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Abstract

We aim to understand the dynamics of social interactions
between two people by recognizing their actions and reac-
tions using a head-mounted camera. Our work will impact
several first-person vision tasks that need the detailed un-
derstanding of social interactions, such as automatic video
summarization of group events and assistive systems. To
recognize micro-level actions and reactions, such as slight
shifts in attention, subtle nodding, or small hand actions,
where only subtle body motion is apparent, we propose to
use paired egocentric videos recorded by two interacting
people. We show that the first-person and second-person
points-of-view features of two people, enabled by paired
egocentric videos, are complementary and essential for re-
liably recognizing micro-actions and reactions. We also
build a new dataset of dyadic (two-persons) interactions
that comprises more than 1000 pairs of egocentric videos
to enable systematic evaluations on the task of micro-action
and reaction recognition.

1. Introduction

The dynamics of social interactions between two people
can be decomposed into a sequence of action and reaction
pairs (such as pointing and sharing a point of attention, ges-
turing and nodding in agreement, or laughing and gesturing
disagreement) to convey to each other a sense of their in-
ternal states. Our everyday interactions even include micro-
actions and micro-reactions in which only subtle body mo-
tion is apparent, such as slight changes in focus of attention
(small movement of the head in response to pointing), sub-
tle nodding, or small hand actions. The ability to understand
interaction dynamics with such micro-behaviors is impor-
tant for human-to-human communications, as this mode of
non-verbal communication is perhaps our primary means
of understanding and expressing our internal state. Towards
understanding the deeper complexities of social interaction
dynamics, this work attempts to take the first step by devel-
oping a method to recognize micro-actions and reactions.

Kris M. Kitani
Carnegie Mellon University
Pittsburgh, PA, USA

kkitani@cs.cmu.edu

Yoichi Sato
The University of Tokyo
Tokyo, Japan

ysato@iis.u-tokyo.ac. jp

(1) Pointing and shift in attention
S

Person B - A

:A =
Person B

- A 7N
son A’s points-of-view

Per

Figure 1. Challenges of recognizing micro-actions. Slight head
motion of person B induces only slight local motion in the person
A’s points-of-view in (1) and (2). Hand motion by person A is
difficult to observe from the A’s points-of-view in (2) and (3).

To enable such recognition ability, we show in this work
that it is critical to have access to a pair of egocentric
videos taken by two interacting parties. Particularly, we
focus exclusively on dyadic (i.e., two-person) interactions
and assume that both people are equipped with a head-
mounted camera. In this setting, each person always has
a first-person point-of-view (POV) observation of one’s self
in one’s own video and a second-person POV observation
of the self in another video. For example, Figure 1(1)
shows person A pointing from both his own POV (left)
and the POV of person B (right). In this way, egocentric
videos are advantageous from a sensing perspective since
the head motion and hand motion of camera wearers are
often observed clearly in such videos, making it possible
to perform various forms of first-person action recognition
[7,9, 13, 18,25, 27, 30]. They can also be used to see the
behavior of other people up-close from the second-person
POV [1, 2, 3, 8,29, 44, 45].

One key observation to use a pair of egocentric videos
is that a head-worn camera naturally amplifies subtle head
motion and hand motion needed to recognize micro-actions
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Figure 2. Our approach. Paired egocentric videos recorded by persons A and B are used to provide first-person and second-person POV
features of both A and B, which are complementary and essential for recognizing micro-actions and reactions. Cumulative displacement
patterns [27] and improved dense trajectories [39] are respectively visualized as examples of the first-person and second-person features.

and micro-reactions. For example, slight changes in focus
of attention or subtle nodding cannot be adequately recog-
nized from a second-person POV because they only induce
slight variations in local motion (e.g., person B seen in A’s
POV videos in the left of Figure 1(1)(2)). However, if we
can gain access to the first-person POV of B, a small change
in head pose translates to a large change in optical flows (the
right of (1)(2)), making it possible to detect such micro-
reactions. By contrast in Figure 1(2)(3), while hand motion
of person A is not always large enough to be observed in the
first-person POV (the left of (2)(3)), it is often more visible
in the second-person POV including that person up-close
(the right of (2)(3)).

Another key observation that motivates our work is that
micro-actions and reactions are often correlated and best
recognized when one has access to egocentric videos of
both interacting parties. For example, in Figure 1(1), per-
son A performs the action of pointing, which induces a
micro-reaction of a shift in attention by person B. In other
words, the context of pointing allows us to expect a re-
sponsive change in attention. Figure 1(2)(3) show other
action-reaction pairs: hand gesture and positive response,
and passing and receiving of an item. In fact our results
show that such micro-actions and reactions cannot be reli-
ably recognized without both sources of information.

Based on these two observations, we address the task us-
ing paired egocentric videos recorded by persons A and B
to recognize micro-actions or reactions done by person A.
Our proposed method works as follows. For each video, we
first extract features of first-person POV observations of the
self and second-person observations of his/her partner per-
son (each row in Figure 2). Features for each person are
then collected across videos to provide multiple POV fea-
tures of the behavior (each column in the figure). These
features are finally trained individually for A and B and
fused to recognize A’s micro-actions and reactions.

The main contributions of this work are as follows:
(1) we propose the concept of micro-actions and micro-

reactions, which are crucial for understanding the dynam-
ics of social interactions; (2) we show that first-person and
second-person POV features of two interacting parties are
complementary and essential for recognizing micro-actions
and reactions; and (3) we construct a new dataset of dyadic
interactions comprising more than 1000 pairs of egocentric
videos to enable systematic evaluations on micro-action and
reaction recognition.

Related Work. First-person vision is one of the emerg-
ing topics in computer vision, which greatly affects sev-
eral applications such as automatic activity summariza-
tion [4, 15, 20, 43] and assistive systems [16, 34, 35, 36].
Many studies have used egocentric videos to recognize be-
haviors of camera wearers, such as action/activity recog-
nition [7, 9, 13, 18, 25, 27, 30], object recognition [10],
and gaze estimation [17], where all the visual events in
input videos are implicitly assumed to be relevant to the
wearer’s behaviors. More recently, there has been an inter-
est in understanding group activities recorded in the ego-
centric videos: e.g., social relationships [2, 3], eye con-
tacts [44, 45], or joint attention [8]. Particularly, Ryoo and
Matthies have addressed the problem of recognizing inter-
actions from egocentric videos [29]. They, however, relied
on a single video and recognized what a person in the video
was doing to a stationary observer. In short, how we can use
egocentric videos of two interacting people for recognizing
micro-actions and reactions is still unexplored.

Similar to this work, there have been some attempts to
use multiple videos but for other purposes. Temporally-
aligned egocentric videos can be used for identifying wear-
ers [40] and estimating joint focus of attention [21, 22, 23].
Other work has associated egocentric videos with third-
person POV videos (e.g., surveillance videos) for wearer
identification [26] and localization [5]. Another relevant
task in which multiple videos are used is cross-view action
recognition [12, 19, 41], where they focus on the variations
in appearances of actions in accordance with the changes in



the pose and position of third-person cameras.

To the best of our knowledge, this work is the first to
focus on micro-actions and reactions in human-to-human
interactions. It is also unlike previous studies that recognize
interactions from a third-person POV [6, 11, 28, 37]. We
will show that the combination of first-person and second-
person POV information enabled by the egocentric videos
allows us to recognize various micro-actions and reactions
that cannot be well observed in the third-person videos.

2. Our Approach

Suppose that we are given a pair of egocentric videos
captured synchronously by person A and his/her partner
person B during a dyadic interaction. In each video pair,
we assume that person A performs one of several micro-
actions and reactions. The goal of this work is to classify
these micro-actions/reactions of A from the paired videos.

2.1. Recognition from Paired Egocentric Videos

Our recognition method relies on the multiple POV ob-
servations of both persons A and B presented in Figure 2.
To this end, we first consider first-person POV features de-
noted by f4, fp € RNeirst (Ngye 1S the number of fea-
ture dimensions). These features are extracted from videos
recorded by the self to describe a holistic change in the
videos such as global motion patterns induced by head mo-
tion. We also introduce second-person POV features of
each person obtained from the video taken by the other
person (i.e., A observed from B’s POV and vice versa),
facn Frea € RNsecond (N o4 is the number of fea-
ture dimensions). These features should be useful for cap-
turing whole body appearance and motion of the person.

The first-person POV feature f, and second-person
POV feature f ,,  are then combined to provide multi-
ple POV features of person A. To recognize A’s actions
and reactions, we define a standard linear decision function
to describe the relative importance of the first-person and
second-person features:

A A
€A = (wi(:irs)t)TfA + (wéec)ond)TfAeB + u(A)a (D

where c4 € R is a decision score indicating how likely A
is to perform a certain action or reaction. wg‘fs)t € RNVt
wgi)ond € RMsecond and uy € R are model parameters
describing the importance of each feature; they can be opti-
mized by training any classifiers such as a linear SVM.
Likewise, the multiple POV features for person B are
obtained by combining the first-person feature f and
second-person one f 5, 4. We observe that actions or reac-
tions taken by B are often affected by those of A, and thus
the features extracted from B’s behaviors can be a salient
cue to recognize A’s actions/reactions. For example, ac-

tions of passing an item by A can come with reactions of B

receiving the item. Horizontal head rotations of A can stand
for a negative response when B is talking to A, while they
mean a shift in attention if B is pointing somewhere.

Our proposed method takes advantage of this relation-
ship between A and B by refining A’s decision score ¢4
with B’s multiple POV features. Specifically, we introduce
another decision function that classifies A’s actions and re-
actions but is learned from f 5 and f5, 4:

B = (wf('ifs)t)TfB + (wchc)ond)TfB<—A + u(B) (2)

Finally, c 4 is biased by the score cp:
dy=ca+cp. 3)

This bias can work as follows. To enable classification, we
learn functions in Egs. (1) and (2) for each of several actions
and reactions. Even if two micro-reactions (e.g., a negative
response and an attention orientation with slight head mo-
tion) have similar scores in c4, the difference in actions by
B appears in the score cp so that we can correct classifica-
tion results in ¢/;.

2.2. First-Person POV Features

In this section, we discuss how various features for first-
person action recognition can be used as a first-person POV
feature to enable micro-action and reaction recognition.

2.2.1 Egocentric and Object Features

Li et al. have focused on actions during hand-manipulation
activities (e.g., cooking) [18]. They revealed that effective
features included head motion (homography between con-
secutive frames), hand manipulation points, and object fea-
tures aligned with dense trajectories [39] around points of
gaze and manipulation points, where these features are in-
dividually encoded by the Fisher vector (FV) [24].

We expect head motion and object features to work ro-
bustly in our dyadic interaction scenarios. Although there
may be fewer hand manipulations, the object features could
be helpful when large hand motion is apparent from the
first-person POV. We therefore adopt the FVs from head
motion (E) and the combination of the FVs from head mo-
tion and object features (E+O).

2.2.2 Cumulative Displacement Patterns

Poleg et al. have proposed egocentric motion descriptors to
enable temporal segmentation of egocentric videos based on
activity classes [27]. They rely on cumulative displacement
(CD) patterns of motion vectors uniformly sampled in video
frames, in which we can see long-term trends of egocentric
motion in videos. In this work, we aim to use various per-
frame features extracted from the CD patterns (such as their



slope, motion magnitudes, and radial projection responses
that Poleg et al. presented [27]) to indicate gradual changes
of attentional directions.

2.2.3 Pooled Time-Series Encoding

Since the CD features are designed to deal with long-term
activities by smoothing motion patterns over time, it may
not be optimal to describe short-term cyclic patterns such as
head nodding and shaking. We therefore propose to encode
the features with the pooled time series (PoT) recently pre-
sented by Ryoo ef al. [30], which we refer to as PoTCD. In
the encoder, per-frame CD features are first segmented tem-
porally and hierarchically into several shorter patterns. Fea-
tures in each segment are then encoded by a set of temporal
pooling operators such as max/sum pooling and histograms
of the positive/negative gradients. This way, our PoTCD
features can deal with head motion patterns in detail as well
as the gradual changes of attentional directions.

2.3. Second-Person POV Features

We introduce several generic action descriptors for
second-person POV features that do not particularly require
human detection. These features allow us to capture de-
tailed appearances and motion of people observed from
other people and work robustly against significant global
motion induced by the head motion of camera wearers.

2.3.1 Improved Dense Trajectory

The improved dense trajectory (IDT) [38, 39] is a stan-
dard feature descriptor for action recognition used in third-
person POV videos [42] as well as egocentric videos [18].
In the IDT, feature points are densely sampled based on the
good-feature-to-track [3 1] and tracked over a short time pe-
riod (e.g., 15 frames) in accordance with dense optical flow
fields. Features such as the histogram of oriented gradients
(HOG), the histogram of oriented flows (HOF), and motion
boundary histograms (MBH) are then extracted along tra-
jectories and encoded by the FV.

We believe that the IDT is well suited to describe peo-
ple from a second-person POV since it can extract relevant
motion of the people without tracking them explicitly.

2.3.2 Two-Stream Convolutional Networks

Instead of hand-crafted features like the dense trajectory,
Simonyan and Zisserman [32] learned feature representa-
tions and action classifiers in a convolutional neural net-
work (CNN). Particularly, they introduced two-stream CNN
(TCNN) where two CNNs individually learned the appear-
ances and motions over a short period (e.g., 20 frames).

A CNN trained on a relevant dataset (e.g., action recog-
nition datasets such as UCF101 [33] and HMDBS51 [14])

can also be used as a feature descriptor. In this study, we
use some mid-level convolution outputs drawn from the two
CNNs and encoded them by the FV to serve as second-
person POV features. For input motion sequences, we com-
pute local motion vectors by subtracting global motion dis-
placements from original optical flow fields.

2.3.3 Trajectory-Pooled Convolutional Descriptors

While the TCNN can provide rich information on both of
the appearances and motion of people in videos, it encodes
all the events occurring in the videos regardless of whether
they belong to foregrounds (people) or backgrounds. To
resolve this problem, we further pool TCNN features along
dense trajectories as proposed by Wang et al. [40] (which
they refer to as TDD). Features extracted in this way can be
limited to relevant events where trajectories appear.

3. Experiments

We first systematically evaluate how the features intro-
duced in the previous section can work on the task of de-
tecting specific micro-actions and reactions observed dur-
ing dyadic interactions in Sections 3.3 and 3.4. We also
investigate how our method can classify micro-actions and
reactions in Sections 3.5 and 3.6. Implementation details
are described in the appendix.

3.1. Paired Egocentric Video Dataset

Among the datasets of egocentric videos released to
date, only a few include interaction scenes. JPL interaction
dataset [29] and EGO-GROUP dataset [2, 3] comprise only
one POV video for each interaction scene. While the first-
person social interactions dataset [8], CMU first-person
video dataset [21, 22], and ego-surfing dataset [46] provide
egocentric videos of multiple people, none has enough in-
teraction sequences to enable supervised learning of micro-
actions and reactions from multiple POV observations.

In this work, we present a new video dataset named
Paired Egocentric Video (PEV) dataset, a large collection
of paired egocentric videos recorded during dyadic human-
to-human interactions. The dataset contains 1226 pairs of
videos in total, each of which includes a single micro-action
or reaction pattern of a person regarded as target person A
(see Figure 4 for examples). All video pairs were selected
from several continuous recordings of face-to-face conver-
sations. There were six subjects wearing different clothes
in eight different everyday environments such as a cafete-
ria and an office. Actions and reactions in the data have
variability in motion and appearance since we did not par-
ticularly instruct subjects on how and when to perform ac-
tions or reactions during the recordings. We did however
inform each subject of the following seven action/reaction
types that we aimed to collect.



1. Pointing (154 samples): Pointing to a certain loca-
tion, an item, or person B to initiate interaction, which
is followed by B’s reactions such as orienting of atten-
tion and positive or negative responses.

2. Attention (97 samples): Orienting attention with
slight head motion to what is pointed to by B.

3. Positive (159 samples): Responding positively by
widely or subtly nodding and/or by laughing with body
motion to B’s pointing or gesture.

4. Negative (40 samples): Responding negatively by
shaking or slightly cocking one’s head and/or crossing
arms to B’s pointing or gesture.

5. Passing (150 samples): Initiating or finishing passing
an item to B in order to exchange it.

6. Receiving (143 samples): Initiating or finishing re-
ceiving what B is trying to pass.

7. Gesture (168 samples): Doing head and/or hand ges-
tures to converse with B, which can be followed by
B’s gesture and positive or negative responses.

Note that the remaining 315 pairs in the dataset contain non-
interaction patterns where person A is just moving that are
irrelevant to the current context of interactions: e.g., plac-
ing an item on a table or looking at a certain location to
which person B did not particularly point. Each video has
90 frames (1.5 seconds at 60 fps) and the spatial resolution
of 320x180, where the 30th frame of each video was ad-
justed to the onset of actions and reactions of A.

3.2. Evaluation Scheme

Since the six subjects formed three pairs in the dataset,
we conducted a three-fold cross validation by splitting the
data into subsets on based on the pairs. We trained the de-
cision functions in Eq. (1) and Eq. (2) by using two training
subsets and evaluated performance with one testing subset.

In Sections 3.3 and 3.4, we evaluate detection perfor-
mance by the area under the receiver-operating characteris-
tic curve (AUC score) computed from decision scores (e.g.,
ca, ) and binary ground-truth labels (1 for the correct
actions/reactions and 0 otherwise) collected from all three
tests. In the classification task in Sections 3.5 and 3.6, we
further normalize the decision scores to have zero-mean and
unit-variance for each action/reaction and compare them for
each sample to find the most probable one. Average accura-
cies over all the actions and reactions are calculated for the
classification performance.

3.3. Comparison among First-Person and Second-
Person POV Features

We first focused on the use of single egocentric videos
and compared detection performance for first-person POV
features (E [18], E+O [18], CD [27], PoeTCD [27, 30]) and
second-person ones (IDT [39], TCNN [32] and TDD [40])
of target person A. To this end, we performed detection
based on A’s decision score ¢4 where the function in Eq. (1)
was learned from either f 4, or f 4, 5.

Table 1(1) shows AUC scores using first-person features.
Overall, these features worked well for detecting reactions
with head motion such as attention, positive, and negative.
CD had a limited performance as it was not well suited to
cyclic motion such as nodding. E+O performed better on
receiving when large hand motion was made at the center
of first-person POV clearly and captured by object features.

Among the second-person POV features described in Ta-
ble 1(2), IDT performed better when the actions and reac-
tions involved hand motion such as pointing, passing, re-
ceiving, and gesture. It worked particularly well on receiv-
ing since people often received items in front of their body
that were clearly visible from the second-person POV. On
the other hand, TCNN and TDD provided inferior scores.
We found that the location where people appeared in ego-
centric videos often changed drastically over time due to
significant head motion of camera wearers. As CNNs used
in these two methods encoded appearances and motion at
every fixed location at predefined intervals (20 frames), re-
sultant features often became irrelevant when the location
of people changed in a time shorter than the interval.

3.4. Combining Multiple POV Features

We then investigated how the performance was improved
by combining multiple POV features. In what follows, we
pick out the four features producing AUC scores over 0.7 in
the previous section: E, E+O, PoTCD, and IDT.

Table 1(3) shows results from the combination of first-
person POV and second-person POV features of target per-
son A. Specifically, we evaluated A’s decision score c4
learned from both f 4 and f 4, 5. All the combined meth-
ods performed well regardless of whether actions and re-
actions came with head and/or hand motion, meaning that
first-person and second-person features worked comple-
mentarily in the methods. Furthermore, Table 1(4) con-
firms that the combination of multiple POV features of per-
son A and those of B performed the best. In the Pro-
posed method, we evaluated decision score ¢4 in Eq. (2)
where the feature PoTCD was used for f ,, f5 and IDT
for f 4. g, fea- These results indicate that first-person
and second-person POV observations of two people are es-
sential for recognizing micro-actions and reactions.

To analyze the effect of using paired egocentric videos
in more detail, we implemented some degraded versions of



Table 1. AUC scores on the detection task. (1) First-person POV features of target person A. (2) Second-person POV features of A. (3)
Combinations of first-person and second-person POV features of A. (4) Combinations of multiple POV features of persons A and B.

Pointing  Attention Positive Negative Passing Receiving Gesture | Average
E[18] 0.65 0.77 0.91 0.88 0.64 0.78 0.73 0.76
. E+O [18] 0.74 0.77 0.94 0.73 0.71 0.85 0.69 0.77
(1) First-person POV features of A CD 7] 0.64 0.62 0.58 0.56 0.71 071 0.56 0.63
PoTCD [27, 30] 0.70 0.66 0.94 0.84 0.69 0.74 0.63 0.74
IDT [39] 0.74 0.71 0.67 0.59 0.81 0.93 0.78 0.75
(2) Second-person POV features of A TCNN [32] 0.59 0.58 0.55 0.58 0.54 0.67 0.60 0.59
TDD [40] 0.63 0.70 0.61 0.51 0.68 0.79 0.63 0.65
E+IDT 0.77 0.73 0.86 0.81 0.82 0.92 0.79 0.81
(3) Multiple POV features of A E+O+IDT 0.80 0.78 0.95 0.77 0.83 0.95 0.78 0.84
PoTCD+IDT 0.79 0.78 0.96 0.89 0.84 0.93 0.80 0.86
Degraded-A 0.82 0.76 0.96 0.86 0.56 0.95 0.69 0.84
(4) Multiple POV features of A and B Degraded-B 0.73 0.72 0.67 0.61 0.82 0.94 0.78 0.75
Proposed 0.85 0.83 0.96 0.91 0.89 0.97 0.82 0.89

Table 2. Classification accuracies on the JPL dataset [29].

Proposed given only one of the two videos. In Degraded-
A, we used the video recorded by person A to learn cy
from only f, and cp from fz, 4. On the other hand,
Degraded-B accepted the video recorded by B and adopted
facpinca and fgin cp. Note that Degraded-B has the
same conditions as the work of Ryoo and Matthies [29]:
only videos including a target person from the second-
person POV were available. The decreased performance of
these methods in Table 1(4) indicates the necessity of ob-
serving both videos.

3.5. Classifying Micro-Actions and Reactions

We finally investigated how our method could clas-
sify different micro-actions and reactions. We picked out
PoTCD in Table 1(1), IDT in (2), PoTCD in (3), and Pro-
posed in (4) as they provided good detection performance.

Figure 3 describes confusion matrices. As passing, re-
ceiving, and gesture often appeared subtly in front of one’s
body, they were difficult to classify where only the first-
person feature PoTCD was given. On the other hand,
IDT could classify them while it was less discriminative on
micro-reactions with subtle head motion such as attention,
positive, and negative. We confirmed that PoTCD+IDT
inherited the advantages of first-person and second-person
features. Proposed further improved the performance on
attention, positive, and receiving even when they came with
small motions because these actions/reactions of A often
induced different behavior of B.

Figure 4 presents some visual examples of classification
results together with dense trajectories [39] and cumulative
displacement patterns [27]. When hand motion was distinct
in both of the first-person and second-person POVs (e.g.,
the pointing action annotated by the arrows in example (1)),
all the methods were able to predict a correct action. Some
micro-actions and reactions were observed with the com-
bination of head and hand motions. These motions were
not always large enough, as the pointing by person A could
not be seen well in his/her first-person POV in example (2),

fB .fA<—B
0.61 0.70

Degraded-B
0.75

or the nodding was very slight in the second-person POV
in (3). Even for such cases, these two POV sources com-
plementarily worked in PoTCD+IDT and Proposed. Peo-
ple seen in the second-person POV were often partially oc-
cluded especially when they were focusing on objects of
interest as annotated in example (4). As the second-person
features in Section 2.3 did not rely on human detection, our
approach was robust against such cases.

We also found some temporal structures between the
head motion of two people. For instance, the cumulative
displacement patterns in example (5) illustrate that the head
motion of A induced by the shift in attention was followed
by the head motion of B to share attention. Similarly, mu-
tual head motion was found when responding negatively as
annotated in example (6). Proposed could classify such
micro-reactions successfully by exploiting both actions and
reactions of the two persons.

Gesture was the most difficult class to recognize even
for our method (examples (7) and (8)). As annotated in
the examples, gesture required both first-person and second-
person features since it often came with head and hand mo-
tion. This motion was however sometimes similar to other
actions or reactions such as pointing, positive, and negative.

3.6. Evaluation on the JPL Dataset

We also evaluated the classification performance of our
method on the JPL dataset [29]". It includes seven activities
of a target person such as handshakes, hugs, and punches,
some of which lasted longer (several seconds) than ours. As
this dataset is composed of only the egocentric videos of a
stationary observer (standing for person B), we compared
Degraded-B against its degraded versions using either first-
person feature fp or second-person one f 4, 5 to see the

lhttp://michaelryoo.com/jplfinteraction.html
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First-person POV feature of person A (PoTCD; acc: 0.41)

Pointing - 0.13

0.019 0.045 0.18 013 0.19

Attention ~ 0.16 - 0.021 013 0.052 0.18 0.052
Positive ~ 0.057 0.05 0.031 0.019 0.082 0.057
Negative ~ 0.025 02 0 n 0.025 0.05 0.1
Passing | 021 0.033 0.04 0.047 0.26 0.15 0.26
Receiving  0.098 013 0.035 0.042 01 - 012
Gesture - 0.036 0.1 02 0.083 0.083 0.15
Pointing  Attention Positive Negative Passing Receiving Gesture

Multiple POV features of A (PoTCD+IDT ; acc: 0.59)

Pointing - 0.078 0 0.026 0.12 0.026 029

Attention  0.062 - 0.031 0.19 0.021 0.12 0.093

Positive ~ 0.031 0.05 0.74 0.038 0.05 0.025 0.069

Negative ~ 0.025 0.1 0 0.65 0.025 0.05 0.15

Passing =~ 017 0.033 0.013 0.02 0.63 0.053 0.087

Receiving  0.028 0.11 0.014 0.042 0.049 0.74 0.014
Gesture | 0.24 0.1 0.1 0.042 0.048 0.03 -
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Second-person POV feature of person A (IDT; acc: 0.41)
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Multiple POV features of A and B (Proposed ; acc: 0.66)
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Pointing  Attention Positive Negative Passing Receiving Gesture

Figure 3. Confusion matrices and average accuracies of the classification task on the PEV dataset.

effectiveness of combining multiple POV features. We fol-
lowed the same protocol as Ryoo and Matthies [29] and re-
peated two-fold cross validations 100 times.

As shown in Table 2, we found that the combination
of first-person and second-person features in Degraded-B
performed the best. Note that the method of Ryoo and
Matthies [29] performs better (0.896 as a classification ac-
curacy) by incorporating structured prediction tailored to
long-term activities with multiple sub-events. Future work
will be to extend our method to cope with multiple action
and reaction sequences.

3.7. Limitations

One current limitation of our method is that it only con-
siders behaviors of two people taking place in the same
time period. Recognizing actions and reactions with a
large amount of delay will require a structured predic-
tion [28, 30, 37]. In addition, we currently focus on only
two-person scenarios. To generalize our work to deal with
group interactions where more than two people are present,
wearer identification [26, 46] will be necessary to obtain a
second-person POV observation of specific persons.

4. Conclusions

We have introduced the task of recognizing micro-
actions and reactions in dyadic human-to-human interac-
tions. The key finding of our work is that the micro-
actions and reactions can be best recognized by utilizing
first-person and second-person POV features of two inter-
acting people. Understanding social interaction dynamics
by recognizing micro-actions and reactions will impact sev-
eral first-person vision tasks such as video summarization
of social events and assistive systems, and also raise new
problems such as wearer identification in crowded scenes
and modeling of group interaction dynamics.

A. Implementation Details

We adopted a linear SVM for the decision functions in
Eq. (1) and Eq. (2) and trained them via stochastic gradient
descent as it performed the best. As CD [27] features were
obtained per frame, we computed decision scores for each
frame and averaged them over time. In PoTCD [27, 30],
we used only three pyramids (split into one, two, and four
segments) as we worked on short video clips.

On E, E+O [18], IDT [39], TCNN [32] and TDD [40],
we learned some additional models for the FV in the train-
ing datasets: the principal component analysis (PCA) to
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Figure 4. Our proposed method working on the PEV dataset. The first row of each example shows 40th and 70th frames of the video
recorded by target person A as well as its cumulative displacement patterns [27] (motion vectors uniformly sampled in video frames and
accumulated over time) that are encoded by pooled time-series [30] in our proposed method. Dense trajectories [39] are visualized by the
yellow arrows in each video frame. The second row of each example provides the same visualization but for the video recorded by person
B. Titles describe classification results (correct classifications are highlighted in green) as well as the ground-truth label. Micro-actions
and reactions annotated by the pink arrows are discussed in Section 3.5.

perform a dimensionality reduction on features and the
Gaussian mixture model (GMM) to generate the FV. We
followed the original papers [18, 39, 40] to determine the
number of components for the PCA and GMM. The PCA
with half the number of original feature dimensions and the
GMM with 64 components were used for E and E+O, and
the PCA with 64 components and the GMM with 256 com-
ponents were used for IDT, TCNN, and TDD. All the FVs
were further applied the power and L2 normalizations [24].

We used the code available on the web? for dense trajec-
tories in E+O, IDT and TDD. As hand manipulations were

2https://lear.inrialpes.fr/people/wang/
improved_trajectories

barely found in the PEV dataset, in E+O we extracted the
object features along all the trajectories. We adopted the
CNNs trained by Wang et al. [40] for TCNN and TDD.
Based on the results from each convolution layer in the
work of Wang et al. [40], we concatenated the outputs of the
conv4 layer of spatial CNN and the conv3 layer of temporal
CNN as second-person features.
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