = 1, onM
ϕ = 0 on ∂M (2)

which directly characterizes the distance function ϕ : M → R in terms of the norm of its gradient
|∇ϕ |. Intuitively, this equation says something very straightforward: on the boundary of the domain
∂M (i.e., at any point in the source set), the distance ϕ should be zero. At every other point of the
domain, the change in distance per unit distance along the direction of greatest increase should
simply be 1. However, actually solving this equation is not as straightforward since it is nonlinear
and hence cannot be approximated using standard linear finite element methods. Instead, the
general strategy is to iteratively update the solution using techniques like (nonlinear) Gauss-Seidel;
for carefully-crafted update orders (and suitable conditions on the mesh geometry) such strategies
can actually converge in a single iteration, corresponding to well-established algorithms such as
fast marching (this perspective is nicely explained by Bornemann and Rasch [14]).

3.2.1 Fast Marching. The fast marching method was originally developed for distance transforms
on Euclidean domains discretized as regular grids; the basic principles of this method and its variants
(e.g., fast sweeping [65]) are shared by a broad class of schemes used in level set methods [75] and
to solve Hamilton-Jacobi equations (of which the eikonal equation is one example). Kimmel and
Sethian developed a level set method for curved domains represented as triangulated surfaces [51].
The basic strategy of this method is very similar to Dijkstra’s shortest path algorithm: set the
distance at the source point (or set) to zero, and set the tentative distance to infinity; then use a

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 15

1
1 2 3 4 5

6

n–1n4

2 3

Fig. 8. Methods based on solving hyperbolic equations may fail to respect causality in the presence of obtuse
angles. For instance, in the left figure a source at 1 will get propagated to 2 and 3 before 4, even though 4
is closer. In the worst case this phenomenon can be highly nonlocal, as seen on the right where the node n
closest to the source node 1 is the last one to be updated.

region-growing strategy to update the remaining distances in an “upwind” order, i.e., consider the
node with smallest distance first. Like Dijkstra, the running time is therefore O(|V | log |V |), since
for a triangulation, |E | ∈ O(|V |).
Relative to Dijkstra, the key modification is that distances are not up-

dated according to paths along edges; instead, one updates the distance
value at a vertex by solving for the linear function that satisfies the eikonal
equation [51, Section 4.1]. In particular, if the values ϕi ,ϕ j at two corners
are known, one simply needs to pick a third value ϕk so that the slope of
a triangle |∇ϕ | passing through all three values equals +1 (as illustrated
in the inset figure).
We can connect the fast marching method to other PDE-based methods by observing that the

term |∇ϕ |2 is the integrand of the Dirichlet energy, which in turn can be expressed in terms of the
cotan Laplace operator. In particular, consider a triangle ijk where the distance values at vertices i
and j are known, and the distance at vertex k remains to be determined. Suppose we encode these
distance values as a column vector ϕ = [ϕi ϕ j ϕk]T , and let L ∈ R3×3 be the local cotan matrix given
by

2Lii = cotα j + cotαk ,
2Li j = − cotαk

(see for instance [26, Section 6.2]). A linear function ϕ interpolating the distance values at the three
vertices will then satisfy the eikonal equation if ϕTLϕ = 1, which we can view as an ordinary
quadratic equation for the unknown distance ϕk . Solving this equation yields (in general) two
solutions corresponding to positive and negative slope; the update will always use the larger value,
since distance increases monotonically as we move away from the source.
A basic difficulty with wavefront propagation methods is that the order in which vertices are

updated may violate causality, i.e., even if a vertex i is closer to the source than a vertex j, the
distance at j may be finalized prior to the distance at i; hence, the solution ϕ will fail to be monotonic
(two examples of how this can happen are shown in Figure 8). Sethian and Kimmel suggest to
resolve this issue by an “unfolding” procedure, but this procedure is nonlocal and may not terminate
before reaching the boundary. In general, one therefore has to either apply an iterative strategy
(as discussed by Bornemann and Rasch [14]), or perform remeshing, as discussed in Sec. 6. From a
computational point of view, the basic challenge with any method based on wavefront propagation
(including Dijkstra’s algorithm) is that it is difficult to parallelize: the upwind strategy effectively
induces a serial ordering on computation. Since the order of computation is data-dependent (i.e., it
depends on earlier distance values), it can also lead to significant dynamic branching and incoherent
memory access compared to linear methods (Sec. 3.3) which more typically depend on a fixed
traversal order (e.g., using a fixed matrix factorization).

, Vol. 1, No. 1, Article . Publication date: July 2020.

16 Crane, et al.

3.3 Diffusion
The basic prototype for diffusion-based methods is the linear parabolic heat equation

d
dtut = ∆ut , (3)

where for each time t the function ut is a real-valued function on the domain. Despite the very
similar form of Eqn. 3 and Eqn. 1, they have very different behavior and hence lead to very different
computational methods. Whereas small perturbations to u yield high-frequency oscillations in
solutions to the wave equation, such perturbations are diffused or smoothed out by the heat
equation, hinting at greater stability (e.g., small computational errors are not propagated forward
in time). In particular, if δx is a Dirac delta centered at a point x , then the heat kernel at x is the
solution to the heat equation

d
dt kt = ∆kt ,
k0 = δx .

(4)

More generally we will use kt (x ,y) to denote the heat kernel at time t , centered at the point x , and
evaluated at the point y. In the Euclidean case the heat kernel is just a Gaussian of increasing width
and decaying magnitude, though in general it has no closed form (see for instance [91, Section 3.2]).
Any other solution to the heat equation can be expressed as a convolution with the heat kernel,
i.e., a gradual “blurring out” of the initial data. The heat equation also has an important statistical
interpretation: if one views the initial function u0 as describing the spatial distribution of a large
number of discrete particles, then the solution ut describes the distribution after these particles
have taken “random walks” (i.e., Brownian motion) for time t [57].

Diffusion-basedmethods were initially used to compute smooth distance-like functions (Sec. 3.3.2)
or functions that satisfy the axioms of a distance metrics, but do not actually provide the geometric
distance between points (Sec. 3.3.1); more recently, a diffusion-based strategy was introduced that
provides the true geodesic distance (Sec. 3.3.3). Computationally, the appeal of all such methods
is they amount to sparse linear systems that can be efficiently solved using standard techniques
from numerical linear algebra. As a result, one does not have to develop solvers specially tailored
to the task of computing geodesic distance, as with the hyperbolic methods discussed in Sec. 3.2 or
the polyhedral strategies in Sec. 4. Instead, any development in numerical linear algebra (such as
more accurate linear solvers, or fast parallel implementations) can immediately be used to improve
computation of geodesic distances. Diffusion-based methods have also become popular due to their
ease of implementation, which generally involves only three basic ingredients:
• Building a weighted graph Laplacian L associated with the mesh;
• Solving one or more sparse linear algebra problems involving L;
• Evaluating simple per-triangle or per-vertex expressions.

Per-element operations might be performed either before or after solving linear problems (or both),
but generally amount to evaluations of, e.g., simple closed-form sums (this pattern is in fact shared
by all methods we will discuss in this section). The bulk of the complexity is therefore taken care of
by the linear solver, which can be treated as a “black box”: one does not have to implement complex
topological data structures, or even maintain a priority queue. On the flip side, this formulation
assumes that a suitable mesh is already provided as input; see Sec. 6 for further discussion.

3.3.1 Spectral Distances. The original motivation for diffusion-based distances comes from a desire
to embed an abstract surface or manifold into a Euclidean space – such an embedding allows one
to approximate distances on the original manifold by measuring the ordinary Euclidean distance
between points in Rn , though this approximation may only roughly resemble the true geodesic
distance. This point of view was originally studied by Bérard et al. for a different purpose: to study

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 17

the precompactness of smooth manifoldsM with bounded diameter and curvature [9, Chapter VI
E.53],[10]. Later, this same point of view became a common theme in the context of data analysis,
machine learning, and dimensionality reduction, where the manifold M and Laplace-Beltrami
operator ∆ are replaced with a discrete graph G = (V ,E) and graph Laplacian L ∈ R |V |× |V | . In
particular, letψi ∈ R |V | and λi ∈ R be the eigenvectors and eigenvalues of L, so that

Lψi = λiψi , i ∈ V . (5)

Belkin & Niyogi propose an embedding by Laplacian eigenmaps that maps each vertex v ∈ V to
the coordinates fi := (ψ1(v), . . . ,ψk (v)) (for some choice of n ≤ |V |), arguing that this embedding
minimizes the ℓ2 distortion of edge lengths [7]. A notion of distance is then given by ϕE (i, j) :=
| fj − fi |, where | · | is just the Euclidean norm. Gobel & Jagers study a notion of distance that is
closely connected to the random walk interpretation of the heat equation – in particular, they
interpret a graph as a Markov chain with probabilities determined by edge weights, and show that
the expected time to walk from a vertex i to a vertex j and then back to i determines a metric on this
graph [44]. This commute time distance ϕC is equivalent to the effective resistance between i and j in
an electrical network [52], which is also connected to the Laplacian L [41, 87]. Lipman et al. define a
closely related biharmonic distance ϕB based on the bi-Laplacian ∆2 rather than the Laplacian ∆ [59].
Coifman & Lafon instead define a diffusion distance ϕD which captures the amount of information
that diffuses from a vertex i to a vertex j after time t [25]. In fact, all of these distances can be linked
back to a discrete diffusion process – consider in particular the (discrete) harmonic Green’s function
Gx : V → R>0, which is the solution to the equation LGx = δx (where δx is the Kronecker delta
centered at x ∈ V). This function can also be viewed as the stationary solution to the discrete heat
equation with fixed (Dirichlet) boundary conditions at vertex x . Letting Hx be the corresponding
function for the bi-Laplacian, we can write the three distances mentioned above as

ϕ2
C (x ,y) = Gx,x − 2Gx,y +Gy,y
ϕ2
B (x ,y) = Hx,x − 2Hx,y + Hy,y

ϕ2
D (x ,y) = | |kt,x − kt,y | |2,

where kt,x : V → R>0 denotes the solution to the discrete heat equation at time t and with initial
conditions u0 = δx . Evaluating each of these distances for a given pair of vertices x ,y ∈ V therefore
amounts to solving a small number of linear equations. If, however, one wishes to compute the
distance between a large number of vertex pairs (e.g., to solve the APGD problem), it is often more
efficient to use a spectral expansion of these distance functions, i.e., to write them in terms of the
eigenvalues and eigenvectors of the discrete Laplace operator (Equation 5), leading to a unified
view of all four distances defined above:

(eigenmap) ϕ2
E (x ,y) =

∑n
i=1(ψi (x) −ψi (y))2,

(commute time) ϕ2
C (x ,y) =

∑n
i=1

1
λi
(ψi (x) −ψi (y))2,

(biharmonic) ϕ2
B (x ,y) =

∑n
i=1

1
λ2
i
(ψi (x) −ψi (y))2,

(diffusion) ϕ2
D (x ,y) =

∑n
i=1 e

−2tλk (ψi (x) −ψi (y))2.

Note that the global point signature of Rustamov [86] yields an identical distance to the commute
time distance ϕC . At this point it becomes apparent that all of these distances are variations on a
common theme: embed the surface in Rn according to the eigenfunctions; compute a weighted
Euclidean distance in the embedding space. The different choice of weights will impact the regularity
and other features of the resulting distance function—for instance, the diffusion distance exhibits
a degree of anisotropy around the source that depends on the diffusion time t , as shown in [59,
Figure 2].

, Vol. 1, No. 1, Article . Publication date: July 2020.

18 Crane, et al.

Notably, none of these distances give a good approximation of geodesic distance: on the whole
they look more like highly regularized versions of the true geodesic distance, and cannot resolve
the cut locus. However, they do provide an extremely efficient way to obtain a rough proxy for
distance: since all of these functions are quite smooth, one can obtain a good approximation by
using a truncated series where n is much smaller than the number of vertices |V | (in practice,
around 150–200). In this case one can precompute the eigenfunctions, at which point it becomes
extremely efficient to compute the point-to-point geodesic distance (by just evaluating a small
sum), and by extension, solving the APGD problem for a small subset of vertices (e.g., a collection
of landmark points) becomes relatively inexpensive. However, computing the distance to a large set
of vertices (such as the boundary of the domain) may be expensive, since one needs to evaluate a
large sum for each point; here, other algorithms discussed in this section may be more appropriate.
Finally, since these distances are ultimately derived from distances in Euclidean Rn , they exactly
satisfy key properties of a metric: nonnegativity, symmetry, and triangle inequality. Note that any
embedding into Rn will immediately satisfy these properties; likewise, as with any algorithm built
on top of the Laplace-Beltrami operator, these distances are also isometry invariant.
Further connections between distance and spectral approximation are detailed in the recent

survey by Patané [76].

3.3.2 Poisson-based Methods. There is a large class of methods for generating smoothed distance-
like functions to the boundary ∂M of a domainM by solving linear elliptic equations; these methods
are largely motivated by problems from image processing and computer vision, such as extracting
medial axes or other “skeletons” from image regions. For instance, Tari et al.[94] solve the screened
Poisson equation

(∆ − 1
ρ2 id)u = 0 onM,

u = 1 on ∂M,
(6)

and Gorelick et al. [42] solve a Poisson equation

∆u = −1 onM,
u = 0 on ∂M ; (7)

derivatives of such functions can then be used to extract an approximate cut locus/medial axis to
serve as a “skelton” of the regionM . Many variants of this strategy have been considered that yield
more distance-like functions, such as applying various pointwise transformations or “normaliza-
tions” to the solution u of PDEs like Equation 6 or 7; such as the Spalding-Tucker transformation
u 7→

√
|∇u |2 + 2u − |∇u | [8, Section 6]. Much like the functions studied in Sec. 3.3.1, however, none

of these smoothed functions correspond to the actual geodesic distance ϕ. Moreover, unlike the
functions from Sec. 3.3.1, they do not provide a well-defined distance metric d : M ×M → R, but
rather just compute the distance transform of the domain boundary ∂M .

3.3.3 Heat Method. The diffusion-based perspective can also be used to compute the true geodesic
distance, rather than a distance-like function, via the heat method [29]. This method is ultimately
connected to both the eikonal equation discussed in Sec. 3.2 as well as the Poisson-based approaches
from Sec. 3.3.2, though the starting point is an important observation about the close relationship
between the geodesic distance function ϕ (Sec. 2.1.5) and the short-time heat kernel kt (Equation 4)
known as Varadhan’s formula [96]:

ϕ(x ,y) = lim
t→0

√
−4t logkt (x ,y). (8)

This formula effectively says that if a “pin prick” of heat centered at the point x diffuses for a very
short time t , then the resulting heat distribution looks nearly identical to the geodesic distance

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 19

function, up to a simple transformation of the value at each point. However, it is quite challenging
to compute a numerical approximation of the heat kernel that decays at exactly the right rate;
Crane et al. sidestep this issue by recalling the eikonal equation (Equation 2), which says that
the gradient must have unit magnitude (|∇ϕ | = 1). Therefore, any function u that is a monotonic
function of distance can be used to obtain the distance itself, by normalizing the gradient and
recovering the corresponding scalar potential. In particular, to compute the distance to a point x
one can apply the following procedure:

(1) Solve the heat equation d
dtut = ∆ut , u0 = δx ;

(2) Evaluate the vector field X = −∇u/|∇u |;
(3) Solve the Poisson equation ∆ϕ = ∇ · X .

Step 1 is approximated by a single step of backward Euler, i.e., by solving the linear elliptic equation

(id − t∆)ut = δx (9)

for a small time step t > 0. The Poisson equation in the third step corresponds to minimization of
the energy

∫
M |∇ϕ − X |

2 dA, i.e., it finds the function ϕ whose gradient is as close as possible to X
(in the L2 sense). Note that all of these steps are described as operations in the smooth setting; as
with many PDE-based methods, a final algorithm is obtained by picking a particular discretization
of the domain and corresponding discrete differential operators. For instance, the heat method
has been implemented on triangle meshes, polygonal meshes, point clouds [28], images [107],
subdivision surfaces [31], tetrahedral meshes [8], spline surfaces [72], and voxelizations [18]. A
variant of the heat method that replaces the Laplace operator ∆ with the connection Laplacian ∆∇

also computes parallel transport of vectors along shortest geodesics [91], as well as the logarithmic
map discussed in Sec. 2.1. An interesting consequence of using higher-order elements of splines
and subdivision surfaces is that one can in principal obtain estimates of geodesic distance that
are even more accurate than the exact polyhedral distance—see [72] and in particular [30], who
explore higher-order schemes.

One can use the heat method to connect ideas from the various PDE-based methods considered
so far. From the perspective of Sec. 3.3.2, Equation 9 is a screened Poisson equation (where the
boundary is just a single point ∂M = {x}), and Varadhan’s formula can be viewed as one possible
“normalization.” However, as shown in Crane et al. [28, Figure 6], this simple transformation does
not produce an accurate distance approximation, motivating the need for a more sophisticated
normalization strategy. The heat method can also be given a variational interpretation which
connects it to fast marching methods [8]. In particular, consider the energy

E(u) :=
∫
M
(|∇ϕ | − 1)2 dA,

i.e., the L2 residual of the eikonal equation; the corresponding Euler-Lagrange equations are given
by the nonlinear equation

∆ϕ = ∇ · (∇ϕ/|∇ϕ |).

The heat method can therefore be viewed as the first iteration of a fixed point scheme, where the
solution to the heat equation provides an initial guess ϕ0 for ϕ. Belyaev and Fayolle show that
improved accuracy can be achieved by applying successive iterations ∆ϕk+1 ← ∇ · (∇ϕi/|∇ϕi |),
and more broadly, by applying other optimization strategies to minimize E(u), albeit at higher
computational cost. This point of view provides a clear connection between the heat method and
the fast marching method, which can likewise be viewed as a numerical method for minimizing

, Vol. 1, No. 1, Article . Publication date: July 2020.

20 Crane, et al.

E(u) (as discussed in Sec. 3.2.1). Finally, Litman & Bronstein note that the heat kernel kt is well-
approximated via a spectral expansion akin to those seen in Sec. 3.3.1, enabling them to dramatically
accelerate the heat method via precomputation of Laplacian eigenvectors [60].

4 COMPUTATIONAL GEOMETRY METHODS
Themethods reviewed in this section are aimed at resolving the boundary problems in the polyhedral
setting. We review both exact and approximated methods, by classifying them according to the
approach taken to the solution.

4.1 Global methods
Global methods compute globally shortest paths. We distinguish between: methods that work on
the whole polyhedral domain and provide an exact solution (Section 4.1.1); approximations of such
methods that trade-off accuracy for speed (Section 4.1.2); and methods that work on a discretization
of the domain on graphs, thus providing necessarily approximated solutions (Section 4.1.3).

4.1.1 Polyhedral Methods – Exact. Methods for solving the polyhedral geodesic distance problem
are built on the piecewise flatness of polyhedral surfaces. This property enables the planar unfolding
of triangle strips, which simplifies the computation from 3D polyhedral surfaces to 2D unfolded
planes (see Section 2.2). Within the unfolded triangle strips, locally shortest paths are computed
as straight line segments. By enumerating all possible locally shortest paths between two points,
globally shortest paths can be obtained by finding the ones with minimum length. However, without
an efficient pruning strategy, the number of such locally shortest paths grows exponentially with
the size of Σ and quickly becomes infeasible to compute [6]. Therefore, the key challenge is to
remove the computational redundancy as much as possible.
Addressing this challenge, O’Rourke et al.[73] first proposed an algorithm to solve the PPGP

problem in O(n5) time, where n is the number of vertices on Σ. Their method can be viewed as
a theoretical milestone from that it shows the PPGP problem can be solved in polynomial time.
However, their method is still too time-consuming for practical applications. Thus, our discussion
starts from [71], which laid the foundation of practical polyhedral geodesic algorithms.

𝑠
𝜎

𝑝

𝑑0

𝑑1

𝑎0

𝑎1
𝑤

𝜏

Fig. 9. Illustration of window structure. The shortest paths within an unfolded triangle strip can be encoded
as a window w = (a0,a1,d0,d1,σ ,τ), where a0, a1 are the endpoints of w ; d0, d1 are the corresponding
distances from a0, a1 to the pseudosource p (saddle vertex); σ denotes the geodesic distance from p to source
s ; and τ denotes the propagation direction. Adapted from [83, 93].

Mitchell et al. [71] proposed the first practical algorithm for geodesic computation on polyhedral
surfaces, which is commonly referred to as the MMP (Mitchell-Mount-Papadimitriou) algorithm.
Their main idea can be summarized as the continuous Dijkstra technique, which extends the famous
Dijkstra’s algorithm [35] from graphs to polyhedral surfaces. As an analogy, they propose to view
edges of polyhedral surfaces as nodes of a graph. However, an edge contains infinite points and its

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 21

distance cannot be represented by a scalar value. To handle this problem, a dedicated data structure
named window1 is introduced, which encodes all locally shortest paths in an unfolded triangle
strip with a tuple (Figure 9). Then, the polyhedral geodesic distances can be computed by finding
the optimal windows on edges of Σ. The optimization of windows on an edge is accomplished
by trimming overlapping windows into disjoint ones according to the smaller distance in the
overlapping part (Figure 10). More specifically, windows are trimmed in a pairwise manner after
being propagated to edges and stored in an ordered list according to their positions.

0

𝑦

𝑥

𝑠0 𝑠1

𝑏0 𝑏1 0

𝑦

𝑥

𝑠0 𝑠1

𝑝

𝑑 𝑑

(𝑎) (𝑏)

Fig. 10. Illustration of window trimming. (a) Suppose there are two overlapping windows whose unfolded
pseudosources are s0 and s1 and their intersection δ = [b0,b1]. (b) By solving a quadratic equation, the two
windows are trimmed into disjoint ones. An illustration of special case σ0 = σ1 and then ∥s0−p∥ = ∥s1−p∥ = d
is shown. From [93].

It can be observed that MMP’s time cost is positively correlated to the number of windows
arriving each edge. Tominimize it, theMMP algorithm borrows thewavefront propagation paradigm
appearing in Dijkstra’s algorithm and fast marching (Sec. 3.2.1) and propagates windows across Σ
from near to far by maintaining a priority queue. Such paradigm ensures the redundant windows
will be trimmed at the earliest possible stage. When propagation is finished, each edge of Σ will
be subdivided into a list of end-to-end linked windows containing the geodesic distance field to
any point on Σ. Mitchell et al. proved that the algorithm creates at most O(n2) windows. Thus, it
can be easily derived that MMP can solve the SSGD problem in O(n2 logn) time and O(n2) space,
where n is the number of vertices of Σ. The key component of their proof is the analysis of the
maximal number of windows arrived at each edge, which is O(n). Nevertheless, such analysis is
too pessimistic and is inconsistent with MMP’s practical performance.
The MMP algorithm [71] is commonly viewed as a landmark in the research of polyhedral

geodesic algorithms. Its distinct contribution is the window propagation framework, which contains
three major components: window propagation, window pruning (e.g. trimming) and window
management (e.g. priority queue). This framework is employed by most of the following works
[20, 84, 93, 104, 106] and they differ from their unique techniques used in the three components.
Although it is straightforward for “continuous Dijkstra” technique to use a priority queue to

manage windows, an extra O(logn) time cost is introduced, which slows down the computation.
Addressing this issue, Chen and Han [20] proposed the CH (Chen-Han) algorithm. Their algorithm
manages windows with a First-In-First-Out (FIFO) queue, whose overhead is O(1). For window
pruning, they proposed a very simple rule named “one angle, one split” to remove redundant

1In [71], Mitchell et al. used the term interval. While in the following works [84, 93, 104, 106], an alternative term window
gains popularity from its intuitiveness. Thus, the term window is employed in this survey.

, Vol. 1, No. 1, Article . Publication date: July 2020.

22 Crane, et al.

windows around vertices of Σ (Figure 11). This rule only cares about the redundancy around

Improving Chen and Han’s Algorithm on the Discrete Geodesic Problem • 104:3

s

t
d

(a) A pseudo-source window

s

R
e

a,b[]

(b) An interval window

Fig. 2. A pseudo-source window and an interval window.

w
ws

v

v v1
2

1
2

I1

I2

Fig. 3. The principle of one angle one split (see Lemma 2.2) implies that
only three of the four possible edge sequences in this example can pro-
vide shortest paths. The three green windows belong to edge sequences that
will continue, and the red one corresponds to an edge sequence that must
stop because the shortest paths that it contains cannot continue to pass this
triangle.

has at most n levels, where n is the total number of the faces. The CH
algorithm [Chen and Han 1990] avoids exponential explosion based
on the following Lemma 2.2, namely the property of “one angle one
split” [Chen and Han 1990]. In Figure 3, two windows w1, w2, are
entering �v1v2v from edge v1v2 and both cover the vertex v . “One
angle, one split” implies that at most one of w1, w2, can have two
interval-window children during window propagation. We say that
the two-child window occupies the angle � v1vv2 over the one-child
one. Of course, wi (i = 1, 2) can also have a pseudo-source-window
child at vertex v only if it can provide the shortest distance to v .

LEMMA 2.2. Let w1 and w2 be two windows on the same directed
edge v1v2 of �v1v2v, shown in Figure 3. If both of the windows cover
the vertex v, then at most one of them can have two children which
could be used to define a shortest sequence.

3. THE IMPROVED CH ALGORITHM

The CH algorithm [Chen and Han 1990] is of an O(n2) time
complexity, but in practice it runs very inefficiently, compared
with the O(n2 log n)-time MMP algorithm [Mitchell et al. 1987].
This is demonstrated by previous experimental results [Kaneva and
O’Rourke 2000; Surazhsky et al. 2005]. The inefficiency of the CH
algorithm, we think, is because it generates considerably many use-
less windows that don’t contribute to any shortest path. That is to
say, the key idea in Chen and Han [1990], “one angle one split,”
is still too loose to effectively check the validity of a new win-
dow. We will describe the CH algorithm in Section 3.1. Section
3.2 presents a filtering theorem for checking a new window more
strictly and Section 3.3 suggests that we should also maintain a pri-
ority queue throughout the algorithm. Finally, in Section 3.4 we

propose a method for backtracing a shortest path from the source to
any vertex, or even any surface point.

3.1 The CH Algorithm

We first need to conduct initialization: we set the distances at ver-
tices, except the source, to be +∞; then, we associate each angle
with a null interval window and associate each vertex with a null
pseudo-source window; finally, we introduce a first in first out queue
Q to store pending events.

ALGORITHM 3.1. The CH algorithm

Assign the source s with distance 0, create a pseudo-source win-
dow w for s, and put w into the queue Q;
While Q is not empty and the level size doesn’t exceed the face
number n

Take out the head window w from Q;
If w is a pseudo-source window, say, w = (d, v)

If d is less than the current distance estimate at vertex v
Update the distance at v;
If v is a saddle vertex

Delete the old pseudo-source window at v and its sub-
trees;
For each edge opposite to v , add a child window
(d, v, e, [0, 1]) onto the tail of Q;
Update the distance of each vertex v ′ incident to v with
w and add a pseudo-source window (d + ‖vv ′‖, v ′) to
Q if d + ‖vv ′‖ is less than the current distance at v ′;

Else /*w is an interval window, say, w := (d, I, e, [a, b]).*/
If w has only one child on the left (right) edge, or w fails
to occupy the opposite angle over the existing window w ′

according to Lemma 2.2, then
Compute the only child and push it into Q;

Else /*w occupies the opposite angle over w ′*/
Delete the abolished subtree of w ′;
Compute the two children of w and push them into Q;
Check if w can provide a shorter distance to the vertex v
opposite to edge e; if true, update the distance estimate at
v; and if v is a saddle vertex or a boundary vertex, we need
also generate a pseudo-source window at v and insert it
into the priority queue Q.

Chen and Han [1990] proved that the total number of nodes
generated—the abolished nodes included—is O(n2), rather than of
an exponential size. But in order to achieve an O(n) space complex-
ity, they suggested only storing leaf nodes and branch nodes, while
throwing away the one-child interval windows. So the sequence tree
of the CH algorithm is a conceptual object rather than a real one.
When a pseudo-source window wv at vertex v is occupied over by

ACM Transactions on Graphics, Vol. 28, No. 4, Article 104, Publication date: August 2009.

Fig. 11. Vertex v splits any window spanning it into two halves. The “one angle, one split” rule shows that
for any two windows passing through v , only three of the four split windows can provide shortest paths and
continue propagation. As illustrated, the three green windows are valid and continue propagation. The red
one contains no shortest paths beyond triangle ∆vv1v2 and stops propagation. From [104].

vertices and is tolerant of overlapping windows. Thus, it is much less powerful than the trimming
rule used by the MMP algorithm [71]. However, it can still be proved that the number of windows
generated in CH algorithm is at mostO(n2). This analysis also supports that the worst-case analysis
of the MMP algorithm is too pessimistic and that its practical performance should be much better.
Since the CH algorithm uses a O(1) FIFO queue to manage windows and has a O(n2) window
complexity, its overall time complexity is O(n2). In addition, the CH algorithm does not store
propagated windows on edges to perform window pruning. Thus, its space cost is O(n).
Theoretically, the CH algorithm achieves the best asymptotic complexities so far. However, its

practical performance is poor. Surazhsky et al. [93] reported that their implementation of the
MMP algorithm runs in sub-quadratic time and is many times faster than Kaneva and O’Rourke’s
implementation of the CH algorithm [50]. Since then, several methods have been proposed to
improve the practical performance of the MMP algorithm. Liu et al. [64] observed that floating
point error may cause the degeneration of window propagations to frequently occur when applying
the MMP algorithm to real world models. To make the MMP algorithm more robust, they con-
ducted a systematic analysis on all the degenerated cases and proposed techniques to handle them
accordingly. Observing that the half-edge data structure used in Surazhsky et al.’s implementation
[93] may generate redundant windows, Liu [62] proposed to implement the MMP algorithm with
an edge-based data structure. Experimental results show that on average the edge-based version
runs 44% faster and uses 29% less memory.

In summary, the MMP algorithm’s practical success comes from its effective wavefront propaga-
tion paradigm which enables the removal of redundant windows at the earliest stage. However,
the removal of redundant windows is a complex and expensive process which involves inserting a
newly propagated window into a ordered list and trimming overlapping parts by solving quadratic
equations.
Addressing this issue, Xin and Wang [104] proposed the ICH (Improved Chen-Han) algorithm,

which combines the advantages of both the MMP algorithm and the CH algorithm. From the MMP
algorithm, they borrowed the wavefront propagation paradigm and used a priority queue to manage

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 23

window propagations according to their distances. To avoid the MMP’s costly window trimming
operations, they borrowed the “one angle, one split” rule from the CH algorithm and extended it
into three novel window filtering rules (Figure 12). Experimental results show that these new rules

Fig. 12. Illustration of ICH’s window filtering rules. The key idea is to filter out redundant windows with the
minimum-so-far distance d1,d2,d3 of vertices. Left: d + ∥IB∥ > d1 + ∥v1B∥ and its symmetric counterpart
d + ∥IA∥ > d2 + ∥v2A∥; Right: d + ∥IA∥ > d3 + ∥v3A∥. From [104].

help to remove more than 99% redundant windows during propagation. Theoretically, introducing
the priority queue increases ICH’s time complexity to O(n2 logn) and makes its space complexity
no longer O(n). However, its practical performance increased dramatically. Experimental results
show that ICH greatly outperforms the original CH algorithm. In addition, although ICH usually
propagates more windows, it runs comparable to the MMP algorithm [93] while using considerably
less space. This reveals that there exists a trade-off between the effectiveness of window pruning
strategies and their costs.
One prominent difference between MMP and ICH’s window pruning rules is that: MMP’s

trimming rule involves interaction between windows while ICH’s “one angle, one split” and window
filtering rules do not. More specifically, ICH filters redundant windows by distance comparison
with the minimum-so-far distances at vertices, which is a relatively independent process and is
ideal for parallelization. However, there is still one obstacle. To remove redundant windows at the
earliest stage, ICH organizes window propagations in a strict order with a priority queue, which is
sequential. Fortunately, since the correctness of window propagation algorithms is independent
of the order of window propagations, this strategy can be loosened for parallelization. Based on
the above observations, Ying et al. [109] proposed the PCH (Parallel Chen-Han) algorithm, which
is a parallel version of the ICH algorithm. In their algorithm, k nearest windows are selected and
propagated in parallel at each iteration, where k is a user-specified parameter (Figure 13). Then, the
propagated windows are filtered in parallel according to the minimum-so-far distances at vertices.
To avoid data conflict at vertices, the distance updates are delayed until the propagation of selected
windows finished. Experiment results show that PCH propagates slightly more windows than the
ICH algorithm, but runs an order of magnitude faster.

The performance of the PCH algorithm shows that slightly relaxing the order of propagation will
not have a big impact on the window pruning effectiveness. Based on this spirit, [106] proposed
the FWP (Fast Wavefront Propagation) technique to accelerate the MMP and ICH algorithm by
replacing the strictly ordered priority queue with a loosely-ordered bucket-based FIFO queue. More
specifically, windows with similar distances are stored in the same bucket and propagated in a
FIFO order. Although straightforward, their method performs well in practice from the observation
that both MMP and ICH spend roughly 70% time on maintaining the priority queue (Figure 14).
Experimental results show that their FWP-MMP algorithms runs 3-10 times faster than the MMP
algorithm, and their FWP-CH algorithm runs 2-5 times faster than the ICH algorithm.

, Vol. 1, No. 1, Article . Publication date: July 2020.

24 Crane, et al.

Fig. 13. The PCH algorithm selects k nearest windows and assigns them to different GPU threads. Each
thread propagates the selected windows and filters the redundant ones independently. Then, the newly
created windows are collected and re-organized in the memory pool. From [109].

Both PCH and FWP employ a batch processing strategy to accelerate existing algorithms. How-
ever, their selection of window batches depends only on the distances and lacks the consideration
of their geometric interrelationship. Observing that the prunings of all propagated windows within
a triangle are inter-dependent, Qin et al. [84] proposed the VTP (Vertex-oriented Triangle Propaga-
tion) algorithm. Their algorithm organizes window propagations with a triangle-oriented growing
scheme. In this scheme, a traversed area is defined as the union of all visited triangles. The boundary
of this traversed area forms the propagation wavefront, which contains all the windows to be
propagated. Then, this traversed area is expanded in a Dijkstra-like style by gradually enclosing
adjacent triangles (Figure 15). Their algorithm terminates when the traversed area covers the entire
Σ. During expansion, local windows entering the same triangle from the same edge are organized
in a batch and they are propagated simultaneously. In such batches, redundancy checks can be
intensively performed between any pair of windows. To remove a maximal number of windows in a
low cost way, they proposed three rules which are summarized from an exhaustive list of scenarios
for pairwise window pruning inside a triangle. Note that these pruning scenarios are listed under
the assumption that the window trimming technique [93] is not used due to its relatively high

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 25

speaking, the smaller the variance, the higher quality the
wavefront has. Wavefront quality depends on the order of
windows being processed. As shown in Fig. 4, propagating
windows in the smallest-label-first order leads to a high-
quality wavefront (i.e., smooth and with small variance),
whereas using the first-in-first-out order produces a low-
quality wavefront (i.e., very rough and with large variance).

The MMP and ICH algorithms always take the window
with the minimal label at each iteration, resulting in a high-
quality wavefront. However, the overhead required for each
iteration is expensive. Computational results show thatmore
than 60 percent of the time is used for maintaining a priority
queue in the MMP and ICH algorithms. See Fig. 5. On the
other hand, the CH algorithm organizes the windows in an
FIFO queue, leading to a constant time overhead. However,
as its wavefront is of poor quality, the CH algorithm produ-
cesmany useless windows and converges very slowly.

Our idea is to balance the wavefront quality and the
overhead for updating wavefronts. Unlike the MMP/ICH
algorithms that propagate only the window with the small-
est label in each iteration, our method propagates at least K
smallest-label windows at the same time. We propose a
bucket data structure to organize windows so that it takes
only Oð1Þ time to process each window. In addition, K is
adaptive to the wavefront size, and it has a constant upper
bound, leading to an Oðn2Þ worst-case window complexity.
We call our method fast wavefront propagation, which distin-
guishes itself from the existing slow-propagating algorithms
such as MMP and ICH.

4.1 Algorithm
Let s 2 V be the source vertex and p 2 M a point (not
necessarily a mesh vertex) on M. Denote by dðpÞ the geo-
desic distance between s and p. Obviously, dð#Þ is a con-
tinuous function. We partition the polyhedral distance
into equal-length intervals, ½0; lÞ, ½l; 2lÞ, ½2l; 3lÞ, etc. Each
interval is called a bucket, which is used to organize win-
dows. Observe that the maximum range of geodesic dis-
tances in most real-world models1 is Oð

ffiffiffi
n

p
hÞ, where h is

the average edge length. There are Oðn2Þ windows and
each bucket contains roughly OðnÞ windows, so we set
the bucket size l ¼ h=

ffiffiffi
n

p
.

Algorithm 1. Fast Wavefront Propagation Algorithm

Input: a meshM ¼ ðV;E; F Þ and a source point s;
Output: the undiscretized geodesic distance for each vertex;
1: for each edge e facing s do
2: generate a window w for ewith w.birth ¼ & 1;
3: insert_window(w);
4: end for
5: K ¼ P1 ¼ csmall ¼ iter ¼ 0, clarge ¼wavefront_size;
6: whilewavefront_size 6¼ 0 do
7: K + ¼ ðclarge & csmallÞ;
8: K ¼ minðmaxðK; 1Þ, wavefront_size,Kmax);
9: // find the first non-empty bucket
10: while buckets[P1].is_empty() do
11: P1 ++;
12: end while
13: // find Pend so that at leastK smallest-label
14: windows will be propagated
15: Pend ¼ P1, wc ¼ 0;
16: while wc < K do
17: wc +¼ buckets[Pend].Q.size();
18: Pend ++;
19: end while
20: P2 ¼ P1;
21: while P2 ' Pend do
22: //propagate the windows born in early iterations
23: while buckets[P2].top().birth < iter do
24: w ¼ extract_window(P2);
25: propagate w across its adjacent triangle;
26: for each child window bw do
27: if bw.dist() (Pend) l then
28: // bw is in a bucket after Pend

29: clarge ++;
30: else
31: csmall ++;
32: end if
33: bw.birth ¼ iter;
34: insert_window(bw);
35: end for
36: end while
37: P2 ++;
38: end while
39: iter ++;
40: end while

Fig. 5. Maintaining a priority queue (pq) takes roughly 70% of the runtime
of the MMP algorithm. The ICH algorithm has a similar percentage.

Fig. 4. The MMP algorithm maintains a priority queue for the windows,
leading to a high-quality wavefront with standard deviation std ¼
0:00219. Replacing the priority queue by an FIFO queue results in a very
poor and slow-moving wavefront with std ¼ 0:02431. The model has
been scaled to a unit cube.

1. In a few extreme pathological cases, the maximum geodesic range
can reach OðnhÞ. However, our bucket strategy still works well in prac-
tice with l ¼ h=

ffiffiffi
n

p
.

XU ET AL.: FAST WAVEFRONT PROPAGATION (FWP) FOR COMPUTING EXACT GEODESIC DISTANCES ON MESHES 825

Fig. 14. The running time breakdown of the MMP algorithm. Note that the maintenance of priority queue is
the most time-consuming part which occupies around 70% of the running time. The ICH algorithm has a
similar percentage. From [106].

S

(c) (d) (a) (b)

S

A B

C

D
E

F

A
B

C

D

E

S

A B

C
D

E

AR
R'

Figure 6: Triangle-oriented wavefront propagation over a mesh. (a)-(b) Face-sorted wavefront propagation, (c)-(d) Vertex-sorted wavefront
propagation.

Step 2. If j == NULL, finish; otherwise, perform pairwise win-
dow pruning between wi and wj using Case 1, Case 2 and Case 3
in Section 3.
Step 3. If wj is removed from the list in Step 2, set j = j + 1
and goto Step 2. In the event that wi is removed in Step 2, if
i == wl.head, set i = j, j = j + 1 and goto Step 4; otherwise,
set i = i � 1 and goto Step 2. If neither wi nor wj is removed, set
i = j, j = j + 1 and goto Step 4.
Step 4. If j == NULL, finish; otherwise, goto Step 2.

There is a double loop in the above procedure. Index j is associat-
ed with the outer loop and index i is associated with the inner loop.
This procedure is illustrated in Fig 5(c), where it traverses all win-
dows in the outer loop (red arrow) and checks each window against
its preceding windows in the inner loop (black arrow). Its time
complexity is O(m) which will be discussed in the next section.

Checking with vertices During the process of enforcing Rule 2,
for each propagated window on AC, we also apply Case 12 in Fig
3 by checking the window against the distance to vertices (the same
as the filtering rule in ICH [Xin and Wang 2009]).

4.3 Window List Merging

Suppose we already have a window list wll = {wl
0, w

l
1, ..., w

l
m} on

AC, which is propagated from AB. In this subsection, we present
the following procedure to propagate windows from another list
fwl

r
= {w0, w1, ..., wn} from BC to AC, and merge the propa-

gated windows with wll. Meanwhile, we perform window pruning
using Cases 1-6 in Fig 3.

Procedure PrimeMerge(wll,fwl
r
) (Rule 3) consists of the fol-

lowing steps. First, perform one step of propagation for all win-
dows in fwl

r
. Let w0

i be the propagated version of wi. Then, for
each window from w0

0 to w0
n, run the following substeps: (i) ap-

pend it to wll; (ii) set j = wll.tail and i = j � 1; (ii) perform
pairwise checking and window pruning on the updated wll using
Steps 2-4 in Rule 2 except that in Step 2, instead of considering
Cases 1-3 only, we need to check where the two windows are from
and use either Cases 1-3 (if both windows are propagated from the
same edge) or Cases 4-6 (if the two windows are propagated from
two different edges).

We name this procedure PrimeMerge() because it will be used
for merging window lists on an edge for the first time. It is comple-
mentary to SecondMerge() in Section 5.1. The time complexity
of PrimeMerge() is O(m + n), which will be discussed in the
next section. Fig 5(d) shows an illustration of the outer loop (red
arrow) and the inner loop (black arrow) of this procedure.

Order Preservation. A window list wl = {w0, w1, ..., wk} is
spatially coherent if wi.a0 wi+1.a0 for all i = 0, ..., k � 1.

Proposition 4.2. If both wlAB and wlBC are spatially coherent,
the window list wll = wlAB!AC obtained after applying Rule 1
and Rule 2 is also spatially coherent. And the merged list obtained
after applying Rule 3 is still spatially coherent.

The proof of this Proposition is given in Appendix C.

5 Triangle-Oriented Wavefront Propagation
over a Mesh

Our geodesic algorithm takes triangles as the primitive for synchro-
nizing window and distance propagation. All visited triangles form
a single connected region, called the traversed area, over the mesh
surface. The boundary of this traversed area is defined as the prop-
agation wavefront. Our algorithm expands this traversed area in a
continuous Dijkstra style by gradually enclosing unvisited triangles
abutting the traversed area. During each iteration, our algorithm
adds one or more unvisited triangles to the traversed area, and the
wavefront is also updated. Let R and R0 be the existing and ex-
panded traversed area respectively. We denote the region outside
R but inside R0 as �R, which consists of the newly added trian-
gles. In this section, we first present a basic face-sorted propagation
algorithm, and then extend it to vertex-sorted propagation, which
achieves improved performance.

5.1 Face-Sorted Wavefront Propagation

As shown in Fig 6(a) and (b), our face-sorted geodesic algorithm
expands the traversed area one triangle face at a time. Its outline is
given below.

Initialization. Create a single window for every opposite edge of
S in its 1-ring neighborhood (bold blue lines around S in Fig 6(a)),
and push all triangles that are outside the 1-ring neighborhood of S
and that share at least one opposite edge of S to Q. Set D(S) = 0,
D(P) = dist(S, P) if P is a 1-ring neighbor of S, and D(V) =
1 for all other vertices.

Wavefront Propagation.
Step 1. Pop the triangle with the highest priority from Q and add it
to R. This single triangle forms �R.
Step 2. If this triangle has only one edge on the previous wave-
front (�DEF in Fig 6(a)), propagate the window list on DE to
both DF and FE using Rule 1 and Rule 2. Push adjacent triangles
sharing either DF or FE with �DEF into Q and calculate their
priority; if any of these adjacent triangles is already in Q, simply
update its priority.
Step 3. If the popped triangle has two edges on the previous wave-

125:6 • Y. Qin et al.

ACM Trans. Graph., Vol. 35, No. 4, Article 125, Publication Date: July 2016

Fig. 15. Illustration of triangle-oriented growing scheme. The black and red line segments denote the
boundary of the traversed area. The green line segments denote the triangle to be added into the traversed
area. Left: The triangles in vertex A’s 1-ring neighbourhood is adding into the traversed area. The red line
segments become interior edges. Thus, the windows on them are propagated through the traversed area until
they reach the updated boundary edges. Right: R is the traversed area before growing. After growing, ∆R will
be merged into R. From [84].

computational cost of solving quadratic equations. Experimental results show that their algorithm
runs 4-15 times faster than MMP and ICH algorithms, 2-4 times faster than FWP-MMP and FWP-CH
algorithms, and also consumes the least memory, which ranks it as the best performing polyhedral
geodesic algorithm to date.

Remark:Most polyhedral geodesic algorithms aim at solving the SSGD problem, while Bala-
subramanian et al. [6] proposed an algorithm to solve the APGD problem. The main idea of their
algorithm is to build a vertex-to-vertex graph by computing theminimal-geodesic distances between
all pairs of vertices on Σ. The minimal-geodesic distance is the length of the shortest path between
two vertices under the condition that the path contains no intermediate vertices. Then, the shortest
distances between any pair of vertex can be computed by searching the vertex-to-vertex graph using

, Vol. 1, No. 1, Article . Publication date: July 2020.

26 Crane, et al.

standard algorithms like the Dijkstra’s algorithm [35]. To compute the minimal-geodesic distance,
they employed a triangle chain flattening method and proposed to reduce the redundancy through
visibility. However, the overall method is essentially the same as the standard window propagation
algorithms without any pruning. Thus, its practical performance is expected to be much worse
than other state-of-the-art geodesic algorithms. Note that in [6], the runtime of Surazhsky et al.’s
[93] MMP implementation is estimated but not tested by experiments. Thus, the comparison may
be inaccurate.

Shortest Path Construction. All the reviewed methods employed a straightforward backtracing
strategy to construct geodesic paths, thus supporting SSSP, too. In general, there are two related
approaches to answer two queries respectively, which can be easily adapted to all polyhedral
methods:
• Shortest paths to vertices: As Figure 16 shows, for a vertex v ∈ Σ whose shortest distance
is obtained from windoww , let I be the image ofw ’s pseudosource on the plane defined by v
andw . Then, the entering point p on edge e can be computed easily by intersecting vI and
edge e . The entire path can be constructed by backtracing in a similar way. Note that the
image I for each vertex of Σ can be recorded during window propagation and do not require
any extra data structure, which is space-efficient.
• Shortest paths to generic points: As Figure 17 shows, propagated windows must be stored
on edges of Σ as the data structure supporting geodesic path queries to points. For an
interior point p of a triangle, the window containing its shortest path can be computed by
wp = arg minw ∈W ∥p − p ′∥ + D(p ′), whereW is a set containing all windows on the three
edges of the triangle, p ′ is a point inw , D(p ′) is the geodesic distance of p ′. Then, the shortest
path of p can be computed by backtracing from p to p ′ inwp until reaching the source. Note
that this approach can be space-consuming since it requires storing all propagated windows
on edges.Improving Chen and Han’s Algorithm on the Discrete Geodesic Problem • 104:5

s

I
e

[a,b]p

Fig. 5. ‖w‖ = d + minp∈[a,b] ‖I p‖.

The CH algorithm performs window propagation level by level,
rather than from near to far. Since the “by distance” manner is more
compatible with the shortest path problem, maintaining a priority
queue hopefully further optimizes the CH algorithm. Experimental
results in Section 4 suggest maintaining a priority queue does further
improve the CH algorithm greatly in both time and space. In spite
of this, it must be noted that the theoretical asymptotic running
time of the improved algorithm becomes O(n2 log n) and the space
complexity cannot be proved to be still O(n).

3.4 Backtracing a Shortest Path from the Source to
Any Destination Point

At the conclusion of the CH algorithm, the information encoded on
vertices and angles is enough for backtracing the shortest paths to
vertices. Consider a vertex v , whose shortest distance may be given
by either an interval window occupying one of v’s incident angles
or a pseudo-source window occupying one of v’s incident vertices,
say, v ′. If the neighbor vertex v ′ provides the shortest distance, then
the shortest path to v consists of two parts: the shortest path to v ′

and segment v ′v . Otherwise, it is an interval window w on edge
e that provides the shortest distance. According to the source im-
age I encoded in window w and the position of vertex v , we can
easily compute the entering point p on edge e and the entering direc-
tion, which enables us to continue backtracing the shortest path, as
Figure 6 shows. Each shortest path will end with the source vertex s.

However, with some slight modification the information produced
by our algorithm can be used to find the shortest path to a point in
the interior of a triangle, using an idea similar to that proposed
by Surazhsky et al. [2005]. As is shown in Figure 7(a), for point
p ∈ f , they considered all windows on the three edges bounding
the face f , and minimize ‖p − p′‖+ D(p′) over all points p′ within
these windows. After we choose the best window, the backtracing
process can continue in the same way. However, Chen and Han
[1990] suggested throwing away those one-child interval windows
to ensure the O(n) space complexity, making it not informative to
compute the shortest path to a point in a face interior if we only
implement the first phase of the CH algorithm. So we suggest that
the one-child interval windows (useless windows excluded) should
be kept on the corresponding edges. Thus for a destination point
p ∈ f , we can also backtrace the shortest path in the same way.

Although we get different information at the conclusion of the
MMP algorithm and the improved CH algorithm, as Figure 7 shows,
both of the algorithms can be used to backtrace shortest paths to sur-
face points. In fact, for the improved CH algorithm, it is possible that
some directed edges are only partly covered by interval windows,
but the information is still enough to backtrace the shortest path to
any surface point. It is at the expense of more space. The correctness

I

e
v

p

Fig. 6. Backtracing shortest paths to vertices.

is based on two observations: (1) at the conclusion of the original CH
algorithm, each directed edge is covered by a list of interval windows
if we don’t abolish the one-child interval windows; furthermore,
these windows encode all shortest edge sequences; and (2) Theo-
rem 3.2 does nothing but filter out those totally useless windows.

As regards the complexity of backtracing a shortest path, whether
used with the MMP algorithm or the improved CH algorithm,
traversing the windows of a triangle might require O(n) time to
find the distance from a destination point p to the source s. This is
because a triangle, in either algorithm, might have O(n) windows
on its boundary. (Surazhsky et al. [2005] report that most triangles
seem to have O(

√
n) windows on average.) A complete implementa-

tion of either the CH algorithm or the MMP algorithm would give a
data structure that could report the distance from an arbitrary surface
point p to the source s in O(log n) time. But a complete implemen-
tation would probably be impractical and unnecessary. (Here we
must thank an anonymous referee who gave this accurate and acute
observation.)

4. EXPERIMENTAL RESULTS

In this section, we provide some experimental results. Our experi-
ments are made on an HP Compaq dc7800 computer with the fol-
lowing configuration:

—Intel(R) Core(TM)2 Duo CPU;
—E8400 @3.00GHz;
—2.99GHz, 2.98GB of RAM;
—Microsoft Windows XP Professional SP3.

In this research, we compare exact algorithms including

(1) the MMP algorithm [Mitchell et al. 1987] implemented by
Danil Kirsanov, one of the authors of Surazhsky et al. [2005]:
Note that Kirsanov’s code was not used for that paper;

(2) the original CH algorithm [Chen and Han 1990];
(3) the ICH1 algorithm: with the filtering theorem (Theorem 3.2)

to improve the CH algorithm;
(4) the ICH2 algorithm: further maintaining a priority queue.1

1The MMP implementation by Kirsanov is available at the following web-
site:
http://research.microsoft.com/en-us/um/people/hoppe/proj/geodesics/
default.htm
Our implementation of the other three algorithms, including CH, ICH1 and
ICH2, can be freely obtained at:
http://sites.google.com/site/xinshiqing/knowledge-share
We use some typical models as test objects from http://www.cs.
princeton.edu/gfx/proj/sugcon/models/ and http://www-static.cc.gatech.
edu/projects/large models/.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 104, Publication date: August 2009.

Fig. 16. Illustration of backtracing from a vertex of Σ. From [104].

4.1.2 Polyhedral Methods – Approximated. Methods for exactly solving polyhedral geodesic prob-
lems can be time-consuming for large-scale applications. Thus, some methods approximate the
polyhedral distance, which can be applied in scenarios insensitive to accuracy.

To solve the SSGD problem efficiently, Surazhsky et al. [93] proposed an approximated version
of the MMP algorithm to reduce the time and memory costs. This algorithm works just as the MMP
algorithm. The only difference is that: in the approximated version, the algorithm tries to merge a

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 27104:6 • S.-Q. Xin and G.-J. Wang

w2 w3
w4

w
5

w6

w11

w10

w9

w8

w13

w14

w15

w16

w1 w7

w12

p

I

s

(a) At the conclusion of the MMP algorithm, each

directed edge is covered by a list of disjoint interval
windows.

No w
ind

ow
 en

ter
ing

 fro
m he

re

w2 w3 w4 w
5

w6

w11

w10

w9

w8

w13

w1 w7

w12

p

I

s

(b) At the conclusion of the improved CH algorithm, it is

possible that some edges are only partly covered by interval
windows.

Fig. 7. Backtracing shortest paths to a surface point.

Fig. 8. Test models.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 104, Publication date: August 2009.

Fig. 17. Illustration of backtracing from a point of Σ. In this scenario, propagated windows are required to be
stored on edges. However, they can be organized in different ways. Left: windows on edges are trimmed into
non-overlapping ones as the MMP algorithm do [93]. Right: redundant windows on edges are filtered as the
ICH, VTP algorithms do [84, 104]. The remaining windows may overlap with each other. From [104].

x

y

0 q′
0 q′

1

s′
s0

s1

x

y

0 q′
0 q′

1

s′
s0

s1

γ

γ

V

(b)
Figure 8: (a) Merging two windows into one such that the visibility
region is not reduced. (b) Selecting the pseudosource for the new
window. The visibility constraint V corresponds to the yellow region
while the constraints of (4.3) define the pink region.

∆D(p) (actually, the relative local error ∆D(p)/D(p)) by a frac-
tion of the global error tolerance. We set this fraction to be 10% in
all our experiments, although ideally this value should depend on
the size of the mesh. Thanks to this heuristic, we are able to satisfy
the global error bound using significantly fewer windows overall.

Monotonicity: We must be careful that the distance function over
the edge is not smaller than the distance function over the parent
windows from which it was propagated, where correspondence is
defined by the propagation method. However, it is difficult to ana-
lytically check this property in practice. When we do not check this,
loops in window propagation are possible. Because we maintain
consistency of the source direction τ , our algorithm cannot produce
any “bouncing” infinite loops, propagating back and forth between
two adjacent edges. It is conceivable, though, that more exotic in-
finite loops could occur. Of course, we could explicitly maintain
a directed graph representing the propagation evolution, explicitly
check for loops in this graph, and disallow any attempted propaga-
tion steps that would complete a loop. In practice, we have never
encountered such loops in any of our experiments, and so we do not
explicitly perform these checks.

4.2 Finding the merged window pseudosource
We attempt to find a pseudosource position for the merged window
that satisfies all the constraints of the previous section.

Denote the two adjacent windows wi, with pseudosources si, for
i = 0, 1. Using the same local coordinate frame used previously,
the merged window w′ will have two endpoints q′

i ≡ (b′
i, 0). Our

goal is to find a new pseudosource s′ = (s′
x, s′

y) and pseudosource
distance σ′ for the merged window that satisfy the following con-
straints.

To maintain continuity, we require that the geodesic distances at its
endpoints Di ≡ D(q′

i) = ‖si − q′
i‖ + σi are preserved by the

merge. This can be expressed as

(s′
x − b′

i)
2 + s′

y
2

= (Di − σ′)2.

It follows that

σ′ = αs′
x + β; (4.1)

s′
y
2

= As′
x
2

+ Bs′
x + C, (4.2)

with A = α2 − 1, B = 2α(β − D0) + 2b′
0, C = (D0 − β)2 − b′2

0 ,
α = (b′

1 − b′
0)/(D1 −D0), β = (b′2

0 − b′2
1 −D2

0 +D2
1)/(2(D1 −D0)).

This constrains s′ to lie on a conic curve γ.

To maintain directionality, we must impose the inequality s′
y ≥ 0.

To satisfy the visibility constraint we require our solution to lie in-
side the sector between the two lines Li, i=0, 1 that pass through
the q′

i to si (Figure 8(b)). (If the intersection point of Li has posi-
tive y-coordinate, then the allowed region V is a triangle. Otherwise
V is open.)

To constrain σ′ and the d′
i to be non-negative we add the inequali-

ties σ′ ≥ 0, ‖q′
i − s′‖ = Di − σ′ ≥ 0. It follows from (4.1) that

these inequalities are equivalent to:
{

− β
α

≤ s′
x ≤ D0−β

α
, if α > 0,

D0−β
α

≤ s′
x ≤ − β

α
, if α < 0.

(4.3)

If all the above constraints are not simultaneously satisfiable we dis-
allow the merge. Otherwise we pick the s′ with minimal σ′ value.
This must occur when one of our inequality constraints is “tight”.

4.3 Backtracing
The geodesic path for our approximation algorithm is traced sim-
ilarly to the algorithm in Section 3.5 but with one essential differ-
ence. When window w is the result of merging two original win-
dows, its pseudosource position is different from the pseudosource
positions of those original windows. If we were to trace back in the
direction of the merged pseudosource, the resulting path would be
different from that represented in the forward propagation, and its
overall length might exceed the computed error bound.

Our approach is to obtain the original pre-merge pseudosource by
maintaining a list of references to the windows that were succes-
sively merged into w (together with their endpoints). The average
length of these lists is only about 2 in all our experiments. Another
benefit of using the correct pseudosource is that we can trivially
guarantee that the source will be reached without any loops.

5 Exact geodesic between two vertices
Our goal is to find the geodesic path between a source vertex vs

and a target vertex vt on the mesh. Note that it is inefficient to run
our exact algorithm on the entire mesh (or even until reaching vt).
In this section we present an algorithm that performs a sequence of
pruned searches, exploiting progressively tighter lower and upper
bounds on geodesic distance, so that the final, exact algorithm need
only be run on a “thin” region surrounding the solution.

Our approach can be seen as a “continuous A* search”, in that
it adapts the traditional edge-based A* algorithm [Pohl 1971] to
meshes. A similar pruning approach is also explored in [Floater
et al. 2002] although their scheme lacks true distance bounds.

Denote by Pst the geodesic path between vs and vt. Let Ds(p) and
Dt(p) be the geodesic distances from point p to vs and vt respec-
tively, and let Dst = Ds(t) = Dt(s) be the length of Pst. Then, it
is obvious that any point p on Pst satisfies Ds(p) + Dt(p) = Dst.

If Ls(p) and Lt(p) are lower-bound functions of Ds(p) and Dt(p)
respectively, and Ust is an upper-bound value for Dst, then any
point p on Pst also satisfies

Ls(p) + Lt(p) ≤ Ust. (5.1)

This inequality is the core of the following algorithm:

Step 1: Using Dijkstra search on edges only, compute an upper-
bound distance Ust(Dijkstra) by searching from vs until vt is
reached. This step is made almost twice as fast using a bidirec-
tional search, which runs two simultaneous Dijkstra searches from
vs and vt until they both retire a common vertex.

Step 2: Start our approximation search (Section 4) from vt until vs

is reached, which computes a lower-bound distance function Lt(·).
During the search, we use the inequality (5.1) to prune the search by
only propagating windows that have at least one point p satisfying

Lt(p) + ‖p, vs‖ ≤ Ust(Dijkstra),

where ‖·, ·‖ measures Euclidean distance (not on the mesh) and is
therefore a trivial lower bound on Ds(p).

Step 3: Using the windows provided by the previous step, ap-
ply backtracing (Section 4.3) to form a path from vs back to vt.

Fig. 18. Merging two windows into a new window. s ′ is the pseudosource of the new window, which covers
the visible regions of both merged windows. From [93]

window with adjacent windows on the same edge before every propagation step (Figure 18). To
make sure that the merged window is valid and with bounded error, the two windows to be merged
must satisfy five conditions:

• Directionality. The two windows must have the same propagation direction with respect
to the edge.
• Visibility. To guarantee that the approximated distance field have no gaps, the new window
must cover the visible regions of the merged windows.
• Continuity. The distance field along an edge must be continuous. Thus, the distances at the
endpoints of the new window must be the same as the corresponding ones of the merged
windows.
• Accuracy. The algorithm bounds the local error of each merging step by a user-specified
threshold.

, Vol. 1, No. 1, Article . Publication date: July 2020.

28 Crane, et al.

• Monotonicity. To guarantee the algorithm’s termination, the new window must have larger
distances than themergedwindows. However, the authors did not encounter any infinite loops
in practice and thus they did not perform the corresponding checks in their implementation.

In their experiments, the local error threshold is set to be 10%. The test results show that the
merging operation is very effective and reduces the WPE (Window Per Edge) to a low number
slightly larger than 1. Thanks to it, their approximated MMP algorithm runs in O(n logn) time and
outperforms the Fast Marching method [51] (see Section 3) in both running time and accuracy.
To solve the APGD problem efficiently, Xin et al. [105] proposed an algorithm which uses the

ICH algorithm [104] as a subroutine. The main idea is to embed pre-computed geodesic triangles
in R2 so that the geodesic distance between two points can be approximated by the Euclidean
distance. Their algorithm contains two steps:
• Pre-processing step. In this step,m points are first sampled on Σ. Then, the ICH algorithm
[104] is used to compute the geodesic distance field on Σ with the m samples as sources.
Utilizing the computed distance field, Delaunay triangulation is applied on Σ according to
polyhedral geodesic metric (Figure 19). Finally, the distances between each pair of them
sample points, together with the distances between each mesh vertex and the vertices of the
geodesic triangle containing it, are saved for later use.
• Query step. For any two points on Σ, the two geodesic triangles containing them are first
found. Then, the two triangles together with the two points are unfolded onto R2 while
preserving the geodesic edge lengths. After the unfolding, the geodesic distance between the
two points is computed as the Euclidean distance between them.

From the time cost of the ICH algorithm, it can be easily concluded that the pre-processing
step consumes O(mn2 logn) time. After it, the distance query between any two points on Σ can be
answered in O(1) time. Intuitively, there is a trade-off between accuracy and computational cost in
this algorithm. That is, the more sample points, the slower the pre-processing and the larger the
space requirements, but more accurate.

Shortest Path Construction. The approximate MMP algorithm [93] employed a similar backtracing
strategy as the original MMP method with only one key difference. Since the windows in it are
merged, the positions of their pseudosources are inaccurate hence not eligible for backtracing. Thus,
the authors proposed to maintain a list of the successively merged windows and use the original
pseudosources for backtracing, which yields a more accurate result. Xin et al. [105] employed a
quite different strategy to construct shortest paths: since the data structure of their method contains
only geodesic distances but not windows, they are only equipped with an approximated shortest
distance field. Thus, they proposed to construct shortest paths using a gradient descent strategy
similar to the ones used in [28, 51] (see Section 3).

4.1.3 Graph-based Methods. Graph-based methods rely on the assumption that the shortest ge-
odesic distance/path between any pair of points ps and pt can be approximated with a chain of
shortest distances/paths (ps ,v0, . . . ,vk ,pt), where v0, . . . ,vk belong to a finite set VG of points of
S such that the shortest distance/path between pairs of points of VG is precomputed and encoded
in the edges EG of a graphG = (VG ,EG). Methods differ for the choice of points of VG end edges of
EG and the strategy to build graph G. Once G is given, the PPGP and SSGD problems are easily
resolved through shortest path queries onG, most frequently with standard Dijkstra search [35].
Several methods in this class provide data structures that can also support efficient solutions to
SSSP or APGD/APSP.
The quest for graph-based methods probably started with the PhD thesis of Lanthier [54]. The

bottom line comes from the observation that the shortest geodesic path between a pair of vertices

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 29

(a) (b) (c) (d) (e)

Figure 2: Algorithm pipeline. Given the input mesh M , we first sample m points distributed uniformly on M (see (a)); Then taking the
sample points as sources, we compute the geodesic distance field on M (see (b)) and construct an approximate Delaunay triangulation (see
(c)), which induces a geodesic triangulation by replacing each Delaunay edge with a geodesic (see (d)). Next, the exact geodesic distances
between any pair of sample points are saved in a file. Finally, with the pre-computed geodesic distance file, we can approximate the geodesic
distance between any pair of query points in constant time O(1) and find the corresponding geodesic path in linear time O(k), where k is
the number of edges crossed by the path (see (e)).

Algorithmic pipeline. Our algorithm contains two steps, the pre-
processing step and the query step, as shown in Figure 2.

The pre-processing step first samples the given surface with m
points, where m is specified by the user (see (a)) and then computes
the geodesic distance fields with the samples as sources (see (b)),
which induces a Delaunay triangulation (see (c)). Next, the Delau-
nay triangulation edges are replaced by geodesics (see (d)). Finally,
we save two kinds of exact geodesic distances into a file, i.e., the
distances between any pair of sample points, and the distances be-
tween each mesh vertex and the three vertices of the geodesic tri-
angle containing it. The pre-processing step takes O(mn2 log n)
time and outputs a file of size O(m2 + n).

In the query step, given two query points q1 and q2 on the surface,
we first find the geodesic triangles containing them, say T1 and T2

(see (e)). Then, we unfold the geodesic triangles T1 and T2 to R2

such that the Euclidean side lengths coincide with the geodesic dis-
tances of the curved geodesic triangle. The query points q1 and q2

are also mapped to R2 using unfolding operations. The 2D images
are denoted by q

′
1 and q

′
2, respectively. Finally, the geodesic dis-

tance between q1 and q2 is approximated by the Euclidean distance
between q

′
1 and q

′
2. Note that this approximation can be done in

constant time O(1) as unfolding is a simple and local operation.

4 Pre-processing
4.1 Constructing geodesic triangulation

As shown in Sec. 5.3, the approximation error is closely relat-
ed to the maximal side length of geodesic triangles. Thus, an
isotropic sampling, which induces geodesic triangulation of sim-
ilar sizes, is desired. In this paper, we adopt a variant of the
farthest point sampling method [Peyré and Cohen 2006], which it-
eratively updates the sampling set with the farthest point to the
existing sample points. The difference is that we use the im-
proved CH algorithm [Xin and Wang 2009] rather than the fast
marching method [Kimmel and Sethian 1998] for geodesic dis-
tance computation. The time complexity for sampling m points
is

∑m
i=1 f(n

i
) = O(n2 log n), where f(x) = O(x2 log x).

Taking m sample points as source points, we compute the
multi-source geodesic distance field using [Xin and Wang 2009],
then construct an approximate Delaunay triangulation using
[Xin and Wang 2010]. It is shown that the resultant Delaunay tri-
angulation is well defined in the sense that all the Delaunay edges

do not intersect [Xin and Wang 2010] under moderate condition.
However, the edges are not “straight” in general. Finally, we need
to replace each curved Delaunay edge with a geodesic path.

Note that it takes O(mn2 log n) time to run the exact geodesic
algorithm [Xin and Wang 2009] with each sample point as source
point. Also, it takes O(n) time to replace each curved Delaunay
edge with a geodesic. Considering the number of edges in the De-
launay triangulation is O(m), the time complexity for constructing
geodesic triangulation is O(mn2 log n).

4.2 Generating geodesic distance file

After constructing the geodesic triangulation, we are ready to gen-
erate a file containing the following information, which will be used
our all-pairs geodesic distance query algorithm.

• The exact geodesic distances between any pair of sample
points.

• For each vertex v, output the geodesic triangle △s1s2s3

containing v and the exact geodesic distances d(v, si), i =
1, 2, 3.

Note that all the required geodesic distances are readily available
when we constructed the geodesic triangulation in the previous step.

Putting them all together, the entire pre-processing takes
O(mn2 log n) time and outputs a file of size O(m2 + n).

5 All-Pairs Geodesic Distance Query

5.1 Unfolding geodesic triangles

We first present two simple unfolding operations that play key roles
in our constant-time query algorithm. Observing that geodesic dis-
tances follow triangle inequality, thus, we can flatten the curved
geodesic triangle to a unique triangle (up to rigid motion) in R2.

Given two curved geodesic triangles △psr and △qrs, we can un-
fold them to 2D triangles △p′s′r′ and △q′r′s′, where the corre-
sponding Euclidean edge lengths are equal to those of the geodesic
edges. Let u(p, q|rs) denote such unfolding operation with respect
to edge rs. We call it one-side unfolding if p and q are on the same
side of rs and two-side unfolding, otherwise (see Figure 3(a)).

33

Fig. 19. The Delaunay triangulation of a mesh according to polyhedral geodesic metric. From [105]

Fig. 20. A shortest path (black line) and a corresponding distance field (color map) computed on the edge
graph (left); and the exact solution (right). From [19].

of mesh Σ can be approximated by a shortest path on the graph of edges of Σ. This approximation,
however, turns out to be poor. In fact, such a path is not allowed to cross the faces of Σ, while it is

, Vol. 1, No. 1, Article . Publication date: July 2020.

30 Crane, et al.

Fig. 21. The face graph of a triangle for the fixed scheme with two Steiner points per edge (left). The portion
of shortest path ab crossing triangleW fi is approximated with edge cd of EG (right). From [56].

forced to meander about their boundaries, thus resulting in a zigzag walk that most of the times
is far more wiggly than the exact geodesic path (see Figure 20 for an example). Starting at this
observation, Lanthier et al. [55, 56] present three strategies to extend the edge graph to a graph G
that incorporates paths across the faces of Σ. They build the set of nodes VG by distributing Steiner
points along the edges of Σ, and interconnect them with arcs EG that walk either along edges, or
across faces:

• The fixed scheme distributes a fixed number of Steiner points uniformly along each edge
and defines VG as the union of all the vertices of Σ and all the Steiner points. Next, for each
triangle t , it interconnects all the vertices and Steiner points on the boundary of t to form
a so-called face graph, which connects each node (either a vertex or a Steiner point) with
all the nodes belonging to the other two edges of t and to its two neighbors along the edge
it belongs to. In practice, the face graph of t is a complete graph, except for omitting arcs
between collinear nodes that are not immediately adjacent along edges of t (see Figure 21
left). GraphG is then obtained by collecting all the face graphs. Now we known that an exact
polyhedral geodesic path is a polyline having its nodes at either vertices or edges of Σ [71].
The segment ab of one such path traversing a given triangle t is approximated by an edge cd
in the face graph of t , where c and d are the closest nodes in the face graph of t along the
edges that contain a and b, respectively (see Figure 21 right).
• The interval scheme is similar to the previous one, but Steiner points are distributed at
uniform distance along each edge, so that the number of Steiner points per edge depends
on edge length. Lanthier at al. show that this scheme can achieve the same accurcay of the
previous one with a smaller number of Steiner points, i.e., a more compact graph G (see
Figure 22).
• The spanner scheme uses the same Steiner points as the interval scheme, but it builds a more
sparse graphG . Instead of connecting each node v in the face graph to all other visible nodes
in the triangle, a predefined set of cones of given width is considered, which emanate from v ,
and v is connected to at most one other node per cone (see Figure 23). In this way, graphG is
guaranteed to have a number of arcs that is at most a fixed multiple of |VG |.

In all schemes, shortest paths are computed by a Dijkstra search on G: SSGD can be resolved
with a complete visit of G, while for PPGP search can be pruned as soon as distance at the target
point becomes definite. SSSP is supported by recording during search the predecessor of each node

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 31

Fig. 22. Approximated paths computer with the fixed scheme (left) and the interval scheme (right): π (s, t) is
the shortest geodesic path, π ′(s, t) is the approximated path. From [56].

Fig. 23. Spanner edges from point vj (thick red lines) for cones of width 30◦; thin red lines bound cones.
From [56].

in the path to the source: in this way, shortest paths can be retrieved by back-tracing from any
vertex to the source.

Lanthier et al. [56] prove that if the number of Steiner points is large enough, they can approximate
the geodesic shortest path within an additive bound that is a function of the length of the longest
edge in Σ. The interval scheme results more accurate, while the spanner scheme results more
compact and faster, at the cost of some loss in accuracy. Theoretical bounds are conservative,
though, and reasonable bounds can be guaranteed only with a very large number of Steiner points,
which is impractical for the applications. On the other hand, they perform extensive testing of the
different schemes on polyhedral terrains and provide empirical evidence that very accurate results
are achieved with just an average of 5-6 Steiner points per edge. More recent comparative tests given
in [19] suggest that the situation may be less favorable if the distance metric is anisotropic: in that
case, they report the need of 10-20 Steiner points per edge on average to achieve accurate results.
Nevertheless, Lanthier’s techniques remain a reference in the context of graph-based methods,
because they join practical effectiveness to ease of implementation.
In [70], Mata and Mitchell propose a scheme that is similar in spirit to the spanner scheme of

Lanthier. Differently from Lanthier, they do not add Steiner points, but they enrich the edge graph

, Vol. 1, No. 1, Article . Publication date: July 2020.

32 Crane, et al.

Fig. 24. A cone determined by two rays (continuous paths) from v is split at u; the path from v to u (dashed)
is added as an edge in graph G. From [70].

of Σ with new arcs connecting vertices of V , in such a way that for each vertex v of Σ a rather
uniform set of directions radially arranged about v is explored. They build k equally spaced cones
aboutv and they propagate the boundaries of such cones according to an exact polyhedral geodesic
tracing (e.g., as in MMP). Propagation is stopped as soon as the two boundaries of a cone intersect
different edges of Σ: this means that there exist a vertex u within the cone, which splits it into two;
then they determine the shortest path between v and u and add it as an edge to EG . See Figure 24.
Note that in this case an edge of EG is not a simple line segment but rather a polyline. Shortest
paths in G are computed through Dijkstra, as in Lanthier’s method.
Following the same line of Lanthier’s approach, Aleksandrov et al. [3, 4] proposed different

techniques to sample Steiner points on edges in geometric progression (i.e., more dense close to the
vertices and coarser towards the mid edge). The density – hence the number – of sampled points
depends on a user specified parameter ϵ and they guarantee that the length of the approximated
paths is within a factor (1 + ϵ) of the shortest geodesic path. The same authors, in [5], propose
a different strategy that samples Steiner points along the bisectors of triangles, rather than on
triangle edges, with a similar geometric progression. They show that this strategy achieves the
same (1 + ϵ) approximation factor with a better time complexity.
The results in [3–5, 70] have mostly a theoretical interest, as the number of Steiner vertices

necessary to warrant a small ϵ is too large for practical purposes. Unfortunately, no experimental
results were provided to show whether the sampling techniques proposed in such works can
provide better results than the original Lanthier’s techniques in practice.

Schmidt et al. [90] build a discrete exponential map (DEM) approximation in order to parametrize
normal patches of surface. In the context of the problems we analyze here, they are interested
in resolving SSGD (not SSSP) within the limited scope of a normal neighborhood of the source.
In order to estimate geodesic distances, they rely solely on the edge graph of Σ. Once a shortest
path from source p to a generic vertex v has been found in the edge graph, they consider edges
in the path as displacement vectors and they use parallel transport to bring all such vectors to a

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 33

Fig. 25. The normal coordinates up,q of the unknown radial geodesic from p to q in (a) can be approximated
using the known geodesics from p to r and r to q. The vector to ur,q (in normal coordinates at r) is transferred
to the tangent plane at p using a 2D rotation with angle θp,r , producing the red vector in (b). This vector is
an approximation to (up,q − up,r) and can be added to up,r (c) to get the approximate result ûp,q . From [90].

Fig. 26. The DEM with origin at the center of the checkerboard is computed on different discretizations of
the sphere (below); sampling rate and mesh quality have small effects on this decal. From [90].

common frame. Parallel transport is implemented with a pair of rotations that align local frames at
the vertices along the path. See Figure 25. Next they estimate the geodesic distance between p and
v as the length of the vectorial sum of all such displacements. The length and orientation of the
resulting vector in fact provide the polar coordinates of v in the DEM centered at p. In practice,
this mechanism attempts to “straighten" the wiggly path from the edge graph. Note that, however,
they do not compute the straightened path, but only estimate its length. No theoretical analysis of
accuracy is provided in [90], but empirical tests show good results and resiliency to the quality of
meshing on reasonably smooth shapes. See Figure 26.

, Vol. 1, No. 1, Article . Publication date: July 2020.

34 Crane, et al.

Fig. 27. Unfolding of edge chains to the plane. Edge lengths and relative 1-ring angles are preserved. The
sum vector E (red) is then subdivided according to the orthoprojection of the individual edges. The resulting
portions are measured by the respective norms ? here visualized as tensor ellipses (blue) ? and their lengths
summed to get the weight of E. From [19].

Campen et al. [19] elaborate on the same approach in the presence of an anisotropic metric,
aiming at a method to resolve SSGD on the whole surface. They start from the observation that the
straightened distance from a path in the edge graph introduces a shortcut that cannot take into
account either the presence of holes (boundaries) in the domain, or geometric variations of the
surface (bumps). Hence, the straightening approach by Schmidt et al. cannot be accurate outside
a normal neighborhood. In order to overcome this limitation, they propose a Short-Term Vector
Dijkstra algorithm (STVD) that applies shortcuts locally in the context of a standard Dijkstra search
in the edge graph. During the relax phase of Dijkstra algorithm, distance from source s to vertex
w is updated by taking the minimum between the distances of each of the k predecessors of w
along the path, summed to the shortcut, computed by edge unfolding, fromw to that predecessor.
In practice, the vector shortcut of Schmidt et al. is applied just locally, on a sliding window of
length k that moves along the path. Values of k in the range between 5 and 10 are reported in the
experiments, with higher values used for higher anisotropies of the input metric. Shortcuts are
computed with a technique different from [90]: the edge path is unfolded to the plane by preserving
the length of edges, while mapping the angles between pairs of consecutive edges according to
the exponential map at the common vertex, computed as in Fig. ??. Note that this procedure is
fully intrinsic, as the rescaling of angles depends only on the total angle about each vertex in Σ.
The length of a shortcut is measured by the Euclidean distance between the source and the target
in the unfolded path. In the presence of anisotropic distance, that shortcut may be segmented in
order to apply different weights in the segments corresponding to different edges. See Figure 27.
Campen et al. [19] compare this approach on a single example with anisotropic metric, with respect
to several other methods, among which FMM, HM, OUM, and Lanthier’s, by taking as reference a
solution computed with Lanthier’s method with 200 Steiner vertices per edge (which is assumed to
be nearly exact). They report that only Lanthier’s with 10-20 Steiner points per edge beats STDV
in terms of accuracy. They also comment that the advantage of STDV is much less evident for
an isotropic metric; in particular, they report that for low anisotropies, the FMM applied to the
intrinsic Delaunay triangulation of a subdivided version of the input mesh is very competitive; no
experiment is shown for this case.

Ying et al. [108] start from a basic fact stated in [71]: each exact (polyhedral) geodesic path is a
polyline having its internal joints either on edges, or at saddle vertices of Σ (a saddle vertex is a
vertex having negative Gaussian curvature K - see Section 2.2). A path is said to be direct if it does
not contain any intermediate saddle vertex. On the basis of this observation, they build the Saddle
Vertex Graph (SVG) G having the vertices of Σ as set of nodes VG , and one arc in EG for any direct

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 35

path between a pair of vertices. Note that each arc in EG is not a single line segment but a polygonal
path. Such paths need not be stored as they can be back-traced by unfolding triangles starting at
the destination: only a starting direction per edge needs to be stored. If the SVG contains all direct
paths, then the exact shortest geodesic path between any pair of vertices can be found as a shortest
path on the SVG. In this respect, the SVG can be considered a data structure to support the APSP
problem, as well as all the other boundary problems. In principle, the SVG could be a complete
graph though (hence intractable in the applications, at least on large meshes). Ying et al. show
empirically that real world models contain a large fraction of saddle vertices (between 40% and
60%) and most paths (91% − 99.9%) are not direct. Nevertheless, a full SVG may still be too large for
practical purposes. Ying et al. overcome this limitation by computing a sparsified SVG as follows:
for each vertex v they consider only a geodesic disc containing K other vertices and only direct
paths to such vertices contribute to the SVG. In this way, K is the maximum degree of nodes in G.
The SVG is built by running an exact method (ICH/MMP) from each vertex, pruning the search as
soon as the first K vertices have finalized their distance. Variations of Dijkstra search are discussed
in the paper, which resolve different boundary problems after the SVG has been built. They run
experiments with values of K between 8 and 1000 and they report the mean approximation error
of shortest paths from SVG to be about 0.1% for K = 50. The construction of the SVG can be
quite time expensive for high values of K , but they can achieve reasonable times by using a GPU
implementation that computes independently in parallel paths starting at different sources, by
sharing just the mesh in read-only mode among the different threads. Concerning query times,
Ying et al. compare SVG search with the heat method (with pre-conditioned matrix): they report
that the SVG is faster for K < 100, comparable for 100 < K < 500 and slower, but more accurate,
for larger values of K ; they also observe that the SVG is better scalable to large meshes. They also
compare SVG to the GTU method [105], reporting that SVG is faster and requires less memory; no
comparison about accuracy is reported.

Fig. 28. Window propagation in the exact method (left) and in the construction of DGG (right): windowW2
is small enough to stop propagation and allow the path from s to any vertex t in the cone beyondW2 to travel
through vertex u. From [99].

Wang et al. [99] define the Discrete Geodesic Graph DGG, which improves over the SVG by
allowing approximated paths to go also through non-saddle vertices. They start from the key
observation that cones resulting from window propagation in the exact MMP/CH method become
progressively narrower. If a cone is long enough, than any direct path from the source s to a vertex
t in the cone can be approximated by the sum of two shortest paths su and ut , where u is a vertex
preceding t and lying on the boundary of the cone. See figure 28. In particular, they show that if
the geodesic distance between s and t is larger than a certain threshold, which depends on the
parameters defining a windowW that bounds the cone and on a tolerance threshold ϵ , then the

, Vol. 1, No. 1, Article . Publication date: July 2020.

36 Crane, et al.

approximation error is within a (1 + ϵ) multiplicative factor. So, while generating direct paths as in
the SVG, they set an early termination of window propagation when the length of the cone reaches
the above threshold. Note that a direct path may be eventually approximated with a chain of paths
through non-saddle vertices, therefore the approximation rate of a generic path extracted from
the DGG will not be within (1 + ϵ), but it remains O(ϵ) in any case. The DGG is built through two
fundamental steps, for which detailed pseudo-code is provided in [99]: first the standard MMP
window propagation, with early termination as described above, is run from all vertices; an arc in
the DGG is generated for each vertex reached by a window; next, the resulting set of candidate arcs
is pruned by deleting all arcs that can be approximated with sequences of other arcs in the graph
within the given tolerance; this latter step is performed by running a standard Dijkstra search
from each vertex. For anisotropic meshes, in which the fan of arcs incident at some vertices might
have gaps, an additional step is run to generate additional arcs (see [99] for details). Shortest path
queries on the DGG are resolved with a SLF/LLL heuristic [11], combined with a technique that
restricts the neighbors to visit during the relax phase, based on the fact that the angle between
consecutive edges in a shortest path cannot be smaller than π − arcsin

√
ϵ (see [99] for details). The

latter pruning technique is reminiscent of an analogous technique presented in [4], based on Snell’s
law, for the case of weighted distances. Extensive experiments are presented in [99] on meshes
up to 3M vertices and with accuracies up to ϵ = 0.001%; they make extensive comparison with
the SVG: DGG beats it in terms of space occupancy, construction time, query time and accuracy,
thus resulting globally better on all experiments. They also compare to other methods, including
HM on an intrinsic Delaunay triangulation and FWP, which is taken as a reference: DGG beats all
such methods in terms of time performance and all approximated methods in terms of accuracy,
resulting the best graph-based algorithm to date.

Aiello et al. [2] adopt a hierarchical approach to support the computation of geodesic distances
(not explicit paths) between any pair of vertices. Similarly to SVG and DGG, they aim at building a
graph that contains many shortcuts between far vertices. They start from a hierarchical partition
of the surface into patches: the uppermost level of the hierarchy is a Voronoi partition of the input
shape, and each lower level is formed by Voronoi partitions of the patches in their upper level.
Then a hierarchical graph is built, which contains all shortcuts among vertices on the boundary
of each patch (i.e., one complete graph of boundary vertices per patch) and a complete graph per
patch only at the lowest level of the hierarchy (i.e., both boundary and internal vertices of the patch
are connected via shortcuts). The shortcuts in the graph are computed with an exact method (in
the ICH/MMP family). The distance between a pair of vertices is found by a Dijkstra search that
is pruned by visiting the graph in a hierarchical manner: search starts from the patch containing
the source at the lowest level of the hierarchy, until it meet its boundary; then it traverses either
its sibling patch beyond the boundary, or shortcuts from patches in the upper levels, until a patch
containing the target is found; the path is concluded by moving down the hierarchy until the
patch at the lowest level, which contains the target, is found. See [2] for details. The authors report
quite slow preprocessing times for building the graph, but fast performances and empirically good
approximations during queries.

4.2 Local Methods
Local methods start from an initial path connecting two endpoints and aim to refine it to a geodesic
path. These methods are usually iterative, and work either updating one vertex at a time (Sec. 4.2.2)
or the whole path at each iteration (Sec. 4.2.3). Point-to-point problems of this kind (PPGP) could
in principle be solved as a byproduct of global methods that strive for SSGP (Sec. 4.1). Nevertheless,
there is a number of algorithms that are specifically tailored for it. One good reason to prefer
local methods to compute PPGP is that they are in general faster, easier to code, and require less

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 37

memory due to the smaller domain they consider. On the negative side, they only converge to a
local minimum, producing a locally optimal geodesic path at best. It follows that their ability to find
the global optimum depends on the initialization, which may come from the Dijkstra’s algorithm,
from heuristics, or from user interaction.
For all methods, the input is a polyhedral mesh and a piece-wise linear path P = p0,p1, . . . ,pn

connecting a source p0 with a destination pn . The computational domain amounts to all the mesh
vertices, edges and faces traversed by P . The scalability of local methods does not depend on mesh
size, but rather on the number of elements traversed by P , which in turn depends on its length and
the local mesh density. A particular instance of the problem occurs when source and destination
coincide (i.e., the path is a closed loop). Most of the local methods natively support this special case,
but there are also methods which are specifically designed to shrink closed loops on a mesh [102].
Shrinking loops is useful in a number of scenarios, for example to refine previously computed
homology bases or the set of handles and loops of a mesh (see [32] and references therein).

4.2.1 Local assessment of discrete geodesic paths. Key to many methods is the ability to locally
assess whether a path is a geodesic or not. To this end, the most important thing to remember is
that while in the continuous the concepts of straightest and shortest paths coincide, in the discrete
setting the two concepts are not always equivalent (Sec. 2.2.1). Polthier and Schmies [81] observed
that a path passing through a vertex p divides its total angle θ into two components (θl and θr) and
defined geodesic paths in terms of these quantities (Fig. 29). In particular, they state that a path is:

- locally straightest, if θl = θr
- locally shortest, if θl ≥ π and θr ≥ π

One can easily observe that if the path traverses a flat area or an edge (i.e., if θ is 2π) the two
definitions above are equivalent, hence the parallel with the smooth theory still holds. Considering
non euclidean vertices, we obtain that: (i) a straightest path passing through a spherical vertex
cannot be locally shortest (if θl + θr < 2π , then θl and θr cannot be both greater or equal than π);
(ii) there are infinite shortest paths passing through a hyperbolic vertex (any solution of θl +θr = θ ,
with θl ≥ π and θr ≥ π defines a shortest path). Motivated by the problems of non existence
and non uniqueness of locally shortest paths, Polthier and Schmies advocate the use of locally
straightest paths as a way to trace geodesics on discrete surfaces, and propose both Euler and
Runge-Kutta integration schemes based on them [81, 82]. The beauty of locally straightest geodesics
is that they exist and are uniquely defined at any point of a polyhedral mesh. However, there is a
price to pay for this. In particular, it must be observed that straightest geodesics do not converge
to geodesic paths on smooth surfaces under mesh refinement [53, 58], and that locally straightest
distances do not satisfy the triangular inequality, therefore the straightest geodesic distance is not a
metric [61]. Last but not least, we remind the reader that these local geodesic criteria apply only to
the Euclidean embedding, and do not extend to alternative metrics (e.g., weighted or anisotropic),
thus limiting the applicability of the algorithms that are based on them.

4.2.2 Iterative point update. Early methods to transform a general path into a geodesic path are
heavily based on the local geodesic criteria introduced in Sec. 4.2.1. Given a path P = p0,p1, . . . ,pn ,
these methods work by iteratively flattening the mesh around each point pi , and updating its
position in order to locally straighten or shorten the path. The whole procedure is repeated until
convergence, that is, until each point locally satisfies its geodesic criterion. Since at each iteration
only one point is updated, these methods tend to require a high number of iterations to reach
convergence. However, the computational cost of each iteration is usually low, as both the local
flattening and the vertex update do not involve time consuming operations.

, Vol. 1, No. 1, Article . Publication date: July 2020.

38 Crane, et al.

Fig. 29. Left: the total angle θ at point p is divided into left angle θl =
∑8
i=5 θi and right angle θr =

∑4
i=1 θi

by the path that traverses it. The path is: (i) locally shortest if θl ≥ π and θr ≥ π ; (ii) locally straightest if
θl = θr . Right: three different paths connecting pairs of vertices in a cuboid. The path passing through the
spherical vertex is locally straightest, but cannot be locally shortest as its total angle θ is less than 2π . The
path on a facet and the one crossing an edge are both locally shortest and straightest, because θl = θr = π .
Right image from [81].

CyberTape [98] strives for locally shortest geodesics, flattening the mesh around each point
pi and tracing a straight line going from pi−1 to pi+1. If the line crosses new edges or vertices,
intersection points are added to the path. Depending on where you are, there are multiple ways
to locally shorten a path. Fig. 30 shows all the update operators used by the algorithm to handle
points at edges, spherical vertices, and hyperbolic vertices. Corner cases are also handled: if the
local update would move the path outside the area spanned by the flattening, it is automatically
constrained to adhere to the border of the local domain. This may happen any time the border of
the flattening is non convex (see an example at the top right corner of Fig. 30). Vertex operators are
chosen by querying a look-up table indexed according to the type (euclidean, spherical, hyperbolic)
and the relation between θl and θr . The algorithm converges when all the points satisfy the geodesic
criterion, which means that the path is locally shortest everywhere. It is interesting to note that,
however, the final path may unnecessarily deviate from the input path P . This is because local
operators move the path away from hyperbolic points even if locally shortest paths may traverse
them, thus introducing an unnecessary deviation from P . One year later, Martínez et al. [69]
published a similar method, which substitutes the lookup table with a more faithful implementation
of the ideas of [81]. Specifically, the path is not locally updated at hyperbolic vertices if both θl and
θr are greater than π , as the path cannot be locally shortened (in [98] the path was pushed away
from the vertex anyways). This allows [69] not only to converge to a path that is locally shortest
everywhere, but also to find the one that deviates from the input path P only if strictly necessary.
Finally, Xin et al. [103] strive for locally shortest geodesics, but rather than using the local angle
criteria expressed in [81], they adopt an equivalent concept based on the Fermat principle, which
states that light always follows the shortest optical path. As in [98] and [69], the visibility-based
method is guaranteed to converge to a path that is locally shortest everywhere in the sense of [81].
Remark: A subtle problem affecting all the methods presented in this section is that they do not
guarantee convergence to the closest local minimum. In other words, among all the locally shortest
paths connecting source with destination, the output may not be the path which is closest to the
input. Let us consider a path that traverses a spherical vertex in a way that perfectly halves its total

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 39

pi-1

pi

pi+1

pi+1

pi-1

pi

pi+1

pi+1

pi-1

pi-1

pi+1

pi

>

pi-1

pi-1

pi+1

pi

<

<

<

pi-1

pi+1

pi

pi-1

pi+1pi

Fig. 30. The local operators used in [98] to locally shorten a path crossing: an edge (left column), a spherical
vertex (middle column), and a hyperbolic vertex (right column). If straightening the line the path goes outside
of the area span by the flattening, the path is forced to pass through the local border (see bottom left corner).
Vertex operators are chosen by querying a look-up table indexed according to the vertex type (euclidean,
spherical, hyperbolic) and the relation between θl and θr .

angle (i.e., θl = θr). A locally shortest paths never traverses spherical vertices, therefore it should
move sideways. Depending on which side it moves, the algorithm will converge to a different local
minimum. There is no way to locally assess which side is best: algorithms use either consistent (e.g.
always left) or randomized choices. In both cases, this may not lead to the closest solution. Since
the initial path may traverse many spherical vertices, it is difficult to provide bounds on how much
the geodesic path will deviate from it.

4.2.3 Iterative path update. Methods that iteratively move one vertex at a time require many
iterations to converge. A way to speed up convergence consists in solving a more complex problem
at each iteration, thus requiring fewer iterations. Liu et al. [61] address the problem by using
constrained optimization over the whole path. In their algorithm, each point pi is assigned to the
mesh edge ei containing it. For points at vertices, only one of the incident edges is considered. The
position of pi is expressed as a linear combination of the endpoints v0,v1 of ei

pi = λi · v0 + (1 − λi) · v1

, Vol. 1, No. 1, Article . Publication date: July 2020.

40 Crane, et al.

where λi controls the linear interpolation between the two endpoints. The length of the whole path
P

|P | = ∥p0 − p1∥ + · · · + ∥pn−1 − pn ∥
can now be expressed as a function of λ1, . . . , λn , and minimized by forcing the vector of its partial
derivatives to zero. This would in general lead to a linear system, but in order to keep each point
on its edge and avoid extrapolation the problem is constrained, making sure that λi ∈ [0, 1], for
i = 0, . . . ,n. The solution of this optimization problem gives the shortest path from p0 to pn ,
constrained on the edges traversed by the original path. Note that unknowns λ0, λn allow the solver
to deviate from source and destination. One could in principle hard constrain them, but the authors
opted for highly weighted soft constraints followed by snapping, as this ensures better numerical
performances from the solver. In order to obtain the optimal path, the problem is solved multiple
times, moving each pi from its current edge to some adjacent edge whenever the corresponding λi
goes to 0 or 1. The algorithm converges when none of the points pi wants to move to another edge.
Since at each iteration the whole optimal path is re-computed from scratch, this algorithm requires
far less iterations if compared to the methods discussed in Sec. 4.2.2. In the paper, the authors show
that this algorithm exhibits super-linear convergence, outperforming [69]. An additional outcome
of this formulation is that the Euclidean distance can be easily substituted with any other metric,
such as weighted, or anisotropic (Fig. 31). The same does not hold for local methods based on the
criteria of Polthier and Schmies [81], which do not extend to non Euclidean embeddings (Sec. 4.2.1).

Fig. 31. The optimization based formulation used in [61] allows to generate shortest paths with respect to
the Euclidean (left), weighted (middle) and anisotropic (right) metrics. This is the only local method able to
support such a variety of different metrics. From [61].

4.2.4 Graph-based methods. Graph-based methods can also be designed to work in a local fashion.
Similarly to the methods described in Sec. 4.1.3, local graph-based methods find the shortest path
connecting two points running Dijkstra’s algorithm on a graph, which is initialized with the
vertices and edges of the input mesh, and progressively refined adding Steiner points at mesh edges.
Differently from global methods, Kanai and Suzuki [49] refine the graph only around the initial
edge path connecting source to destination, thus producing a smaller graph and leading to a faster
and better scalable implementation. Being based on Dijkstra’s algorithm, weighted metrics can be
easily incorporated by associating different weights to the edges in the graph. Lanthier et al. [56]
present a local heuristic method to refine a given path to an approximated locally shortest path.
Their method is a local variant of the global one presented at the beginning of Sec. 4.1.3, and can
be used with both the fixed and the interval scheme. As for the other local methods, the path is

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 41

restricted to a sub-domain composed of all the mesh faces traversed by the initial path. If the initial
path passes through a mesh vertex, the authors propose a heuristic to decide whether the new path
should pass it to the left or to the right. As already observed at the end of Sec. 4.2.2, these heuristic
choices impact the output result, possibly resulting in a geodesic line that converged to a bad local
minimum. Also exact algorithms can be adapted to the PPGP problem. In the second part of their
article, Surazhsky et al. [93] proposed a local variant of their MMP implementation optimized to
compute exact point to point shortest paths connecting a source s and a target t . This variant is
based upon an aggressive pruning strategy, which avoids propagating windows that have at least
one point p not satisfying the inequality

Ls (p) + Lt (p) ≤ Ust ,

where Ls (p),Lt (p) are the lower bounds on the distances d(s,p) and d(s, t) measured on the mesh,
respectively, whileUst is the upper bound on the path length, obtained with Dijkstra. The algorithm
works in two steps: at the first step the pruning strategy is used to obtain a minimum amount on
windows; in the second step the exact algorithm uses the windows to compute an exact shortest
path between s and t (details in Section 4.1.1) . As observed by the authors, alternative pruning
schemes could potentially be used, possibly providing more performing implementations of point
to point MMP.

5 METHODS FOR GEODESICS TRACING
In GT, the problem of computing a geodesic curve on a domain is formulated as an initial value
problem. As discussed in Sec. 2.1, a curveγ on a surface patch S is a geodesic if its geodesic curvature
κд is zero everywhere. Geodesic curvature vanishes when its projection on the binormal vector
is zero, which in turn means that the curvature vector γ ′′ is parallel with the surface normal of
S at any point of γ . Given this premise, tracing the geodesic curve that starts from point p ∈ S
and proceeds as straight as possible in direction v amounts to solving a second order ordinary
differential equation, subject to the following boundary conditions [82]

γ (0) = p (10)
γ ′(0) = v . (11)

There is a variety of methods that aim to solve this problem, which mostly differentiate to
each other for the type of domain they admit as input. Early works in the field were designed to
compute geodesic paths on parametric surfaces, such as NURBS and Bézier patches [67, 77]. This
is not surprising, as this was the dominant representation for curved surfaces in the design and
manufacturing industry. In this survey we do not provide details on these methods, partly because
the article is focused on polyhedral meshes, but also because the reference literature dates back to
’80s and ’90s, and has already been covered in previous surveys and books. We point the reader to
the book of Patrikalakis and Maekawa [78] for further details on the topic.

5.1 Tracing on polyhedral meshes
Restricting to polyhedral surfaces, the topic was pionereed by Polthier and Schmies [81, 82], who laid
the theoretical bases for tracing geodesics on polyhedral surfaces (Sec. 4.2.1). In [81] they propose
two alternative methods to integrate a field on a discrete mesh, one based on Euler integration, and
the other based on the fourth order Runge-Kutta method. It should be noted that tracing a path by
numerical integration on a surface immersed in ambient space R3 requires an extra effort to keep
the path on the surface. Some sort of projection method must be devised in order to guarantee it.
The concept of straightest geodesics implicitly solves this problem, as the path can be integrated
rotating around vertices by some angular distance, thus never leaving the polyhedral surface. This

, Vol. 1, No. 1, Article . Publication date: July 2020.

42 Crane, et al.

avoids the tedious and error prone implementation of geometric projection (e.g. shooting rays or
computing intersections with the surface), resulting in a more robuste software.

Kumar and colleagues [53] observed that the angle criterion proposed by Polthier and Schmies
does not take into account surface normals, and suffers when there are abrupt orientation changes
between adjacent facets. They proposed an alternative technique to trace a locally straightest
geodesic on polyhedral surfaces. Given a point p on a surface S , and a tracing direction v , they
define the locally straightest path as the intersection between S and the plane passing through
p and containing both v and the surface normal at p. The procedure is repeated iteratively, until
the path hits the boundary of the mesh, or a certain length is reached. The article also offers a
very informative comparison between this strategy, the method of Polthier and Schmies [81], and
a state of the art method for geodesic tracing on NURBS. The outcome of their experiments is
that: (i) discrete methods suffer from the bias introduced by the tessellation and are consistently
less accurate than geodesic tracing on NURBS; (ii) considering the surface normal orientation
increases the accuracy of discrete methods. In particular, the authors observed that while for simple
developable surfaces all three methods perform equally well and converge on the smooth geodesic
curve, for doubly curved non developable surfaces the method proposed in [53] is comparatively
closer to NURBS-based methods, whereas the one of Polthier and Schmies [81] converges to a
different curve.

Fig. 32. Illustration of an iteration of the discrete tracing method described in [22]. Left: starting from point
pi and tangent vector Ti , the subsequent point pi+1 is computed on a Bézier patch (yellow) that interpolates
a triangle facet (violet). Point pi+1 is then projected back on the polyhedral surface (middle-left) and the
tangent vector updated (middle-right). Tangent vector Ti+1 is parallel transported from pi to pi+1. The hat is
used to distinguish between entities living in the polyhedral mesh (no hat) from entities living in the Bézier
patch (angular hat). Image taken from [22].

5.2 Hybrid approaches
In order to fill the gap between continuous and discrete approaches, recent literature proposes
hybrid solutions, where the discrete geodesic path γ is computed on a piece-wise smooth meta
mesh, and then projected onto the underlying polyhedral surface. In [22] the authors fit a three
sided Bézier patch that interpolates both vertex positions and normals of each facet of a triangular
mesh, and use it as a domain to solve the geodesic tracing problem. Patches are glued side by side,
guaranteeingG1 continuity across common edges. This ensures that the path can seamlessly travel
across mesh edges and vertices. Differently from [81], where path integration is intrinsically linked
to the polyhedral surface, the communication between the mesh and the atlas of Bézier patches
is provided by shooting rays along surface normals. While this is in general not very robust, the
authors handle bad cases by shrinking the integration step size any time the new point does not
project onto the same facet as the previous one. The method works by iteratively repeating the
following four steps (Fig. 32):

• Starting from a point pi and a tangent direction, the next point pi+1 is computed in the Bézier
patch by moving along the tangent direction with a user prescribed step size;
• The new point pi+1 is projected on the polyhedral surface;

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 43

• A new tangent vector is numerically computed by solving a first order ODE with the Runge-
Kutta method;
• The new tangent vector is parallel transported from pi to pi+1;

The algorithm stops when the path hits the boundary of the domain, or when some prescribed path
length is reached. Compared to classical tracing methods on parametric surfaces, this method has
the advantage to solve a first order ODE on the tangent vector, thus requiring only G1 continuity.
Classical methods solve a second order ODE on point positions, and therefore require a G2 con-
tinuous domain [78]. Furthermore, when compared to purely discrete methods such as [81, 82],
this hybrid approach avoids the problems about existence and uniqueness of the solution around
spherical and hyperbolic vertices (Sec. 4.2.1), and about convergence to the smooth geodesic curve
under mesh refinement.

5.3 Tracing streamlines of a vector field
Methods to trace streamlines of a general vector field can also be used for GT. Typically, these
methods start from a field defined at the vertices of a discrete mesh, and extend it inside each facet
by linear interpolation. For geodesic tracing, the starting point is a distance field, then transformed
in a piece-wise linear vector field by computing its gradient (see [68] for an overview of different
techniques for gradient field computation). Typical tracing techniques are based on numerical
integration, performed with Euler or the fourth order Runge-Kutta method [81]. These numerical
approaches however are problematic, because the approximation error accumulates along the path,
possibly producing drifting streamlines that fail to encode the correct global structure of the field.
Recent research has shown thath cumulative error propagation can be avoided by integrating the
path one facet at a time, and imposing proper constraints along edges. Bhatia and colleagues [12]
introduced the concept of EdgeMaps, replacing classical integration with linear maps defined at
the edges of each facet. Edges are segmented into portions where the flow can be either inward
or outward. Given an entry point to a facet, the corresponding exit point can be computed by
approximating the flow linearly, which means that the curved paths of the vector field are replaced
with straight lines that robustly indicate where the flow leaves the facet (Fig. 33). In [48] it was
observed that there exist only 23 possible configurations for a triangle, therefore tracing the flow
within a facet can be conveniently reduced to a map lookup. EdgeMaps do not completely substitute
numerical integration, which is still used at initialization time to find the split points for edges.
Furthermore, edge intervals guarantee no overlap of streamlines within the triangle only if their
map is monotonic, which is true only up to numerical precision. Ray and Sokolov [85] introduced the
concept of stream meshes, which extends the idea of EdgeMaps. They completely avoid numerical
integration, and rather rely on the field direction only along edges, providing an interval pairing
system which makes heavy use of arbitrary precision floating point numbers to resolve precision
issues. The result is a more robust tracing method, which is guaranteed to avoid crossing and
collapse between close-by curves. It should be noted that, by avoiding integration within triangles,
the lines may deviate from the guiding field, while still preserving the correct global behavior.

5.4 Point to Point tracing
Xie et al. [101] offer a different view on geodesic tracing, which is employed to parallel transport
deformations across surfaces, essentially solving a PPGP problem where the starting point p0
represents the input shape, the final point p1 the target shape, and the geodesic path γ connecting
them realizes a morphing between the two. The authors propose two alternative methods to
compute γ : the shooting method and the straightening method. Both methods are iterative, and
generate a sequence of paths γ 0, . . . ,γ n that progressively approximate the exact geodesic path

, Vol. 1, No. 1, Article . Publication date: July 2020.

44 Crane, et al.

Fig. 33. EdgeMaps start from a vector field defined on vertices and linearly interpolated inside each triangle
(left), and split triangle edges into slabs where the flow is either incoming or outcoming (middle). The
information is eventually transformed into a linear map, which allows to easily pair entry and exit points
(right). In [48] it was shown that for triangles there exist only 23 possible flow configurations, therefore all
possible maps can be efficiently encoded into a lookup table.

connecting p0 and p1. The shooting method works by shooting a discrete geodesic path γ 0 with
finite number of steps starting from p0 along a random direction v0, and to iteratively update the
shooting direction v in order to converge to the target path. Assuming all γ i are parameterized
by arc length, the update amounts to computing the vector w = p1 − γ i (1), parallel transport it
from γ i (1) to γ i (0), and set vi+1 = vi + δw . The process is repeated until convergence (i.e. until
∥w ∥ goes to zero). A visual example of the shooting procedure is given in Fig. 34 (top line). The
straightening method works by initializing γ 0 as an arbitrary path connecting p0 and p1, and
iteratively straightening it using a gradient descent approach, minimizing the energy function

E(γ) =
∫ 1

0

〈
d

dt
γ ,

d

dt
γ

〉
dt .

The inner product inside the integral is defined using the Riemannian metric of the shape space.
Given the gradient ∇E, the path is updated as γ i+1 = γ i − δ∇E, where δ > 0 is a step size. A visual
example of the straightening procedure is given in Fig. 34 (bottom line).

6 MESHING
Akey issue that arises in all methods for computing geodesic distance (including those for computing
the exact polyhedral distance) is that the surface must be meshed appropriately in order to be
able to carry out the necessary computations. The meshing of the surface will have an impact on
things like numerical accuracy, guarantees about properties of the solution, as well as the time
and memory needed to execute the algorithm. In the context of PDE-based methods (Sec. 3), the
mesh is explicitly given to the algorithm and should ideally satisfy familiar properties demanded
by finite element methods for hyperbolic and elliptic problems. In the context of computational
geometry methods (Sec. 4), the mesh is implicitly constructed during the course of the algorithm
– viewed through this lens, many of the strategies discussed in Sec. 4 can be viewed as different
strategies for keeping the size and quality of this mesh under control. This viewpoint also helps
to understand the trade offs between different classes of methods: PDE-based methods are often
more efficient because they can generate a single, high-quality mesh ahead of time and re-use this
mesh for many different distance queries; however, this mesh cannot be adapted to a particular

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 45

Fig. 34. Xie et al. [101] propose two iterative methods that use geodesic tracing to solve a PPGP problem. Top
line shows the shooting method. Bottom line shows the straightening method. The user chooses the number
of sample points the path should be composed of (n = 6, 10, 40), and the algorithms iteratively update an
initial path (green) to make it converge (blue) to the exact geodesic obtained from analytical expressions (red).
All geodesics are traced in the 2D hyperbolic space. Image taken from [101].

distance query a priori. In contrast, methods from computational geometry can provide exact
solutions to the polyhedral geodesic distance problem because the mesh implicitly constructed
by the algorithm can be explicitly tailored to a particular query point, i.e., the surface is meshed
exactly along characteristics of the solution; however, this same mesh cannot easily be re-used for
subsequent queries, leading to a large number of caching and approximation schemes (as discussed
in Sec. 4). In this section we consider the relationship between meshing and accurate geodesic
distance computation.

6.1 PDE-Based Methods
The two basic classes of methods we have studied (hyperbolic and elliptic) naturally lead to two
different basic criteria on meshes needed to generate accurate results: hyperbolic methods generally
perform better on acute triangulations; elliptic methods perform better on Delaunay triangulations.
On the whole, these criteria should be viewed as “rules of thumb” – for instance, there are plenty
of non-Delaunay meshes on which elliptic methods still perform well. However, in specific cases
using a mesh with the desired characteristics will provide absolute guarantees about properties of
the solution, e.g., absence of spurious local minima. Interestingly, acute meshes are a strict subset
of Delaunay meshes; hence, meshes that work well for hyperbolic methods will also work quite
well for elliptic methods.

6.1.1 Hyperbolic Methods. As noted in Sec. 3.2.1, methods based on wavefront propagation must
update distance values at vertices in an order that respects causality, i.e., the active node of smallest
value must always be the one closest to the source. On a triangulated surface, this property can
be violated in the presence of obtuse angles – consider, for instance, executing the fast marching
method on the triangulation pictured in Fig. 8, left. If we place a source at vertex 1, then the distance

, Vol. 1, No. 1, Article . Publication date: July 2020.

46 Crane, et al.

at vertices 2 and 3 will be computed (and finalized) prior to vertex 4, even though 4 is closer to 1; as
a result, we will get an overestimate of the distance at 4. This phenomenon cannot occur unless the
mesh has obtuse angles; a solution, therefore, is to mesh the domain such that it has only acute (or
at least nonobtuse) angles, i.e., interior angles no greater than π/2.
Generating nonobtuse triangulations has traditionally been challenging, though recent years

have seen significant developments. Zamfirescu provides a nice survey of results in the planar
setting [110]; Erten & Üngör developed some of the first practical algorithms for acute triangulations
of planar regions, for which software is readily available [38, 39]. Obtaining acute triangulations
of curved surfaces is more challenging: Burago & Zallgaller [17] show that an acute geodesic
triangulation can be obtained for any polyhedron (i.e., a triangulation where edges are required
only to be geodesic arcs along the polyhedron), though this triangulation may not include the
edges of the polyhedron itself. Saraf [88] later proves the existence of acute triangulations which
contain the edges by constructing compatible acute triangulations on each face; in either case,
no upper bound is given on the number of triangles. More recently, Maehara [66] give an upper
bound on the size of the triangulation in terms of the local geometry of the given polyhedron,
though no practical algorithm is provided. In higher dimensions (e.g., for computing geodesics
on triangulated regions of R3) even less is known, and in general acute triangulations may not
even exist; Brandts et al. [16] provide a survey. The upshot of this discussion is that (at the time
of writing of this article) there is no way to generate meshes that are guaranteed to satisfy the
requirements of wavefront-based methods on polyhedral models, i.e., no absolute guarantee that
the upwind ordering will be monotonic with respect to distance. From here, there are essentially
three options: (i) apply an unfolding procedure, though as noted in Sec. 3.2.1 this procedure may not
always terminate; (ii) iteratively update the solution via multiple sweeps (à laBornemann:2004:FED),
though at this point one may simply consider other optimization strategies such as ADMM [8],
or (iii) simply ignore the fact that the solution may exhibit spurious local minima. In practice,
wavefront-based methods perform quite well even on meshes with a some mildly obtuse triangles,
and for many applications (e.g., visualization) small violations of monotonicity do not present major
problems.

6.1.2 Elliptic Methods. For geodesic distance methods based on solving elliptic questions, the key
issue is no longer causality but rather satisfaction of a smooth maximum principle. In particular, let
L ∈ R |V |× |V | be a matrix representing any discrete Laplace operator, i.e., a weighted graph Laplacian
with edge weightswi j ∈ R. We say that a function ϕ ∈ R |V | is discrete harmonic (with respect to
L) if it is in the kernel of L (i.e., if Lϕ = 0), in analogy with smooth harmonic functions, which
sit in the kernel of the Laplace-Beltrami operator (∆ϕ = 0). In the smooth setting, the maximum
principle says that a harmonic function has no local extrema. In the discrete setting, the (local)
maximum principle likewise asks that the value of a discrete harmonic function at any interior
vertex be a convex combination of the neighboring values. An elementary calculation shows that
this property will be satisfied if and only if the weights wi j associated with interior edges are
positive; in particular, when L is the cotangent Laplacian positivity of edge weights is equivalent to
the intrinsic Delaunay condition

αi j + βi j > π ,

where αi j , βi j are the interior angles opposite an interior edge ij . This condition is necessary (but not
sufficient) to ensure a global maximum principle—see Wardetzky et al. [100] for further discussion.
Violation of the maximum principle can (as with causality) yield spurious local minima in the
distance function computed by elliptic methods.

Fortunately, Delaunay triangulations are far easier to obtain than acute triangulations, and there
is a large body of knowledge about both theoretical guarantees and practical algorithms – see for

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 47

Fig. 35. A mesh with many non-Delaunay triangles (left) may yield inaccurate solutions that depend on the
cotan-Laplace operator (right), but is easily remedied by using a Delaunay triangulation (right). Here we show
the heat method as implemented in CGAL [97], which uses an intrinsic Delaunay triangulation to avoid
increasing the mesh size.

instance the book by Cheng, Dey, and Shewchuk [24]. Less is known about Delaunay triangulation
of polyhedral surfaces, though even here there are a variety of practical algorithms, including
Delaunay refinement [23, 33, 34] and edge splits [37, 63]. Suchmethods can either exactly triangulate
the input geometry, or reduce the size of the triangulation by allowing small modifications to the
geometry. Alternatively, one can construct an intrinsic Delaunay triangulation [13, 40] where the
new triangulation is represented only by the mesh connectivity and a collection of edge lengths; this
data is sufficient to construct the Laplace operator L, and allows greater flexibility in the definition
of the triangulation while still preserving the input geometry exactly. Fig. ?? shows one example of
how Delaunay triangulations can significantly improve the accuracy of elliptic methods – in this
case, without even increasing the size of the mesh.

6.2 Computational Geometry Methods
One appeal of the methods considered in Sec. 4 is that they can work directly on a given input
without remeshing, though in reality these methods still effectively re-mesh the surface via the
construction of windows (or other auxiliary data). In other words, they incrementally modify a
topological mesh data structure (often, just a standard half edge mesh [93]) that describes a new
tessellation of the original mesh. From this point of view, the basic approach of computational
geometry methods is not entirely different from PDE-based methods: in either case, one must
construct a mesh that supports accurate computation of a solution. However there are some notable
differences, namely (i) window-based methods remesh the domain during computation of geodesic
distance, rather than doing it ahead of time and (ii) the tessellation implicitly generated by this
process depends on a particular choice of query point (or points). In particular, the surface is
effectively “meshed along geodesics,” i.e., it explicitly encodes geodesics from pseudosources to
window boundaries (see for instance Fig. 9). This strategy presents some clear trade offs. On the
one hand, it provides a great deal of accuracy since geodesics are directly encoded in the mesh –
from the PDE point of view, this is akin to meshing the domain along characteristics of the eikonal
equation. It is also therefore much easier to recover geodesic paths. For this same reason, however,
the mesh implicitly generated by a window-based scheme is difficult to re-use for computing
distance to a different query point, which will induce an entirely different collection of windows.

, Vol. 1, No. 1, Article . Publication date: July 2020.

48 Crane, et al.

Method Implem. URL Type
MMP [93] http://hhoppe.com/proj/geodesics/ C++ API
Chen-Han [20, 104] https://doc.cgal.org/latest/Surface_mesh_shortest_path/index.html C++ API

https://sites.google.com/site/xinshiqing/knowledge-share C++ API
Heat [28] https://www.cs.cmu.edu/~kmcrane/Projects/HeatMethod/code.zip C API(∗)

https://github.com/dgpdec C++ API(∗)

https://github.com/mlivesu/cinolib C++ API(∗)
https://github.com/OpenGP/starlab C++ App
http://www.numerical-tours.com/matlab/meshproc_7_geodesic_poisson/ Matlab
https://mathematica.stackexchange.com/questions/129207/how-to-estimate-geodesics-on-discrete-surfaces/ Mathematica
https://geometrycollective.github.io/geometry-processing-js/projects/geodesic-distance/index.html JavaScript

Biharm. [59] https://pixl.cs.princeton.edu/pubs/Lipman_2010_BD/index.php Matlab
VTP [84] https://github.com/YipengQin/VTP_source_code C++ API
FWP [106] http://geometry.cs.ucl.ac.uk/projects/2015/fast_wavefront/paper_docs/FWPcode.zip Executable

(*) supports solving by back-substitution on a pre-factored matrix
Table 1. An overview of available implementations. For each method we report: method’s name, reference to
the original papers, link to the code, and its format.

This situation explains the large number of different variants on the basic MMP and CH algorithms
that are needed to cache or otherwise accelerate new queries, as discussed in Sec. 4.
One topic that has not received much attention is the impact of the input triangulation on

the performance of windowing algorithms. One rather surprising observation is that the MMP
algorithm sometimes runs much faster on noisy inputs – see in particular [93, Figure 7]. Why this
should be true, and more broadly, what kind of input triangulations lead to the best performance is a
very interesting question, possibly leading to a hybrid approach where the mesh is first preprocessed
(e.g., to be Delaunay or acute) prior to initiating the window insertion process.

7 EVALUATION
Implementations of several methods reviewed in the previous sections have been released to the
public domain, either by their authors, or by others. Table 1 provides a summary of the software
we could find. Some such implementations come in the form of API’s, some consist of source code
for stand alone applications, and some others are just executables. Running such software in a
consistent framework that allows us to compare their performances is not always possible. Several
methods involve a setup phase (preprocessing) which is run just once per dataset, and is separated
from the query phase; the costs of such two phases must be evaluated separately and this is not
always possible in the implementations we collected. Moreover, as we already discussed previously,
methods working in the smooth and in the discrete setting should not be compared directly, as
they address different problems.
In the following two subsections, we provide just some comparisons between methods at the

state-of-the-art, focusing on the SSGD problem and showing separate results for the PDE-based
methods (smooth setting) and the CG methods (discrete setting).

7.1 Computational geometry methods
As we reviewed in Sec. 4, most global methods for resolving the SSGD problem belong to two
distinct classes: the exact methods that propagate windows (Sec. 4.1.1), and the graph-basedmethods
(Sec. 4.1.3). In Table 2 we compare the performances of the author’s implementation of the VTP
method [84], which represents the state-of-the-art in the first class, and our basic implementation
of Lanthier’s method [55, 56] with the interval scheme and SLF/LLL heuristic [11] to compute
shortest paths.2

2The state-of-the-art for graph-based methods is probably the DGG method [99]. Unfortunately, we only have an executable
available for this method, which prevents us from profiling performances to compare with the other methods. The authors

, Vol. 1, No. 1, Article . Publication date: July 2020.

http://hhoppe.com/proj/geodesics/
https://doc.cgal.org/latest/Surface_mesh_shortest_path/index.html
https://sites.google.com/site/xinshiqing/knowledge-share
https://www.cs.cmu.edu/~kmcrane/Projects/HeatMethod/code.zip
https://github.com/dgpdec
https://github.com/mlivesu/cinolib
https://github.com/OpenGP/starlab
http://www.numerical-tours.com/matlab/meshproc_7_geodesic_poisson/
https://mathematica.stackexchange.com/questions/129207/how-to-estimate-geodesics-on-discrete-surfaces/
https://geometrycollective.github.io/geometry-processing-js/projects/geodesic-distance/index.html
https://pixl.cs.princeton.edu/pubs/Lipman_2010_BD/index.php
https://github.com/YipengQin/VTP_source_code
http://geometry.cs.ucl.ac.uk/projects/2015/fast_wavefront/paper_docs/FWPcode.zip

A Survey of Algorithms for Geodesic Paths and Distances 49

VTP Lanthier’s S = 1 Lanthier’s S = 3 Lanthier’s S = 5 Lanthier’s S = 10
Dataset Size Setup SSGD Setup SSGD Error Setup SSGD Error Setup SSGD Error Setup SSGD Error
Hand 8k 0.002 0.027 0.031 0.002 0.013 0.082 0.008 0.005 0.108 0.013 0.003 0.245 0.028 0.001
Joker 27k 0.016 0.109 0.130 0.015 0.015 0.263 0.033 0.005 0.418 0.053 0.003 0.877 0.116 0.001
Bunny 70k 0.042 0.359 0.250 0.035 0.022 0.626 0.086 0.007 0.857 0.133 0.004 1.984 0.294 0.001
David 99k 0.055 0.490 0.394 0.050 0.014 0.839 0.116 0.005 1.312 0.185 0.003 2.842 0.432 0.001
Armadillo 346k 0.392 2.942 1.876 0.215 0.015 3.569 0.500 0.006 5.441 0.754 0.003 11.945 1.667 0.001
Gargoyle 700k 0.402 5.560 2.849 0.372 0.016 6.399 0.902 0.006 8.096 1.415 0.003 20.956 3.068 0.001
Blade 2M 2.098 41.600 9.268 1.298 0.012 18.759 2.992 0.005 26.163 4.538 0.003 (*) (*) (*)
Happy 2.6M 2.968 37.449 12.777 2.071 0.015 23.994 4.903 0.006 45.299 8.021 0.004 (*) (*) (*)
Neptune 2M 3.600 66.840 17.564 2.660 0.015 35.956 6.649 0.006 (*) (*) (*) (*) (*) (*)
Lucy7M 14.5M 18.831 567.655 149.795 14.206 0.014 (*) (*) (*) (*) (*) (*) (*) (*) (*)

Table 2. Comparison between VTP [84] and Lanthier’s [55, 56] on various datasets. From the left: dataset name
and size (number of triangles in thousands and millions); VTP times for setup and SSGD query; Lanthier’s
times for setup and SSGD query, and RMS error wrt ground truth. Experiments with Lanthier’s are repeated
with 1, 3, 5, and 10 Steiner points per edge (average). Times are in seconds; (*) means that the data structure
exceeds physical RAM: the program runs, but with very slow times due to paging.

We have run experiments on meshes of increasing size, from a few thousands to about 14 million
triangles; all meshes are manifold and watertight. Trials were run on a laptop equipped with 2.9
Ghz Intel Core i7 CPU and 16 GB RAM by using a single core. For each dataset and method, we
did the setup once, and then ran queries on 100 random seeds. In Table 2, for each method we
report the time to setup and the average time for a single query. The VTP method, which is exact,
provides the ground truth for the discrete problem. We compare the accuracy of the approximated
graph-based method by measuring the average RMS error, evaluated as

Error =

√√√ ∑
v ∈V \{s }

(
distVT P (v) − distG (v)

distVT P (v)

)2

where V is the set of vertices, s is the source, and distVT P (v) and distG (v) denote the distances
of a vertex v from s computed with the two methods, respectively. For Lanthier’s method, there
is an obvious trade-off between the time performance and the accuracy, which depends on the
average number of Steiner points per edge. Thus, to make an exhaustive comparison, we ran the
experiments by varying such number between 1 and 10. Higher values were not considered due to
their inefficiency: although the error becomes tiny, the time performance becomes not competitive
with respect to the exact methods.

Overall, given a dataset, we assume that the setup is done once and the SSGD queries are
performed many times, which is the common practice in various applications. Therefore, as long
as the setup remains within reasonable time bounds, query times are most relevant.

For the VTP method, the query times dominate (Table 2). The setup phase of VTP takes negligible
time since it only involves building the basic data structures to support the window propagation.
In spite of the theoretically superlinear complexity, the practical query times of VTP appear to
increase linearly with the size of the dataset. The only exception is the larger time consumed on
the Blade dataset, which contains large flat regions. Such performance degeneration may reveal
the inherent challenge of the window-based methods: on a flat region, almost all the propagated
windows are valid and there is little space for acceleration through redundancy removal. In this
case, all the window-based methods degenerate and behave similarly.

On the contrary, the setup phase dominates in Lanthier’s method, which is devoted to building
the graph containing both vertices and Steiner points. Note that with 3 or more Steiner points per

said that an improved version of DGG is under minor revision for publication in a journal, and they will release the source
code as soon as it is accepted. We plan to include further experiments with their code in the final version.

, Vol. 1, No. 1, Article . Publication date: July 2020.

50 Crane, et al.

edge, the cost of this phase is comparable or even more expensive than the whole cost of running
VTP. The times for the setup phase increase linearly with the size of the mesh and quadratically
with the number S of Steiner points per edge (indeed, the size of the graph is quadratic in S , as
shown in Fig. 21). Once the graph has been built, query times for meshes of moderate size are
between one and almost two orders of magnitude faster than VTP, up to the case of 5 Steiner points
per edge, while they become comparable or slower than VTP by using 10 Steiner points per edge.
Speed is paid at the cost of some error, which is about 1.5% with 1 Steiner point and about 0.1%
with 10 Steiner points; these figures are consistent in all experiments. Times for the query phase
increase super-linearly, though: with large meshes, the performance is not competitive with respect
to VTP for S = 5 already. With several Steiner points on large meshes the memory foortprint for the
graph becomes too large, the computer starts paging and the performances collapse; on the largest
mesh with over 14M triangles, collapse occurs with S = 3 already. This limit could be probably
improved with a better implementation, but the increase in the number nodes of the graph, which
is quadratic in S , is inherent in the method.

8 CONCLUDING REMARKS
Algorithms for solving various versions of the geodesic problem are quite mature and ready to
be used in applications. We have reviewed methods at the state of the art, which are divided
into two broad classes: PDE-based methods that resolve the problem in the smooth setting, and
computational geometry methods that resolve the problem in the discrete setting. The latter class
is subdivided further into methods that propagate windows, all stemming from the seminal MMP
method, and graphmethods that introduce one further level of discretization. We have also reviewed
local methods that address single point-to-point queries and methods for geodesic tracing, as well
as discussed practical aspects such as the criteria that meshes should satisfy in order to squeeze the
maximal power from each of the surveyed methods.

Several methods, in both classes, support the separation of the setup phase from the query phase,
where the former is performed once after loading the data, and the latter may be executed an
arbitrary number of times on the same setup, to amortize the computational cost. Depending on
methods, this approach permits to deplete much of the computational burden during pre-processing,
thus achieving high speed-ups at query time. Overall, there is no best method for all purposes, as
each class of methods has its own characteristics.
PDE-based methods are based on a global approach to the problem, and are largely aimed at

solving the smooth geodesic problem, i.e., finding the best approximation of the true geodesic
distance on the sampled surface. These methods involve the resolution of large sparse linear systems
and may benefit frommodern numerical solvers, which in turn allows them to easily exploit features
like parallelism. Matrix pre-factorization can be done during the setup phase, thus reducing queries
to fixed-order back-substitution, which is extremely fast. As with any finite element method, the
approximation quality of PDE-based methods will be influenced by the quality of the input mesh,
though as discussed in Sec. 6 quality can often be improved via straightforward meshing strategies
(such as use of an intrinsic Delaunay mesh). Use of direct solvers can fail for very large meshes
(due to limits on memory); in this case a practical solution is to switch to a large-scale iterative
solver (such as multi-grid or preconditioned conjugate gradient). Looking forward, recent work on
computing localized solutions to large linear system opens the door to using PDE-based methods
for local geodesic queries (e.g., just at a single point) while still leveraging the benefits of direct
solvers [45, 46]. Pushing these methods toward higher accuracy via use of higher-order elements is
also an interesting area for future work [30, 72].

Computational geometry-based methods are based on local window propagation, and are most
appropriate for solving the polyhedral geodesic problem. Although the seminal algorithms in this

, Vol. 1, No. 1, Article . Publication date: July 2020.

A Survey of Algorithms for Geodesic Paths and Distances 51

category had poor performance due to a large number of windows, careful management of window
construction in recent work has led to algorithms with a small memory footprint, thus supporting
efficient geodesic queries on large datasets. On the other hand, such methods cannot easily separate
the setup and query phases, largely due to the phenomenon discussed in Sec. 6: splitting edges
into windows effectively constructs a different mesh of the surface for each geodesic distance
query. Thus, the amortized performance for repeated queries is not immediately as good as, say,
PDE-based methods, leading to a focus in recent work on caching or otherwise pre-computing
information useful for multiple queries [108]. A key question in future work is how to balance
performance and accuracy with the typically high degree of implementation complexity associated
with polyhedral algorithms.

Graph-based methods provide an approximated solution to the discrete problem and permit
to trade-off accuracy for speed. They excel in numerical stability and they are very efficient in
separating setup from query phase, thus achieving a relevant speed-up with respect to window
propagation methods and times comparable with the fastest PDE-based methods. On the other
hand, the memory footprint to store graphs may become relevant, and even prohibitive if high
accuracy is required on large meshes, thus making such methods not competitive with the exact
ones.

REFERENCES
[1] Shahnawaz Ahmed, Stanley Bak, Joyce R. McLaughlin, and Daniel Renzi. 2011. A Third Order Accurate Fast

Marching Method for the Eikonal Equation in Two Dimensions. SIAM J. Scientific Computing 33, 5 (2011), 2402–2420.
https://doi.org/10.1137/10080258X

[2] Rosario Aiello, Francesco Banterle, Nico Pietroni, Luigi Malomo, Paolo Cignoni, and Roberto Scopigno. 2015. Com-
pression and Querying of Arbitrary Geodesic Distances. In Image Analysis and Processing — ICIAP 2015, Vittorio
Murino and Enrico Puppo (Eds.). Springer International Publishing, 282–293.

[3] Lyudmil Aleksandrov, Mark Lanthier, Anil Maheshwari, and Jörg-R Sack. 1998. An ε -Approximation algorithm for
weighted shortest paths on polyhedral surfaces. In Scandinavian Workshop on Algorithm Theory. Springer, 11–22.

[4] Lyudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack. 2000. Approximation algorithms for geometric
shortest path problems. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing. ACM, New York,
New York, USA, 286–295.

[5] L Aleksandrov, A Maheshwari, and J R Sack. 2005. Determining approximate shortest paths on weighted polyhedral
surfaces. Journal of the ACM (JACM) 52, 1 (Jan. 2005), 25–53.

[6] Mukund Balasubramanian, Jonathan R Polimeni, and Eric L Schwartz. 2009. Exact geodesics and shortest paths on
polyhedral surfaces. IEEE transactions on pattern analysis and machine intelligence 31, 6 (2009), 1006–1016.

[7] Mikhail Belkin and Partha Niyogi. 2003. Laplacian Eigenmaps for Dimensionality Reduction and Data
Representation. Neural Computation 15, 6 (2003), 1373–1396. https://doi.org/10.1162/089976603321780317
arXiv:https://doi.org/10.1162/089976603321780317

[8] Alexander G Belyaev and Pierre-Alain Fayolle. 2015. On Variational and PDE-Based Distance Function Approximations.
In Computer Graphics Forum, Vol. 34. Wiley Online Library, 104–118.

[9] P.H. Bérard. 1986. Spectral Geometry: Direct and Inverse Problems. Springer-Verlag. https://books.google.com/books?
id=_LoZAQAAIAAJ

[10] P. Bérard, G. Besson, and S. Gallot. 1994. Embedding Riemannian manifolds by their heat kernel. Geometric &
Functional Analysis GAFA 4, 4 (01 Jul 1994), 373–398. https://doi.org/10.1007/BF01896401

[11] Dimitri P. Bertsekas. 1998. Network optimization: continuous and discrete models. Athena Scientific.
[12] Harsh Bhatia, Shreeraj Jadhav, Peer-Timo Bremer, Guoning Chen, Joshua A Levine, Luis Gustavo Nonato, and Valerio

Pascucci. 2011. Edge maps: Representing flow with bounded error. In 2011 IEEE Pacific Visualization Symposium
(PacificVis). IEEE, 75–82.

[13] A. I. Bobenko and B. A. Springborn. 2005. A discrete Laplace-Beltrami operator for simplicial surfaces. ArXiv
Mathematics e-prints (March 2005). arXiv:math/0503219

[14] F. Bornemann and C. Rasch. 2004. Finite-Element Discretization of Static Hamilton-Jacobi Equations Based on a Local
Variational Principle. ArXiv Mathematics e-prints (March 2004). arXiv:math/0403517

[15] Prosenjit Bose, Anil Maheshwari, Chang Shu, and Stefanie Wuhrer. 2011. A Survey of Geodesic Paths on 3D Surfaces.
Comput. Geom. Theory Appl. 44, 9 (Nov. 2011), 486–498. https://doi.org/10.1016/j.comgeo.2011.05.006

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1137/10080258X
https://doi.org/10.1162/089976603321780317
http://arxiv.org/abs/https://doi.org/10.1162/089976603321780317
https://books.google.com/books?id=_LoZAQAAIAAJ
https://books.google.com/books?id=_LoZAQAAIAAJ
https://doi.org/10.1007/BF01896401
http://arxiv.org/abs/math/0503219
http://arxiv.org/abs/math/0403517
https://doi.org/10.1016/j.comgeo.2011.05.006

52 Crane, et al.

Source Name Domain Class Accuracy Metrics Problem
[51] FM S D (wavefront) A E SSGD
[7] S D (diffusion) A E SSGD
[25] Diffusion S D (diffusion) A E SSGD
[43] S D (wavefront) A E SSGD
[59] Biharmonic S D (diffusion) A E SSGD
[65] Fast sweep S D (wavefront) A E SSGD
[28?] Heat S D (diffusion) A E SSGD
[92] S D (wavefront) A E SSGD
[62, 64, 71, 93] MMP P W (priority queue) E E SSGD
[20, 50] CH P W (FIFO queue) E E SSGD
[93] Approx.MMP P W (priority queue) E/A (local bounds) E SSGD
[6] P W (FIFO queue) E E APSP
[104] ICH P W (priority queue) E E SSGD
[105] GTU P W (priority queue) A (implicit bounds) E APSP
[109] PCH P W (parallel) E E SSGD
[106] FWP P W (bucket queue) E E SSGD
[84] VTP P W (priority queue) E E SSGD
[55, 56] Lanthier’s P G (Steiner) A (additive bounds) E, W SSSP
[70] P G (vertex-to-vertex arcs) A ((1 + ϵ) bound) E, W SSSP
[3–5] Lanthier’s var. P G (Steiner) A ((1 + ϵ) bound) E, W SSSP
[90] P G (Exp.map, local) A E SSGD
[19] STDV P G (edge graph) A A SSGD
[108] SVG P G (vertex-to-vertex arcs) E/A E, W APSP
[99] DGG P G (vertex-to-vertex arcs) A (O (ϵ) bound) E, W APSP
[55, 56] P L (Steiner) A E, W PPGP
[49] P L (Steiner) A E,W PPGP
[98] CyberTape P L (locally shortest) E (local) E PPGP
[69] P L (locally shortest) E (local) E PPGP
[103] P L (Fermat’s visibility) E (local) E PPGP
[61] P L (numerical opt.) A E, W, A PPGP
[81, 82] P T (locally straightest) A E GT
[53] P T (locally straightest) A E GT
[12] EdgeMaps P T (general fields) A E, W, A GT
[85] P T (general fields) A E, W, A GT
[101] S T (point to point) A E GT/PPGP
[22] S T (Bézier patches) A E GT

Table 3. Summary of the methods considered in this survey. For each method we report: the type of domain
(S for sampling of a continuous surface or P for polyhedral mesh); its class (D for PDE-based methods, W for
global methods based on window propagation, G for graph-based methods, L for local methods, T for tracing
methods); its accuracy (E for exact, A for approximated); the distance metric is supports (E for Euclidean,
W for weighted, A for anisotropic); The class of problems it addresses (PPGP, SSGD, APGD,GT); and its
asymptotic complexity (if given by the authors).

[16] J. Brandts, S. Korotov, M. KÅŹÃŋÅ¿ek, and J. Åăolc. 2009. On Nonobtuse Simplicial Partitions. SIAM Rev. 51, 2 (2009),
317–335. https://doi.org/10.1137/060669073 arXiv:https://doi.org/10.1137/060669073

[17] Y. Burago and V. Zallgaller. 1960. Polyhedral Embedding of a Net. Vestnik Leningrad. Univ. 15 (1960), 66–80.
[18] Thomas Caissard, David Coeurjolly, Jacques-Olivier Lachaud, and Tristan Roussillon. 2017. Heat kernel Laplace-

Beltrami operator on digital surfaces. In 20th International Conference on Discrete Geometry for Computer Imagery
(Lecture Notes in Computer Science). Walter G. Kropatsch, Ines Janusch and Nicole M. Artner, Springer-Verlag, Vienna,
Austria.

[19] Marcel Campen, Martin Heistermann, and Leif Kobbelt. 2013. Practical Anisotropic Geodesy. In Proceedings of the
Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Processing (Genova, Italy) (SGP ’13). Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 63–71. https://doi.org/10.1111/cgf.12173

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1137/060669073
http://arxiv.org/abs/https://doi.org/10.1137/060669073
https://doi.org/10.1111/cgf.12173

A Survey of Algorithms for Geodesic Paths and Distances 53

[20] Jindong Chen and Yijie Han. 1990. Shortest Paths on a Polyhedron. In Proceedings of the Sixth Annual Symposium
on Computational Geometry (Berkley, California, USA) (SCG ’90). ACM, New York, NY, USA, 360–369. https:
//doi.org/10.1145/98524.98601

[21] Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887:
CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. (2008).

[22] Peng Cheng, Chunyan Miao, Yong-Jin Liu, Changhe Tu, and Ying He. 2016. Solving the Initial Value Problem of
Discrete Geodesics. Comput. Aided Des. 70, C (Jan. 2016), 144–152. https://doi.org/10.1016/j.cad.2015.07.012

[23] S.-W. Cheng, T. K. Dey, and T. Ray. 2005. Weighted Delaunay Refinement for Polyhedra with Small Angles. In
Proceedings of the 14th International Meshing Roundtable, Byron W. Hanks (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 325–342.

[24] Siu-Wing Cheng, Tamal K. Dey, and Jonathan Shewchuk. 2012. Delaunay Mesh Generation (1st ed.). Chapman &
Hall/CRC.

[25] Ronald R. Coifman and StÃľphane Lafon. 2006. Diffusion maps. Applied and Computational Harmonic Analysis 21, 1
(2006), 5 – 30. https://doi.org/10.1016/j.acha.2006.04.006 Special Issue: Diffusion Maps and Wavelets.

[26] Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter SchrÃűder. 2013. Digital Geometry Processing with
Discrete Exterior Calculus. In ACM SIGGRAPH 2013 courses (Anaheim, California) (SIGGRAPH ’13). ACM, New York,
NY, USA, 126.

[27] Keenan Crane and Max Wardetzky. 2017. A Glimpse Into Discrete Differential Geometry. Notices of the American
Mathematical Society 64, 10 (November 2017), 1153–1159.

[28] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A new approach to computing
distance based on heat flow. ACM Transactions on Graphics (TOG) 32, 5 (2013), 152.

[29] Keenan Crane, Clarisse Weischedel, and MaxWardetzky. 2017. The Heat Method for Distance Computation. Commun.
ACM 60, 11 (Oct. 2017), 90–99. https://doi.org/10.1145/3131280

[30] Fernando De Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016. Subdivision exterior calculus for geometry
processing. ACM Transactions on Graphics (TOG) 35, 4 (2016), –11.

[31] Fernando de Goes, Beibei Liu, Max Budninskiy, Yiying Tong, and Mathieu Debrun. 2014. Discrete 2-Tensor Fields on
Triangulations. 33, 5 (2014).

[32] Tamal K Dey, Fengtao Fan, and Yusu Wang. 2013. An efficient computation of handle and tunnel loops via Reeb
graphs. ACM Transactions on Graphics (TOG) 32, 4 (2013), 32.

[33] T. K. Dey, J. A. Levine, and A. Slatton. 2010. Localized Delaunay Refinement for Sampling and Mesh-
ing. Computer Graphics Forum 29, 5 (2010), 1723–1732. https://doi.org/10.1111/j.1467-8659.2010.01781.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01781.x

[34] Tamal K. Dey and Tathagata Ray. 2010. Polygonal surface remeshing with Delaunay refinement. Engineering with
Computers 26, 3 (01 Jun 2010), 289–301. https://doi.org/10.1007/s00366-009-0162-1

[35] E. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1 (1959), 269–271.
[36] M.P. do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.
[37] Ramsay Dyer, Hao Zhang, and Torsten Möller. 2007. Delaunay Mesh Construction. In Proceedings of the Fifth

Eurographics Symposium on Geometry Processing (Barcelona, Spain) (SGP ’07). Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 273–282. http://dl.acm.org/citation.cfm?id=1281991.1282027

[38] H. Erten and A. Üngör. 2009. Computing Triangulations without Small and Large Angles. In 2009 Sixth International
Symposium on Voronoi Diagrams. 192–201. https://doi.org/10.1109/ISVD.2009.32

[39] H. Erten and A. Üngör. 2009. Quality Triangulations with Locally Optimal Steiner Points. SIAM Journal on Scientific
Computing 31, 3 (2009), 2103–2130. https://doi.org/10.1137/080716748

[40] Matthew Fisher, Boris Springborn, Alexander I. Bobenko, and Peter Schroder. 2006. An Algorithm for the Construction
of Intrinsic Delaunay Triangulations with Applications to Digital Geometry Processing. In ACM SIGGRAPH 2006
Courses (Boston, Massachusetts) (SIGGRAPH ’06). ACM, New York, NY, USA, 69–74. https://doi.org/10.1145/1185657.
1185668

[41] F. Fouss, A. Pirotte, J. Renders, and M. Saerens. 2007. Random-Walk Computation of Similarities between Nodes of a
Graph with Application to Collaborative Recommendation. IEEE Transactions on Knowledge & Data Engineering 19, 3
(March 2007), 355–369. https://doi.org/10.1109/TKDE.2007.46

[42] L. Gorelick, E. Sharon, R. Basri, A. Brandt, and M. Galun. 2006. Shape Representation and Classification Using the
Poisson Equation. IEEE Transactions on Pattern Analysis & Machine Intelligence 28 (12 2006), 1991–2005. https:
//doi.org/10.1109/TPAMI.2006.253

[43] Karthik S. Gurumoorthy and Anand Rangarajan. 2009. A Schrödinger Equation for the Fast Computation of Approxi-
mate Euclidean Distance Functions. In Scale Space and Variational Methods in Computer Vision, Xue-Cheng Tai, Knut
Mørken, Marius Lysaker, and Knut-Andreas Lie (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 100–111.

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1145/98524.98601
https://doi.org/10.1145/98524.98601
http://doi.acm.org/10.1145/1391989.1391995
http://doi.acm.org/10.1145/1391989.1391995
https://doi.org/10.1016/j.cad.2015.07.012
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1145/3131280
https://doi.org/10.1111/j.1467-8659.2010.01781.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2010.01781.x
https://doi.org/10.1007/s00366-009-0162-1
http://dl.acm.org/citation.cfm?id=1281991.1282027
https://doi.org/10.1109/ISVD.2009.32
https://doi.org/10.1137/080716748
https://doi.org/10.1145/1185657.1185668
https://doi.org/10.1145/1185657.1185668
https://doi.org/10.1109/TKDE.2007.46
https://doi.org/10.1109/TPAMI.2006.253
https://doi.org/10.1109/TPAMI.2006.253

54 Crane, et al.

[44] F. GÃűbel and A. A. Jagers. 1974. Random walks on graphs. Stochastic Processes and their Applications 2, 4 (1974),
311–336. https://EconPapers.repec.org/RePEc:eee:spapps:v:2:y:1974:i:4:p:311-336

[45] Philipp Herholz andMarc Alexa. 2018. Factor Once: Reusing Cholesky Factorizations on Sub-Meshes. ACMTransaction
on Graphics (Proc. of Siggraph Asia) 37, 6 (2018), 9. https://doi.org/10.1145/3272127.3275107

[46] Philipp Herholz, Timothy A Davis, and Marc Alexa. 2017. Localized solutions of sparse linear systems for geometry
processing. ACM Transactions on Graphics 36, 6 (2017).

[47] Jin-ichi Itoh and Robert Sinclair. 2004. Thaw: A Tool for Approximating Cut Loci on a Triangulation of a Surface.
Experiment. Math. 13, 3 (2004), 309–325. https://projecteuclid.org:443/euclid.em/1103749839

[48] Shreeraj Jadhav, Harsh Bhatia, Peer-Timo Bremer, Joshua A Levine, Luis Gustavo Nonato, and Valerio Pascucci. 2012.
Consistent approximation of local flow behavior for 2d vector fields using edge maps. In Topological Methods in Data
Analysis and Visualization II. Springer, 141–159.

[49] Takashi Kanai and Hiromasa Suzuki. 2000. Approximate shortest path on a polyhedral surface based on selective re-
finement of the discrete graph and its applications. In Geometric Modeling and Processing 2000. Theory and Applications.
Proceedings. IEEE, 241–250.

[50] B KANEVA. 2000. An Implementation of Chen & Han’s Shortest Paths Algorithm. In 12th Canadian Conference on
Computational Geometry (2000).

[51] R. Kimmel and J. A. Sethian. 1998. Computing Geodesic Paths on Manifolds. In Proc. Natl. Acad. Sci. USA. 8431–8435.
[52] D. J. Klein and M. Randić. 1993. Resistance distance. Journal of Mathematical Chemistry 12, 1 (01 Dec 1993), 81–95.

https://doi.org/10.1007/BF01164627
[53] GVV Ravi Kumar, Prabha Srinivasan, V Devaraja Holla, KG Shastry, and BG Prakash. 2003. Geodesic curve computa-

tions on surfaces. Computer Aided Geometric Design 20, 2 (2003), 119–133.
[54] Mark Lanthier. 1999. Shortest path problems on polyhedral surfaces. Ph.D. Dissertation. Carleton University, School of

Computer Science.
[55] Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack. 1997. Approximating weighted shortest paths on polyhedral

surfaces. In Proceedings of the 13th Annual ACM Symposium on COmputational Geometry. ACM, New York, New York,
USA, 274–283.

[56] Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack. 2001. Approximating shortest paths on weighted polyhedral
surfaces. Algorithmica 30, 4 (2001), 527–562.

[57] G.F. Lawler. 2010. Random Walk and the Heat Equation. American Mathematical Society. https://books.google.com/
books?id=ujCIAwAAQBAJ

[58] André Lieutier and Boris Thibert. 2009. Convergence of geodesics on triangulations. Computer Aided Geometric
Design 26, 4 (2009), 412–424.

[59] Yaron Lipman, Raif M Rustamov, and Thomas A Funkhouser. 2010. Biharmonic distance. ACM Transactions on
Graphics 29, 3 (June 2010), 1–11.

[60] R. Litman and A. Bronstein. 2016. SpectroMeter: Amortized Sublinear Spectral Approximation of Distance on Graphs.
ArXiv e-prints (Sept. 2016). arXiv:1609.05715 [cs.DS]

[61] Bangquan Liu, Shuangmin Chen, Shi-Qing Xin, Ying He, Zhen Liu, and Jieyu Zhao. 2017. An optimization-driven
approach for computing geodesic paths on triangle meshes. Computer-Aided Design 90, Supplement C (2017), 105 –
112. https://doi.org/10.1016/j.cad.2017.05.022 SI:SPM2017.

[62] Yong-Jin Liu. 2013. Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures. Computer-
Aided Design 45, 3 (2013), 695–704.

[63] Yong-Jin Liu, Chun-Xu Xu, Dian Fan, and Ying He. 2015. Efficient Construction and Simplification of Delaunay
Meshes. ACM Trans. Graph. 34, 6, Article 174 (Oct. 2015), 13 pages. https://doi.org/10.1145/2816795.2818076

[64] Yong-Jin Liu, Qian-Yi Zhou, and Shi-Min Hu. 2007. Handling degenerate cases in exact geodesic computation on
triangle meshes. The Visual Computer 23, 9-11 (2007), 661–668.

[65] Songting Luo. 2013. A uniformly second order fast sweeping method for eikonal equations. J. Comput. Phys. 241
(May 2013), 104–117.

[66] H. Maehara. 2011. On a proper acute triangulation of a polyhedral surface. Discrete Mathematics 311, 17 (2011), 1903 –
1909. https://doi.org/10.1016/j.disc.2011.05.012

[67] Takashi Maekawa. 1996. Computation of shortest paths on free-form parametric surfaces. Journal of mechanical
design 118, 4 (1996), 499–508.

[68] Claudio Mancinelli, Marco Livesu, and Enrico Puppo. 2018. Gradient Field Estimation on Triangle Meshes. In Smart
Tools and Apps for Graphics - Eurographics Italian Chapter Conference. The Eurographics Association.

[69] Dimas Martínez, Luiz Velho, and Paulo C Carvalho. 2005. Computing geodesics on triangular meshes. Computers &
Graphics 29, 5 (2005), 667–675.

[70] Christian S Mata and Joseph S B Mitchell. 1997. A new algorithm for computing shortest paths in weighted planar
subdivisions (extended abstract). In Proceedings Symposium on Computational Geometry. ACM, New York, New York,

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://EconPapers.repec.org/RePEc:eee:spapps:v:2:y:1974:i:4:p:311-336
https://doi.org/10.1145/3272127.3275107
https://projecteuclid.org:443/euclid.em/1103749839
https://doi.org/10.1007/BF01164627
https://books.google.com/books?id=ujCIAwAAQBAJ
https://books.google.com/books?id=ujCIAwAAQBAJ
http://arxiv.org/abs/1609.05715
https://doi.org/10.1016/j.cad.2017.05.022
https://doi.org/10.1145/2816795.2818076
https://doi.org/10.1016/j.disc.2011.05.012

A Survey of Algorithms for Geodesic Paths and Distances 55

USA.
[71] Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou. 1987. The Discrete Geodesic Problem. SIAM J.

Comput. 16, 4 (Aug. 1987), 647–668. https://doi.org/10.1137/0216045
[72] Thien Nguyen, Kestutis Karciauskas, and Jorg Peters. 2016. C1 Finite Elements on Non-Tensor-Product 2d and 3d

Manifolds. (2016).
[73] Joseph O’Rourke, Subhash Suri, and Heather Booth. 1984. Shortest paths on polyhedral surfaces. In STACS 85,

K. Mehlhorn (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 243–254.
[74] S. Osher and R. Fedkiw. 2003. Level Set Methods and Dynamic Implicit Surfaces. Springer Verlag.
[75] S. Osher and R. Fedkiw. 2003. Level Set Methods and Dynamic Implicit Surfaces. Springer Verlag.
[76] Giuseppe Patané. 2016. STAR - Laplacian spectral kernels and distances for geometry processing and shape analysis.

In Computer Graphics Forum. Consiglio Nazionale delle Ricerche, Rome, Italy, Wiley/Blackwell (10.1111), 559–624.
[77] NM Patrikalakis and L Bardis. 1989. Offsets of curves on rational B-spline surfaces. Engineering with Computers 5, 1

(1989), 39–46.
[78] Nicholas M Patrikalakis and Takashi Maekawa. 2009. Shape interrogation for computer aided design and manufacturing.

Springer Science & Business Media.
[79] Gabriel Peyré and Laurent D Cohen. 2009. Geodesic methods for shape and surface processing. In Advances in

Computational Vision and Medical Image Processing. Springer, 29–56.
[80] Gabriel Peyré, Mickael Péchaud, Renaud Keriven, Laurent D Cohen, et al. 2010. Geodesic methods in computer vision

and graphics. Foundations and Trends® in Computer Graphics and Vision 5, 3–4 (2010), 197–397.
[81] Konrad Polthier andMarkus Schmies. 1998. Straightest geodesics on polyhedral surfaces. InMathematical Visualization.

Springer-Verlag, New York, 135–150.
[82] Konrad Polthier and Markus Schmies. 1999. Geodesic flow on polyhedral surfaces. In Data VisualizationâĂŹ99.

Springer, 179–188.
[83] Yipeng Qin. 2017. Fast and exact geodesic computation using Edge-based Windows Grouping. Ph.D. Dissertation.

Bournemouth University.
[84] Yipeng Qin, Xiaoguang Han, Hongchuan Yu, Yizhou Yu, and Jianjun Zhang. 2016. Fast and Exact Discrete Geodesic

Computation Based on Triangle-oriented Wavefront Propagation. ACM Trans. Graph. 35, 4, Article 125 (July 2016),
13 pages. https://doi.org/10.1145/2897824.2925930

[85] Nicolas Ray and Dmitry Sokolov. 2014. Robust polylines tracing for n-symmetry direction field on triangulated
surfaces. ACM Transactions on Graphics (TOG) 33, 3 (2014), 30.

[86] Raif M. Rustamov. 2007. Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation. In
Proceedings of the Fifth Eurographics Symposium on Geometry Processing (Barcelona, Spain) (SGP ’07). Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland, 225–233. http://dl.acm.org/citation.cfm?id=1281991.1282022

[87] Marco Saerens, Francois Fouss, Luh Yen, and Pierre Dupont. 2004. The Principal Components Analysis of a Graph,
and Its Relationships to Spectral Clustering. In Machine Learning: ECML 2004, Jean-François Boulicaut, Floriana
Esposito, Fosca Giannotti, and Dino Pedreschi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 371–383.

[88] Shubhangi Saraf. 2009. Acute and nonobtuse triangulations of polyhedral surfaces. European Journal of Combinatorics
30, 4 (2009), 833 – 840. https://doi.org/10.1016/j.ejc.2008.08.004

[89] Olaf Schenk, Klaus Gärtner, Wolfgang Fichtner, and Andreas Stricker. 2001. PARDISO: A High-performance Serial
and Parallel Sparse Linear Solver in Semiconductor Device Simulation. Future Gener. Comput. Syst. 18, 1 (Sept. 2001),
69–78. https://doi.org/10.1016/S0167-739X(00)00076-5

[90] R Schmidt, C Grimm, and B Wyvill. 2006. Interactive decal compositing with discrete exponential maps. ACM
Transactions on Graphics (TOG) 25, 3 (2006), 605–613.

[91] N. Sharp, Y. Soliman, and K. Crane. 2018. The Vector Heat Method. ArXiv e-prints (May 2018). arXiv:1805.09170 [cs.GR]
[92] A. Sinha and M. Kazhdan. 2016. Geodesics using Waves: Computing Distances using Wave Propagation. ArXiv

e-prints (Dec. 2016). arXiv:1612.02509 [cs.CG]
[93] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues Hoppe. 2005. Fast Exact and

Approximate Geodesics on Meshes. ACM Trans. Graph. 24, 3 (July 2005), 553–560. https://doi.org/10.1145/1073204.
1073228

[94] Z. Tari, J. Shah, and H. Pien. 1997. Extraction of Shape Skeletons from Grayscale Images. Computer Vision and Image
Understanding 66, 2 (1997), 133–146.

[95] Marc Troyanov. 1986. Les Surfaces Euclidiennes a Singularites Coniques. Ens. Math 32 (1986), 74–94.
[96] S. R. S. Varadhan. 1967. On the behavior of the fundamental solution of the heat equation with variable coefficients.

Communications on Pure and Applied Mathematics 20, 2 (1967), 431–455.
[97] Christina Vaz, Keenan Crane, and Andreas Fabri. 2018. Heat Method with Intrinsic Delaunay Triangulation. In CGAL

User and Reference Manual (4.12.1 ed.). CGAL Editorial Board. https://doc.cgal.org/4.12.1/Manual/packages.html#
PkgHandlesAndCirculatorsSummary

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1137/0216045
https://doi.org/10.1145/2897824.2925930
http://dl.acm.org/citation.cfm?id=1281991.1282022
https://doi.org/10.1016/j.ejc.2008.08.004
https://doi.org/10.1016/S0167-739X(00)00076-5
http://arxiv.org/abs/1805.09170
http://arxiv.org/abs/1612.02509
https://doi.org/10.1145/1073204.1073228
https://doi.org/10.1145/1073204.1073228
https://doc.cgal.org/4.12.1/Manual/packages.html#PkgHandlesAndCirculatorsSummary
https://doc.cgal.org/4.12.1/Manual/packages.html#PkgHandlesAndCirculatorsSummary

56 Crane, et al.

[98] Charlie CL Wang. 2004. CyberTape: an interactive measurement tool on polyhedral surface. Computers & Graphics
28, 5 (2004), 731–745.

[99] Xiaoning Wang, Zheng Fang, Jiajun Wu, Shi-Qing Xin, and Ying He. 2017. Discrete Geodesic Graph (DGG) for
Computing Geodesic Distances on Polyhedral Surfaces. Comput. Aided Geom. Des. 52, C (March 2017), 262–284.
https://doi.org/10.1016/j.cagd.2017.03.010

[100] Max Wardetzky, Saurabh Mathur, Felix Kaelberer, and Eitan Grinspun. 2007. Discrete Laplace operators: No free
lunch. In Geometry Processing, Alexander Belyaev and Michael Garland (Eds.). The Eurographics Association. https:
//doi.org/10.2312/SGP/SGP07/033-037

[101] Qian Xie, Sebastian Kurtek, Huiling Le, and Anuj Srivastava. 2013. Parallel transport of deformations in shape space
of elastic surfaces. In Proceedings of the IEEE International Conference on Computer Vision. Florida State University,
Tallahassee, United States, 865–872.

[102] Shi-Qing Xin, Ying He, and Chi-Wing Fu. 2012. Efficiently computing exact geodesic loops within finite steps. IEEE
Transactions on Visualization and Computer Graphics 18, 6 (2012), 879–889.

[103] Shi-Qing Xin and Guo-Jin Wang. 2007. Efficiently Determining a Locally Exact Shortest Path on Polyhedral Surfaces.
Comput. Aided Des. 39, 12 (Dec. 2007), 1081–1090. https://doi.org/10.1016/j.cad.2007.08.001

[104] Shi-Qing Xin and Guo-Jin Wang. 2009. Improving Chen and Han’s algorithm on the discrete geodesic problem. ACM
Transactions on Graphics (TOG) 28, 4 (2009), 104.

[105] Shi-Qing Xin, Xiang Ying, and Ying He. 2012. Constant-time All-pairs Geodesic Distance Query on Triangle Meshes.
In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (Costa Mesa, California) (I3D
’12). ACM, New York, NY, USA, 31–38. https://doi.org/10.1145/2159616.2159622

[106] Chunxu Xu, Tuanfeng Y. Wang, Yong-Jin Liu, Ligang Liu, and Ying He. 2015. Fast Wavefront Propagation (FWP) for
Computing Exact Geodesic Distances on Meshes. IEEE Trans. Vis. Comput. Graph. 21, 7 (2015), 822–834.

[107] Fang Yang and Laurent Cohen. 2015. Geodesic Distance and Curves Through Isotropic and Anisotropic Heat Equations
on Images and Surfaces. J Math Imaging Vis (2015).

[108] Xiang Ying, XiaoningWang, and Ying He. 2013. Saddle Vertex Graph (SVG): A Novel Solution to the Discrete Geodesic
Problem. ACM Trans. Graph. 32, 6, Article 170 (Nov. 2013), 12 pages. https://doi.org/10.1145/2508363.2508379

[109] Xiang Ying, Shi-Qing Xin, and Ying He. 2014. Parallel Chen-han (PCH) Algorithm for Discrete Geodesics. ACM Trans.
Graph. 33, 1, Article 9 (Feb. 2014), 11 pages. https://doi.org/10.1145/2534161

[110] Carol T. Zamfirescu. 2013. Survey of two-dimensional acute triangulations. Discrete Mathematics 313, 1 (2013), 35 –
49. https://doi.org/10.1016/j.disc.2012.09.016

[111] Eugene Zhang, Konstantin Mischaikow, Greg Turk, and Greg Turk. 2006. Vector Field Design on Surfaces. ACM
Trans. Graph. 25, 4 (Oct. 2006), 1294–1326. https://doi.org/10.1145/1183287.1183290

, Vol. 1, No. 1, Article . Publication date: July 2020.

https://doi.org/10.1016/j.cagd.2017.03.010
https://doi.org/10.2312/SGP/SGP07/033-037
https://doi.org/10.2312/SGP/SGP07/033-037
https://doi.org/10.1016/j.cad.2007.08.001
https://doi.org/10.1145/2159616.2159622
https://doi.org/10.1145/2508363.2508379
https://doi.org/10.1145/2534161
https://doi.org/10.1016/j.disc.2012.09.016
https://doi.org/10.1145/1183287.1183290

	Abstract
	1 Introduction
	1.1 Geodesic Queries
	1.2 Polyhedral vs. Smooth Geodesic Problem

	2 Background
	2.1 Smooth Setting
	2.2 Polyhedral Setting

	3 PDE-based Methods
	3.1 Laplace-Beltrami and Cotan Laplace
	3.2 Wavefront Propagation
	3.3 Diffusion

	4 Computational Geometry Methods
	4.1 Global methods
	4.2 Local Methods

	5 Methods for Geodesics Tracing
	5.1 Tracing on polyhedral meshes
	5.2 Hybrid approaches
	5.3 Tracing streamlines of a vector field
	5.4 Point to Point tracing

	6 Meshing
	6.1 PDE-Based Methods
	6.2 Computational Geometry Methods

	7 Evaluation
	7.1 Computational geometry methods

	8 Concluding Remarks
	References

