
Visual Motif Discovery via First-Person Vision

Ryo Yonetani1, Kris M. Kitani2, and Yoichi Sato1

1 The University of Tokyo, Tokyo, Japan
{yonetani, ysato}@iis.u-tokyo.ac.jp

2 Carnegie Mellon University, Pittsburgh, PA, USA
kkitani@cs.cmu.edu

Abstract. Visual motifs are images of visual experiences that are signif-
icant and shared across many people, such as an image of an informative
sign viewed by many people and that of a familiar social situation such
as when interacting with a clerk at a store. The goal of this study is to
discover visual motifs from a collection of first-person videos recorded by
a wearable camera. To achieve this goal, we develop a commonality clus-
tering method that leverages three important aspects: inter-video simi-
larity, intra-video sparseness, and people’s visual attention. The problem
is posed as normalized spectral clustering, and is solved e�ciently using
a weighted covariance matrix. Experimental results suggest the e↵ective-
ness of our method over several state-of-the-art methods in terms of both
accuracy and e�ciency of visual motif discovery.
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1 Introduction

We are interested in understanding from a data-driven perspective, what images
from a person’s visual experience are common among the majority. By developing
algorithms for automatically extracting such shared visual experiences, we aim to
understand what parts of the physical world are meaningful to people. We denote
these shared visual experiences that have significance across many people as
visual motifs. While visual motifs can include images of physical objects like signs
and historic buildings, they can also be images of social situations or observed
human activities. Examples of visual motifs are illustrated in Figure 1.

From a practical perspective, the ability to extract perceptually important
images can be useful for such tasks as life-logging, video summarization, scene
understanding, and assistive technologies for the blind. Automatically extracting
important visual motifs can be helpful for identifying meaningful images for life-
logging or summarization. By associating visual motifs to localized regions of the
environment, we can inform scene understanding by identifying what parts of
the scene are visual ‘hot-spots.’ The extraction of important visual information
in the environment can also be helpful for assistive technologies, by conveying
to blind people the information embedded in the visual world [1–3].

In this work, we automatically discover visual motifs using wearable cameras
(e.g., Google Glass), which we term visual motif discovery. Wearable cameras,
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Fig. 1. Examples of visual motif discovery. Two signs annotated with colored rectangles
are discovered as visual motifs from first-person videos.

especially when mounted on people’s heads, can capture what people see clearly
in the form of first-person point-of-view (POV) videos. This unique viewing
perspective of wearable cameras has made it the platform of choice for under-
standing fine-grained human activities [4–9] and video summarization [10–15].

While it is intuitive that people will share meaningful visual experiences, it
is not clear how these visual motifs can be extracted automatically from large
first-person video collections. A common approach to discover visual motifs is
to use inter-video similarity. Typically, a clustering algorithm is used to find
cluster centroids corresponding to frequently occurring visual signatures shared
across multiple images (e.g., [16, 17]). This is particularly problematic for first-
person videos that tend to contain many mundane actions such as walking down
a bare corridor or looking down at the ground. A straightforward application
of clustering produces large clusters of mundane actions. This suggests that we
need to discover visual commonalities while weighing them according to their
significance. However, this raises the question of how to quantify significance.

To address this fundamental question of significance, we leverage visual cues
unique to large collections of first-person videos taken in the same environment.
As stated earlier, a large portion of the egocentric visual experience is frequently
filled with mundane moments. Conversely, important visual motifs are typically
distributed sparsely through our visual experience. This implies that intra-video
sparseness is an important characteristic of meaningful visual motifs.

Another important feature of first-person videos is that they capture a per-
son’s focus of attention. Here we make the simple observation that when a person
needs to acquire important visual information from a scene, she often stops and
stays in the same position. Such an action can be observed clearly in the form
of ego-motion of first-person videos. This implies that egocentric attention mea-
sured via camera ego-motion is a salient cue for discovering meaningful motifs.

We integrate the requirements of (1) inter-video similarity, (2) intra-video
sparseness, and (3) egocentric attention into a constrained optimization prob-
lem to discover visual motifs across a large first-person video collection. In the
proposed method, the problem can be formulated as normalized spectral clus-
tering constrained by an intra-video sparseness prior and cues from the egocen-
tric attention, and is solved e�ciently using a weighted covariance matrix. We
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empirically show that our method can discover meaningful visual motifs while
processing a million first-person POV image frames in 90 seconds.

To the best of our knowledge, this work is the first to introduce the task of
discovering visual motifs via first-person vision – significant first-person POV
visual experiences shared across many people. The proposed method is tailored
to discover visual motifs from a large collection of first-person videos using the
constraints of intra-video sparseness and egocentric attention cues. Empirical
validation shows that our method outperforms state-of-the-art commonality dis-
covery methods [18, 19] on first-person video datasets.

Related work. The method of discovering commonalities in multiple images
is adopted in many computer vision tasks such as common object discovery
(co-segmentation or co-localization) [16–18, 20–25], co-summarization [26], co-
person detection [27], temporal commonality discovery [19], and popularity esti-
mation [28]. They often generate candidates of commonalities (e.g., superpixels,
bounding-box proposals, video shots), in which the significance of each candi-
date is evaluated based on objectness or saliency. Significance measurements are
also essential in automatic video summarization. Each video shot is evaluated
for its significance using the presence of important persons and objects [10] or
interestingness [12]. In contrast to previous work, we take advantage of using
first-person videos by leveraging egocentric attention cues as a more natural fea-
ture for measuring the subjective significance of a visual experience. Although
we limit our study to the use of a single wearable camera, the additional use of
an eye tracker could help us to further understand visual attention [15].

In the field of first-person vision, recent studies proposed the use of multiple
wearable cameras recording at the same time to estimate the joint focus of
attention [29–31]. Accurate poses and positions of wearable cameras enabled
by geometric information of the environment are used to find intersections of
people’s attention directions. In contrast, we focus on discovering shared visual
experiences across many individuals without the use of temporal synchronization
or assumption of interactive scenarios.

2 Discovering Visual Motifs from First-Person Videos

Suppose that we are given a collection of first-person videos recorded by many
people in a certain environment (e.g., a university campus). The goal of this
work is to discover visual motifs specific to the environment: significant visual
experiences shared across multiple people such as an image of an informative
sign viewed by many people or that of a familiar social situation such as when
interacting with a clerk at the university bookstore.

To discover visual motifs, we propose a method based on an unsupervised
commonality clustering framework. We accept a collection of videos (a sequence
of image frames) as input and output a cluster of images corresponding to visual
motifs. In Section 2.1, we describe how image frames observed across multiple
videos are analyzed using the clustering framework to discover visual motifs
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while taking into account inter-video similarity and intra-video sparseness. Then
in Section 2.2, we outline a method for detecting pauses in visual attention as
an egocentric attention cue, and describe how that information can be used to
inform the proposed method of significant image frames. We further present
a technique for increasing the computational e�ciency of our method through
the use of weighted covariance matrix for clustering in Section 2.3. Finally, we
describe an incremental framework for discovering multiple visual motifs from a
large video collection in Section 2.4.

2.1 Discovering Common Scenes

We first describe a general commonality clustering framework (e.g., [18, 20, 23–
26]) for discovering common scenes from multiple videos. This framework inte-
grates the concepts of inter-video similarity and intra-video sparseness.

Let f (i)
t 2 RV be a V -dimensional feature vector describing a scene of the t-th

image frame in the i-th video. We denote a sequence of scene features extracted

from the i-th video as F

(i) = [f (i)
1 , . . . ,f

(i)
T (i) ]

> 2 RT (i)⇥V , where T

(i) is the
number of image frames. The moments when a common scene is observed in the i-

th video are described by an indicator vector x(i) = [x(i)
1 , . . . , x

(i)
T (i) ]

> 2 {0, 1}T (i)

where x

(i)
t takes 1 if the t-th image frame includes the common scene.

Our goal is to estimate the indicator vector x(i) for N given videos. To this

end, we define the inter-video similarity by an a�nity matrix, Wij 2 RT (i)⇥T (j)

,

where the (t, t0)-th entry of Wij is given by an a�nity function �(f (i)
t ,f

(j)
t0 ) 2 R

(e.g., a dot product or a radial basis function). We also introduce a degree

matrix Di = diag(d(i)1 . . . , d

(i)
T (i)) where d

(i)
t =

PT (i)

t0=0 max(�(f (i)
t ,f

(i)
t0 ), 0). This

degree matrix describes the inverse of intra-video sparseness; d(i)t will increase
when the t-th image frame of the i-th video is similar to the other frames in
the same i-th video. The inter-video similarity Wij and the inverted intra-video
sparseness Di are further combined across all combinations of N videos:

W =

2

64
W11 · · · W1N
...

. . .
...

WN1 · · · WNN

3

75 2 RTall⇥Tall
, D =

2

64
D1 0 0

0
. . . 0

0 0 DN

3

75 2 RTall⇥Tall
, (1)

where Tall =
P

i T
(i) is the total number of image frames. Likewise, we stack

x

(i) to summarize the indicators across multiple videos:

x = [(x(1))>, . . . , (x(N))>]> 2 {0, 1}Tall
. (2)

By maximizing the sum of inter-video similarities x

>
Wx with respect to

x, we can find a scene frequently observed across multiple videos. At the same
time, the scenes sparsely distributed in each video can be found by minimizing
the inverse of intra-video sparseness x

>
Dx on x. These two requirements can

be satisfied simultaneously by solving the following maximization problem.

x = argmax
x

x

>
Wx

x

>
Dx

s.t. x 2 {0, 1}Tall
. (3)
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Fig. 2. Left: motion vectors computed on a 10⇥5 grid for several image frames where
visual motifs are annotated with red circles. Right: amplitudes of motion vectors along
the vertical direction smoothed over time with a set of Gaussian filters.

Equation (3) can be solved via normalized spectral clustering [32, 33] with two-
clusters or normalized cuts [34]. We first compute two eigenvectors Y = [y1,y2] 2
RTall⇥2 of the matrix L = D

� 1
2
WD

� 1
2 for the two largest eigenvalues3. Each row

of the eigenvectors Y is then divided into common-scene and non-common-scene
clusters via k-means clustering, where the centroid of the common-scene cluster
is more distant from the origin. Cluster assignments are finally used for x such

that x

(i)
t = 1 if and only if the corresponding elements of Y belong to the

common-scene cluster. Importantly, the eigenvalue problem on L can be solved
e�ciently using various sparse eigensolvers (e.g., the Lanczos method) since L

is typically sparse and only two eigenvectors are required [34].

2.2 Learning to Detect Egocentric Attention Cues

The framework described above discovers common scenes that are not always
significant to people, such as a hallway to reach a visual motif. In order to
identify significant parts of visual experiences in videos, we focus on a specific
but yet commonly occurring moment when people pause to acquire important
visual information from a scene (e.g., looking at maps or purchasing something
from vending machines). We can detect such pausing actions taken by camera
wearers by observing ego-motion of first-person videos. Detection results can
then be used as an egocentric attention cue to constrain the clustering process.

Formally, the egocentric attention cue is given for each frame by a score p(i)t 2
[0, 1] that increases if a camera wearer is more likely to take a pausing action at
the t-th frame of the i-th video. Similar to D in Equation (1), this egocentric
attention cue is extended to handle multiple videos: P = diag(P1, . . . , PN ) where

Pi = diag(p(i)1 , . . . , p

(i)
T (i)). We then constrain the clustering process by solving the

3 Similar to [33], we compute the eigenvectors for the largest eigenvalues of L instead
of the smallest eigenvalues of I � L.
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eigenvalue problem on the following matrix L

0:

L

0 = (D� 1
2
P

1
2 )W (D� 1

2
P

1
2 ) = AWA. (4)

The indicator x obtained from L

0 can maximize not only the inter-video simi-
larity and intra-video sparseness, but also the sum of egocentric attention cues.

Pausing actions are detected as follows. We observe that people’s heads can
remain stable for a long period when people stay in the same locations and
move quickly for a short period when actively scanning visual information. As
illustrated in Figure 2, these trends are observed clearly in the ego-motion of first-
person videos. As shown in the left of the figure, we compute motion vectors on a
10⇥5 grid following [7]. By smoothing these motion vectors over time using a set
of Gaussian filters with several standard deviations, we can see smaller motion
amplitudes for larger deviations when people are pausing to acquire information
from a scene (the right of the figure). The proposed method learns a pausing-
action detector from these motion vectors. In a learning step, we apply the set of
Gaussian filters independently to the horizontal and vertical elements as well as
the magnitude of the motion vectors. A set of smoothed vectors and the original
vectors for each frame are then aggregated to serve as a feature vector, and are
learned using a binary classifier. Note that learning of the detector needs to be
carried out only once and is not necessary for each environment or person.

In a testing step, the decision score of the detector obtained for each image
frame is fed to the following postprocessing pipeline to generate egocentric at-
tention cue P . A Gaussian filter is first applied to a sequence of decision scores
to ensure its temporal smoothness. We then adopt a power normalization (i.e.,
sgn(p0)

p
abs(p0) for a smoothed score p

0) to encourage small decision peaks and
a sigmoid function to suppress extremely strong ones. Finally, we scale the se-
quence into [0, 1] to use it as the diagonal entries of P .

2.3 E�cient Clustering using Weighted Covariance Matrix

The clustering process in Section 2.1 should be conducted e�ciently since a large
collection of first-person videos is often required for visual motif discovery. Re-
liable motifs that are not just attractive to a limited number of people can be
obtained from a video collection containing as many recordings as possible. In
addition, each video can have a large number of frames when a camera wearer
keeps recording everyday life (e.g., [35]). As a result, the number of total frames
Tall will inevitably become huge. While the eigenvalue problem on L

0 in Equa-
tion (4) can be solved in linear time to Tall by using sparse eigensolvers, there
is a critical bottleneck in computing an a�nity matrix W ; the time complexity
of computing W is O(T 2

allV ). This computation is required for most cases when
one tries to cluster commonalities based on pairwise a�nities [18, 20, 23–26].

To address this problem, we use a compact weighted covariance matrix in-
stead of the large L

0. The only requirement to use this technique is to define an

a�nity function by a dot-product, i.e., �(f (i)
t ,f

(j)
t0 ) , (f (i)

t )>f (j)
t0 . Let us intro-

duce a data matrix stacking all feature vectors: F = [(F (1))>, . . . , (F (N))>]> 2
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RTall⇥V . We define W by W = FF

>. Then, L0 is rewritten as follows:

L

0 = AWA = (AF )(AF )> 2 RTall⇥Tall
. (5)

Now we introduce a covariance matrix of F weighted by A:

C = (AF )>(AF ) 2 RV⇥V
. (6)

Crucially, the eigenvectors of L0 needed for spectral clustering can be obtained
from those of the weighted covariance matrix C [36, 37]. Given zi 2 RV as an
eigenvector of C for the i-th largest eigenvalue, the corresponding eigenvector
yi 2 RTall of L0 can be reconstructed by yi / AFzi. The time complexity to
compute C is O(V 2

Tall), which is much smaller than that of L0 when V ⌧ Tall.
When F is designed such that each feature dimension is less correlated, C is
sparse and the eigenvalue problem on C can be solved e�ciently. One limitation
in using the weighted covariance matrix is that visual motifs should be linearly
separable from other scenes in a feature space because we do not introduce
any nonlinearity in the a�nity function �. We therefore use a high-level feature
tailored to linear classifiers such as the Fisher vector [38] in F .

2.4 Discovering Multiple Visual Motifs

We have so far described how to discover a single visual motif from videos. Our
method can be further extended to an incremental framework that allows videos
to have multiple motifs. Specifically, we iteratively discover the most probable
motif while updating C based on the discovery result.

Suppose that a visual motif is discovered in the form of xk 2 {0, 1}Tall at the
current k-th step. Here we denote the i-th row of matrix AF and vector x as
AF [i] and x[i], respectively. Then, the degree of how the k-th motif biases the
original C is explained by Ck =

P
i2{j|xk[j]=1}(AF [i])>(AF [i]). Other motifs can

therefore be discovered in the subsequent k+1-th step by updating C  C�Ck.
We also deflate A of selected frames to be zero (i.e., A  A · diag(1 � xk)) so
that they will not be selected again.

One important problem for discovering multiple motifs is the termination
of iterative discovery, i.e., how to estimate the number of motifs in a video
collection. Some studies on spectral clustering proposed to observe eigenvalues
to determine the number of clusters [32, 39]. Intuitively, eigenvalues are large as
long as the number of clusters is below that of actual groups. In our method, the
eigenvalues will become small when no more common scenes remain in videos. We
also observe that egocentric attention cue P can indicate the number of motifs.
If the attention cue of selected frames is small, these frames are not likely to be
a visual motif but a scene incidentally observed across multiple videos.

To incorporate these two criteria, we define a confidence score for the k-th

motif by e = �

x

>
k Pxk

x

>
k xk

, where � is the largest eigenvalue obtained in the eigen-

value problem of the k-th step. We discover visual motifs iteratively as long as e
is above a pre-defined threshold emin. A complete algorithm to discover multiple
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Algorithm 1 Discovering multiple visual motifs
Require: Feature F , degree matrix D, egocentric attention cue P , threshold emin.
Ensure: Set of indicator vectors x1,x2, . . . .

1: Compute A = D� 1
2P

1
2 .

2: Compute C = (AF )>(AF ).
3: Set k = 0
4: repeat
5: Find two eigenvectors of C for the two largest eigenvalues, Z = [z1, z2].
6: Compute Y = AFZ.
7: Conduct two-clusters k-means clustering on Y to obtain xk.

8: Compute e = �
x

>
k Pxk

x

>
k xk

, where � is the largest eigenvalue in Step 5.

9: Compute Ck =
P

i2{j|xk[j]=1}(AF [i])>(AF [i])
10: Update C  C � Ck.
11: Update A A · diag(1� xk).
12: Update k  k + 1.
13: until e < emin

visual motifs is described in Algorithm 1. After running the algorithm, we finally
refine the results (a sequence of indicator vectors x1,x2, . . . ) by omitting some
indicator vectors that only select the image frames from a single video.

3 Experiments

To evaluate the e↵ectiveness of the proposed method, we constructed a dataset
composed of multiple first-person videos during a navigation task in several
di↵erent environments. We also tested our method on a dataset recorded by
people during social interactions [40]. The experimental results show that the
proposed method successfully improves upon both accuracy and e�ciency of
visual motif discovery compared to several state-of-the-art methods [18, 19].

3.1 Navigation Dataset

Because many prior studies on first-person vision focused on how their method
could be generalized to a variety of environments (e.g., GeorgiaTech Egocentric
Activities [4], JPL First-Person Interaction [6], CMU Social Saliency [29]), there
are few datasets of first-person videos that have been recorded many times in one
environment. One prospective dataset that we will test in Section 3.5 is First-
Person Social Interactions [40]. However, the number of visual motifs is not
su�cient for quantitatively evaluating the accuracy of visual motif discovery.

We therefore introduce a new Navigation dataset that contains multiple
recordings of 21 visual motifs. First-person videos were taken in six di↵erent
environments, where three to four subjects were assigned to each of the environ-
ments. Subjects joined in on a navigation task as follows. They visited several
pre-defined places with attractive physical objects such as map signs, vending
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machines, and the entrance of a store. They were asked to look at what was
described on these objects (e.g., reading a map sign). They were able to take
arbitrary positions, poses, and head motions when looking at the objects. This
made the appearance of motifs su�ciently variable for each recording. We only
instructed the subjects to look at objects from a reasonable distance to restrain
them from acquiring information in an extremely unusual way, such as read-
ing signs from an extremely long (or short) distance. They were also allowed
to visit other places that were not pre-defined. In total, 44 first-person videos
were recorded at 30 fps. The time of each recording was 90 to 180 seconds and
the total number of image frames for each environment was on average 27784.0.
To complete the feature extraction steps in a reasonable time, each video was
resized to a resolution of 320x180.

Ground truth labels of visual motifs were given as follows. We first annotated
the time intervals when image frames captured pre-defined objects roughly at
the center. Then, we refined the intervals so that the acceleration of head motion
was locally minimum and maximum at the beginning and end of the intervals,
respectively. The average time when subjects were judged as looking at the
objects was 5.8 seconds. These annotations were also used for learning a detector
for egocentric attention cues. Note that we confirmed by manual inspection that
our dataset did not contain other visual motifs (i.e., images of other physical
objects seen by the majority of subjects) that were not in the pre-defined set.

3.2 Implementations

One important implementation of our method is the design of scene features. As
we stated in Section 2.3, the features should have the potential of linearly sepa-
rating visual motifs from other unimportant scenes to use a weighted covariance
matrix. In the experiments, the following two types of features were used:

SIFT + Fisher vector (FV) RootSIFT descriptors [41] were sparsely sam-
pled from each image frame. They were then fed to the principal compo-
nent analysis (PCA) with 64 components and the Fisher vector [38] with
the 128-component Gaussian mixture model (GMM) followed by power and
L2 normalizations. As the features were rather high dimensionally (16384
dimensions), we adopted the sparse random projection [42] to project the
features onto a 1024-dimensional feature space. We trained the PCA and
GMM components for each environment independently.

CNN feature (CNN) A convolutional neural network (CNN) trained with the
MIT Places database [43] was used as a feature descriptor. To investigate
how the pre-trained CNN can be used to extract high-level features that
could cope with the variability of motif appearances, we utilized the fc6

layer outputs of the pre-trained network as a 4096-dimensional feature.

Note that both features were scaled for each environment so that each feature
dimension had zero-mean and unit-variance. Based on these features, we imple-
mented two variants of the proposed method: Ours (FV) and Ours (CNN).
For both methods, we set eth = 0.5 which empirically worked well.
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To enable an egocentric attention cue, we trained a linear support vector
machine. Specifically, we split our dataset into two subsets based on environment
IDs (videos of three environments recorded by three subjects and those of the
other three environments by four subjects) and trained a pausing-action detector
with one subset to test the other. Note that subjects and environments did not
overlap between training and testing subsets. The standard deviations used for a
set of Gaussian filters were 1 and 3 seconds in feature extraction, and 1 second in
postprocessing. The impact of using the egocentric attention cue was validated
with the following two degraded versions of our method: (1) SC, which uses
a covariance matrix C = (D� 1

2
F )>(D� 1

2
F ) and a confidence score e = � to

remove the e↵ect of egocentric attention cue P in Algorithm 1, and is equivalent
to standard normalized spectral clustering; and (2) EgoCue, which directly

uses p(i)t as a confidence score for each frame, which can be regarded as a simple
supervised learning method to detect visual motifs.

Baselines. Two state-of-the-art methods on commonality discovery served as
baselines. One is the temporal commonality discovery method (TCD) [19]4.
Given a pair of videos, TCD discovers a pair of temporal intervals that include
similar feature patterns. In the experiments, TCD was applied to all combina-
tions of videos in a collection. Each image frame was then given a confidence
score of visual motifs based on how many times the frame was discovered as a
visual motif. We also took into account the egocentric attention cue of discovered

frames, p(i)t , as follows. If the t-th frame of the i-th video was discovered by the

combinations of K other videos, the frame obtained a confidence score of Kp

(i)
t .

The other baseline is the object co-localization method (COLOC) [18]5.
This method discovers a single common object observed across multiple images
by selecting one of the object proposals generated per image. Each proposal has
a prior score given by objectness, and objects are discovered with a confidence
score. Instead of the object proposals per image, we used image frames of a
given video as a proposal. The prior score of each frame proposal was then given

by p

(i)
t instead of the objectness used in [18]. Importantly, our implementation

of COLOC discovered, as a visual motif, only a single image frame for each
video. However, visual motifs were observed for consecutive frames of a certain
length. We therefore found the consecutive frames around the discovered frame
via temporal dilation, where the dilation size was learned from training subsets.

3.3 Detecting Visual Motifs

We first compared how well the methods could detect any visual motifs. To eval-
uate detection performance, we extended the confidence score e defined originally
per visual motif in Ours (FV), Ours (CNN), SC, and COLOC to that de-
fined per frame such as that given in EgoCue and TCD. Specifically, video

4
http://humansensing.cs.cmu.edu/wschu/project_tcd.html

5
http://ai.stanford.edu/

~

kdtang/
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Table 1. Average precision scores. Navigation-1: 21 video collections each of which
includes single motif. Navigation: six video collections all including multiple motifs.

Ours (FV) Ours (CNN) SC EgoCue TCD [19] COLOC [18]

Navigation-1 0.77 0.79 0.64 0.67 0.63 0.63
Navigation 0.77 0.70 0.60 0.60 - -

Table 2. Number of visual motifs pre-defined per environment on Navigation (top)
and that discovered with Ours (FV) (bottom).

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6

# motifs 4 4 4 3 3 3
# discovered 4 4 5 3 3 4

frames discovered as a certain visual motif were given the confidence score of
that motif; otherwise, they were given 0. These per-frame confidence scores were
used to calculate precision-recall curves and average precision scores.

Since it was di�cult to run the two baselines on Navigation in a reasonable
time, we also constructed a smaller dataset, Navigation-1, which was cropped
from Navigation to include a single visual motif per video. For each video, we
cropped a shot including the time interval of visual motifs with a margin of 10
seconds (i.e., 300 frames) before and after the interval. As a result, 21 collections
of videos were generated. OnNavigation-1, we detected a single motif with each
method. We then tested the proposed method as well as its degraded versions
on Navigation, where multiple motifs were discovered for evaluation.

Table 1 lists the average precision scores for all methods. Note that for SC,
TCD, and COLOC, we describe the results using the FV feature, which were
better than those using the CNN feature. The left of Figure 3 also depicts
precision-recall curves. Overall, the proposed method clearly outperformed the
two baselines on Navigation-1. We also confirmed that this was achieved given
the combination of common scene discovery and egocentric attention cue because
the performance of SC and EgoCue was quite limited. The FV feature worked
comparably to CNN on Navigation-1 and the best on Navigation. The num-
ber of visual motifs pre-defined in Navigation and discovered with Ours (FV)
are compared in Table 2. For most cases, our method could estimate the number
of visual motifs accurately.

We also evaluated the computation times of each method, as shown on the
right of Figure 3. We generated videos of various numbers of frames simply by
concatenating our videos multiple times. To show the impact of using a weighted
covariance matrix, we also tested a variant of the proposed method that relied on
L

0 in Equation (5) instead of C in Equation (6), which we referred to as Ours
(with L’) in the figure. Since the time complexity to compute the weighted
covariance is linearly proportional to the number of image frames, the proposed
method is an order-of-magnitude faster than the others. Note that high framerate
videos are necessary only when computing ego-motion. Once egocentric attention
cues are given, the clustering process can work under much lower framerates. If
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Fig. 3. Left: Precision-recall curves of methods on Navigation-1. Right: Computation
times. For bothTCD andCOLOC we used codes available on authors’ websites.Ours
(FV) and Ours (with L) were implemented in Python. All methods were tested on
MacPro with 2.7-GHz 12-Core Intel Xeon E5.

all videos are downsampled to 1 fps, our method can find visual motifs from 10
hours of recording in 1 second.

3.4 Distinguishing Multiple Motifs

Next, we show how our method can distinguish multiple visual motifs. In Fig-
ure 4, we describe confusion matrices and average accuracies of Ours (FV)
and SC for each environment. To obtain the confusion matrices, we assigned
pre-defined (i.e., ground-truth) motifs to discovered (predicted) ones via linear
assignment. By using an egocentric attention cue, we successfully classified visual
motifs for many environments. As shown in Figure 5, visual motifs were matched
regardless of the points-of-view or parts of pre-defined objects that could be ob-
served. Examples 3 and 6 also suggest that our method works well even when
people are interacting with others and making frequent head and hand motions.

Figure 6 presents other examples of visual motifs. The use of high-level fea-
tures such as FV allows us to match motifs even when a few changes were made
in their appearance. Most failure cases were due to undiscovered instances (i.e.,
incorrectly classified as unimportant background scenes). We found that these
failures occurred when pre-defined objects were observed at di↵erent locations
(the menu board in the fourth column of Figure 6) or when they were not salient
(the navigation sign in the fifth column).

3.5 Examples on First-Person Social Interactions Dataset

While we mainly focused on visual motifs for a navigation task in the experi-
ments, our method can be used to discover di↵erent types of visual motifs given
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Fig. 4. Confusion matrices and average accuracies for multiple visual motif discovery
on the six environments (Env 1, . . . , Env 6) in Navigation. Annotated labels L1 to
L4 indicate ID of visual motifs while bkg denotes other background scenes.
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Fig. 5. Example of multiple visual motif discovery (on Env 4). Three motifs were
discovered in timeline (colored plots in the middle) for each of eight videos in a video
collection. Some discovered image frames are depicted at top and bottom.

a video of other tasks. In particular, Figure 7 shows the results of visual motif
discovery on the First-Person Social Interactions dataset [40], in which a group of
people participated in social interactions in an amusement park. We chose three
collections of videos from the dataset in which a group of people interacted with
each other at several places.

At a cafeteria, our method discovered a situation in which camera wearers
were (1) waiting in line, (2) interacting with a clerk, and (3) preparing a dish on
a table. Our method also found at an entrance, a situation of (4) waiting in line
and (5) interacting with others. Interestingly, the method was able to find (6)
a photographer jointly looked at by multiple camera wearers, which was similar
to co-person detection [27]. All these situations correspond to the shared visual
experiences across multiple camera wearers, while they are quite di↵erent from
those found in the navigation tasks mentioned in previous sections.
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Successfully	discovered Not	discovered

Fig. 6. Examples of successfully-discovered and non-discovered motifs. Videos in each
row were recorded on di↵erent days and times.

1 2

3

4 5 6

Fig. 7. Some visual motifs found in First-Person Social Interactions dataset [40].

4 Conclusions

We introduced a new task of visual motif discovery from a large collection of
first-person videos and developed an e�cient method tailored to the task. The
proposed method can discover visual motifs more accurately and an order-of-
magnitude faster than other state-of-the-art methods.

There are several possible extensions leading to interesting directions for
future work. While we focused on a specific class of visual motifs observed when
people paused to acquire information, there are other significant moments shared
across people such as when carrying important belongings by hand, meeting with
friends, etc. First-person videos can be used to recognize many types of actions,
e.g., not only pausing but using hands [4, 5, 8, 9] and conversing with others [40],
which are all informative for recognizing a variety of visual motifs. In addition,
by combining geometric information enabled by visual simultaneous localization
and mapping or GPS, our method will be able to distinguish visual motifs that
are visually the same but observed at di↵erent locations (e.g., the same signs
placed at di↵erent entrance gates). Another interesting direction for future work
is to extend our visual motif discovery method to work in an online manner. This
allows us to handle extremely long recordings and makes it possible to extract
a variety of visual motifs that we observe in everyday life.
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