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Abstract

We focus on the use of first-person eye movement and
ego-motion as a means of understanding and recognizing
indoor activities from an “inside-out” camera system. We
show that when eye movement captured by an inside look-
ing camera is used in tandem with ego-motion features ex-
tracted from an outside looking camera, the classification
accuracy of first-person actions can be improved. We also
present a dataset of over two hours of realistic indoor desk-
top actions, including both eye tracking information and a
high quality outside camera video. We run experiments and
show that our joint feature is effective and robust over mul-
tiple users.

1. Introduction

It has been shown in recent work, that various modal-
ities of features can be used to effectively encode various
ego-actions. In this paper, we focus on two types of modal-
ities: (1) eye motion and (2) ego-motion, and show how
the combination of these two modalities leads to better per-
formance in recognizing ego-actions, i.e., actions captured
in egocentric videos. Recent work has examined the use-
fulness of eye-motion [1] and ego-motion [6] in isolation,
and have shown that they may be used successfully for rec-
ognizing different ego-actions. Building on the success of
previous work, we show that by concatenating different fea-
ture modalities, we are able to improve classification perfor-
mance.

It is known that a person’s eye movement is a rich source
of information for understanding a person’s actions [7]. A
sequence of eye motions, commonly measured by an in-
side looking camera, can reveal a person’s focus of atten-
tion and even reveal our internal mental state. As such,
eye movement analysis has been used widely in both clin-
ical research, empirical psychology and neural science. It
is notable that the use of eye-tracking in such studies has

kkitani@cs.cmu.edu

sugano, ysato@iis.u-tokyo.ac.jp

been used predominantly for post-facto analysis, e.g., un-
derstanding how the eye moves for tasks such as reading,
drawing or doing a jigsaw puzzle [7].

In contrast, we are interested in using eye-motion has
a means of recognizing and classifying actions. Some
previous work share a similar motivation with our study.
Doshi et al. [3] used head pose and putative gaze loca-
tions (straight, right/left mirror, rear mirror) to predict lane
changes. Courtemanche et al. [2] also used eye move-
ment between predefined areas of interest (AOI) to recog-
nize display interactions. While predefined spatial quanti-
zation is plausible for constrained tasks, more applications
could benefit from a more general feature.

Recently, Bulling et al. [1] has shown that eye motion
is a powerful feature for representing various first-person
actions. They presented a saccade sequence quantization
methodology that discretized eye motion into a symbolic se-
quence and extracted basic features from n-gram statistics.
It was shown that eye motion is particularly well suited for
ego-actions that require finer motor skills (i.e. office tasks).
Figure 1 shows examples of eye movement trajectories for
several office tasks.

On the other hand, vision-based techniques for under-
standing and recognizing ego-actions have focused largely
on the use of outside looking cameras to capture informa-
tion about the visual world, such as hand gestures, objects
of interactions and ego-motion [12, 8, 5, 13, 10]. Recent
work has also shown that a user’s focus of attention on a
rough macro-scale (i.e. head pose and detected objects or
faces) can be used to model social interactions [4]. Kitani
et al. [6] demonstrated in their recent work that global ego-
motion has been shown to be a successful descriptor for hu-
man actions in sports.

While these macro motion-based approaches are well
suited for dynamic body motion, there are also many tasks,
such as office activities, which cannot be fully characterized
and recognized by ego-motion alone.

Hence, it can be naturally seen that these two informa-
tion sources are complementary. The inside looking camera



[ l

BROWSE

Figure 1. Eye movement trajectories for office tasks. Color of the trajectory represents time. Red is the current time and darker colors

(blue) are past time steps.

tells us micro-level eye motion information, while the in-
formation about the outside visual world cannot be directly
inferred from gaze data. The outside looking camera, con-
versely, tells us global ego-motion information, while it is
very difficult to infer the internal state of the person by only
using the egocentric visual information.

In this work we explore the joint use of eye move-
ment and ego-motion, as an effective combination of fea-
ture modalities for encoding human activity. In particular,
we show that by simply combining features we achieve an
increase in classification performance. This indicates that
using the an optimal combination of feature modalities can
help to improve overall performance and the representative
power of first-person ego-action analysis frameworks.

We summarize our contributions as follows:

e We show that the joint use of eye motion and ego-
motion yields improvements in action recognition over
those modalities used in isolation

e We present a labeled dataset of eye motion using an
inside-out camera system for basic desk work activities
with multiple subjects

2. Extracting inside-out motion features

Our goal is to model and detect primitive ego-action cat-
egories using first-person sensing. Recognizing primitive
actions are important for understanding human activities be-
cause they can be used as building blocks to understand
more complex high-level activities. While previous work
has shown that characterizing eye motion is an important
feature to use for understanding primitive ego-actions, we
show that it is also important to characterize global ego-
motion to better represent first-person actions. Here, we de-
scribe our method for extracting both eye-motion and ego-
motion from our inside-out camera system.

We extract two types of sequential motion primitives
s from eye motion and ego-motion. Eye motion can be
roughly divided into two types of motion: fixation, where
the eye focuses on a particular location and remains station-
ary, and the saccade, where the eye moves rapidly to scan
the scene. With our inside camera, we detect saccade events
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Figure 2. Flow chart for motion word features

to build a dictionary of sequential saccade primitives. Using
the outside camera, we extract sequential motion primitives
from ego-motion. What we call ego-motion here included
both head motion and global body motion. For example,
when we run, the outside camera moves up and down peri-
odically. Figure 2 shows the overall system architecture for
our prototype system. Our proposed method is constructed
with two main processes: (1) motion-wordbook extraction
and (2) saccade-wordbook extraction.

2.1. Extracting motion primitives

Here we describe how a motion sequence is quantized
into a symbol string and an overview of this process is
shown in Figure 3. Using the inside camera, we obtain the
gaze coordinates £ = {e, ¢, e, )12 . Since the raw eye-
tracking data is very noisy (due to blinking and tracking
errors), we first smooth £ with a median filter. Then fol-
lowing [1], use the continuous wavelet transform for sac-
cade detection (CWT-SD) to compute the continuous 1-D
wavelet values C' = {C,, C, }12, at a fixed scale a using a
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resent small motion and uppercase symbols represent large mo-
tion.

where « is a scale parameter that depends on the sampling
rate of the sensor (20 in our experiments, corresponding to
about 80 ms ). The parameter b is the time index. The values
cy,p are calculate in the same manner. This process gives us
a smoothed signal.

Next we quantize the motion sequence using the step-
wise magnitude and direction. Two thresholds 7s,4;; and
Tlarge are used to quantize the smoothed motion sequence
C,

2 (Tlarge S Cg b)
1 (Tamall < Czb < Tlarge)
éa:7b - 0 ( Tsmall Z Cz.b S 7-small) . (3)
-1 ( Tlarge < Cz.b S _Tsmall)
-2 (cz b > < TlaTge)

This quantization generates a discrete quantization over the
joint space of magnitude and direction, as shown in Figure
5.

In a similar manner, we use the outside camera to
obtain a sequence of global optical flow values O =
{04.4,0,.+}12, and transform it into a symbols sequence.
An overview of ego-motion quantization is shown in Figure
4. The global optical flow is computed by tracking corner
points over consecutive frames and taking the mean flow
in the x and y directions. We use the same quantization
scheme (but with different magnitude thresholds) to gener-
ate a symbol string over ego-motion.

2.2. Statistical feature extraction

In our first step we quantized sequential motion primi-
tives to generate a compact representation of motion in the
form of a symbolic lexicon. In this second step, we extract
statistical features over the lexicon as our motion descriptor.
Using a sliding temporal window of size w centered at ¢, the
symbol string S; = {s;_ /2, -+, 5¢,- -, St4w/2}, is used
to build n-gram dictionary, where s; is a motion word. Then



. Lr rurNIrrrL Lrdrrrrr ...,

| Time
.
Max
Word | count Word | co
r 10 rrrer é)
L 5 e o o |Lnr 2 Size
H 1 Irlr | 1

T Diff, Var, Mean

Figure 6. Extracting features from n-gram statistics. Given a quan-
tized motion sequence, a set of statistical features (max, size,
range, variance, average) are computed over the set of all n-grams.
The same process is used for both the saccade and motion word
features.

for this sequence of symbols S, a histogram over the dictio-
nary is computed. Once this histogram has been generated,
a feature vector f; is computed by aggregating statistics over
the n-gram histogram. Figure 6 shows the steps involved in
computing the feature vector from a sequence of motion.

We calculate five feature for each sub-sequence of length
n: (1) max-count, (2) average-count, (3) wordbook size
(number of unique n-grams), (4) variance of counts and (5)
range (difference between maximum and minimum count)
are extracted from n-gram histogram. In our experiments
we set the value of n to be four and this yields a 20 dimen-
sional feature vector.

The temporal window size for the saccade feature is 3600
frames (roughly 15 seconds) and temporal window size for
motion word is 900 frames (roughly 30 seconds). Optimal
window sizes were determined so that classification perfor-
mance is maximized.

3. Experiments

To evaluate our proposed method we perform experi-
ments on a set of common daily office tasks. Our dataset
includes the same five tasks (reading a book, watching a
video, copying text from screen to screen, writing sen-
tences on paper and browsing the internet) used in [1]. We
recorded the actions of five subjects, who were instructed
to perform each task for about two minutes. Tasks were
performed in the following order: read, video, write, copy
and browse. 30 seconds intervals of void class were placed
between target tasks. To provide a natural experimental set-
ting, the void class contains a wide variety of actions such
as conversing, singing and random head motions.

The sequence of five actions was repeated twice to in-
duce interclass variance. To assess robustness against scene
changes, between the two cycles, the book used for read,
video contents for watching a video task and the location
of the physical workspace are changed to add more varia-
tions. The dataset consists of over two hours of data, where
the video from each subject is a continuous 25 ~ 30 minute
video. Keyframes from the dataset are shown in Figure 1.
We use a linear kernel support vector machine (SVM) as
our classifier. In particular, we train a one-versus-all SVM
to evaluate per class performance and a multi-class SVM to
evaluate relative performance between classes. We compute
the average precision as our global performance metric. For
each subject, we produced two experiment sets. In the first
set, the first cycle is used as training data and the second
cycle is used as testing data. Adversely, the second cycle is
used as training data and the seconde cycle is used as testing
data in the second set. As a result we produced 60 dataset
in total.

We used a commercial eye-tracking device (EMR-9 from
NAC imaging technology) as our inside looking camera. In-
stead of the low-resolution view camera of the eye tracking
device, an additional high-resolution camera (GoPro HERO
2 HD) was used as the outside looking camera.These two
devices are synchronized by temporally aligning global op-
tical flow vectors Oy = {OEH)}tTfl of the GoPro camera

and Op = {ogE)};[jl of the EMR camera.Under an as-
sumption that these two cameras are facing the same direc-
tion, the time offset is estimated so that a mean dot product
between shifted frames becomes maximized.

3.1. Baseline methods

We performed four baseline experiments to measure
the isolated performance of different feature modalities.
The first baseline experiment uses the motion histogram
(MOHIST) proposed in [6]. This feature encodes instan-
taneous motion and period motion using Fourier analy-
sis. The second baseline experiment uses the saccade word
(SAWORD) proposed in [!]. This feature encodes counts
of partial trajectories (four frames in our experiments) of
eye motion. The third baseline experiment uses a novel fea-
ture, called motion words (MOWORD), in which uses the
same quantization process as saccade words, but applied it
to the average optical flow generated by ego-motion. This
feature operated on a smaller temporal window compared
to motion histograms [6] but takes into account higher or-
der sequences of motion. The fourth baseline experiment
uses the GIST feature [9], following [! 1], which captures
the global visual context encountered while performing ac-
tions. We used 8 oriented filters at 4 different scales, over a
4 x 4 spatial grid. We also perform additional experiments
with different concatenations of features to show how the
combinations of different modalities affect performance.
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Figure 7. Mean average precision for each feature type. Proposed
Method MOWORD+SAWORD (MW+SW) performs best of all
features. SW, MH, MW mean SAWORD, MOHIST and MOWORD

3.2. Comparison among all features

To evaluate the classification performance, we use
the one-versus-all Support Vector Regression (SVR). We
trained SVM with the labeled data in which frames in the
target task are labeled as positive samples, while others are
labeled as negative samples. As a performance measure,
we calculated average precision for each unique combina-
tion of subject, task and experimental set. Mean average
precision discussed below is arithmetic mean over subjects
or tasks or experimental sets. Figure 7 shows average clas-
sification (mean average precision) performances of all fea-
tures including baseline methods. Mean average precision
is calculated over 60 experimental sets. It can be seen that
our proposed MOWORD+SAWORD performs highest aver-
age classification performance.

Among independent features, we observe that the sac-
cade word feature based on eye movement has the high-
est classification performance with a mean average preci-
sion of 0.47. It is interesting to note, that while the sac-
cade word feature has no access to the visual context, it is
able to discriminate between various tasks better that ego-
motion alone. Our proposed motion word feature performs
second best, which indicates that ego-motion is also a dis-
criminative feature. The motion histogram performs worse,
which is expected since the feature was originally designed
for large scale ego-motion and actions with periodicity.

Figure 8 shows the performance for each action category.
The saccade word feature does particularly well on reading
and writing tasks which have distinct eye movements due to
the detailed nature of the task (i.e. eye scanning lines). The
motion word feature outperforms all other features for the
copy task (copying from screen to screen) due to the ego-
motion induced by turning the head from screen to screen.
As expected the motion histogram performs worse on de-
tailed tasks like reading, writing, and watching a video, be-
cause the head is virtually still for much of the task.

Figure 9 shows the classification performance across bi-
modal combinations of features. Each mean average preci-
sion is calculated over 10 experimental sets. The average

| SW | MH | MW | GIST
VOID 061 | 038 [ 056 | 034
READ 053 | 035 | 029 | 043
VIDEO | 022 | 0.18 | 024 | 0.25
WRITE | 054 | 033 | 025 | 0.29
COPY 049 | 042 | 0.79 | 0.39
BROWSE | 043 | 0.16 | 026 | 0.36
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Figure 8. Baseline: Performance per action category. Mean aver-
age precision for each action for each feature type.

precision for each ego-action class if computed with a 1-vs-
all SVM. Here we observe that the saccade word, when used
with motion words (MOWORD+SAWORD) yields the high-
est average classification performance with an mean aver-
age precision of 0.57. In particular, we see a large improve-
ment in performance for the video and copy actions. Since
watching a video is defined over a joint feature space where
the head is still and the eyes move over the screen region,
the joint feature representation does a better job of encod-
ing the action. Likewise, the action of copy is defined by
large head motion followed by a specific eye motion pattern
(scanning text) and is better described in the joint space. We
also see a slight drop in performance for the void and write
actions. Although the difference is small, it is possible that
certain actions are defined predominantly by a single fea-
ture.

3.3. Multi-class classification experiments

To evaluate the cross-category performance, we used a
multi-class SVM to compute a calibrated classifier response
for each ego-action category. A visualization of the confu-
sion matrix is given in Figure 10 to understand the nature
of classification errors. Looking at Figure 10 (a) we can see
that the void action and copy action have a high recall rate.
In contrast, the lowest performing action is browse which
is often confused as void (18%) or video (25%). The mis-
classification of browse as video is understandable, as both
actions consist of looking at a screen with a relatively stable
head position and they share similar eye motions. Similarly,
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modal features. SAWORD+MOWORD is our proposed method.
MEAN is calculated over all 6 tasks.

read is confused as browse (18%) and write (13%). Again,
this makes sense since all action involved the scanning of
text. This may indicate that adding visual features (detec-
tion of a pen, hands or a screen) may help to disambiguate
these actions.

3.4. Cross-subject performance

Now we show results performed across multiple subjects
to show how the performance of features varies between
subjects. Figure 11 shows the classification performance
across different subject for our experiments. Notice that the
relative performance between different feature types is the
similar between subjects, with the exception of subject 4.
We can see that the SAWORD and SAWORD+MOWORD
perform worse for subject 4 compared to the other subjects.
This drop in performance was due to low-quality eye track-
ing for this user (i.e. subjects eyes were particularly hard to
track). This result highlights that fact that classification per-
formance is integrally linked to the low-level eye tracking
performance. For most of the subjects, it can be clearly seen
that our proposed method improves classification accuracy
than existing methods.

s1 s2 s3 s4 _

Figure 11. Average Precision per subject for various features.
SAWORD+MOWORD is our proposed method.

4. Conclusion

We have presented an analysis of different feature
modalities for ego-action classification. While previous
works has focused on the independent use of eye motion
or ego-motion, we have shown that the combination of eye
motion features and ego-motion provides the best represen-
tation of indoor office work tasks. In our experiments, we
have also shown that our joint eye motion and ego-motion
feature is robust across multiple subjects and can be used
to reliably detect ego-actions across different users. We be-
lieve that this exploration of multimodal features for ego-
action representation is important in understanding the fea-
ture space covered by first-person actions and will serve as
an impetus for future research along these lines.
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