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Abstract

Egocentric cameras can be used to benefit such tasks as
analyzing fine motor skills, recognizing gestures and learn-
ing about hand-object manipulation. To enable such tech-
nology, we believe that the hands must detected on the pixel-
level to gain important information about the shape of the
hands and fingers. We show that the problem of pixel-wise
hand detection can be effectively solved, by posing the prob-
lem as a model recommendation task. As such, the goal of
a recommendation system is to recommend the n-best hand
detectors based on the probe set – a small amount of la-
beled data from the test distribution. This requirement of a
probe set is a serious limitation in many applications, such
as ego-centric hand detection, where the test distribution
may be continually changing. To address this limitation, we
propose the use of virtual probes which can be automati-
cally extracted from the test distribution. The key idea is
that many features, such as the color distribution or rela-
tive performance between two detectors, can be used as a
proxy to the probe set. In our experiments we show that
the recommendation paradigm is well-equipped to handle
complex changes in the appearance of the hands in first-
person vision. In particular, we show how our system is
able to generalize to new scenarios by testing our model
across multiple users.

1. Introduction

Egocentric videos extracted from wearable cameras
(e.g., mounted on a person’s head, chest or shoulder) can
provide an up-close view of the human hands and their in-
teractions with the physical world. We believe that this
unique viewing perspective can be used to advance such
tasks as analyzing fine motor skills, recognizing gestures
and learning about hand-object manipulation. To enable
such technology, we also believe that the hands must be de-
tected on the pixel-level to gain important information about
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Figure 1. Ego-centric hand detection as a model recommendation
task. Virtual probe features are extracted at test time to recommend
the best detector performance.

the shape of the hands and fingers. Therefore, we aim to
extend the state-of-the-art in egocentric hand detection to
provide a more stable pixel-resolution detection of hand re-
gions. In particular, we will show that the problem of pixel-
wise hand detection can be effectively solved by posing the
problem as a model recommendation task. The role of our
proposed recommendation system is to suggest the n-best
hand detectors based on information extracted from the test
image.

In a typical recommendation task, information from the
test distribution is acquired through a small amount of la-
beled data from the test distribution called the probe set.
In the original context of recommendation systems such as
movie recommendation, that probe set can be easily ob-
tained by allowing a specific user to rank a small set of
movies, safely assuming that the preferences of the user
will not change drastically over time. In the case of egocen-
tric hand detection, the probe set would amount to a small
number of labeled pixels provided by the user. Based on
this information, the recommendation system could return
a set of scene appropriate detectors. However, in the case of
a first-person camera where the user is constantly moving,
the test distribution (i.e., appearance of the hands, imaging
conditions) is constantly undergoing change, rendering the
initial probe set invalid. It would be impractical to update
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the probe set dynamically, since this would require the user
to label new pixels very time he moves.

A major difference between our egocentric hand detec-
tion scenario and movie recommendation is that we have
access to a large amount of secondary information about the
test subject (i.e., the test image). While we do not have di-
rect information about hand regions, such information about
the brightness of the scene, objects in the scene and the
structure of the scene can give us clues about the imaging
conditions and help us infer what the hands might look like.
Our claim is that this secondary source of information can
be used to generate a virtual probe set to recommend the
best detector.

Based on this observation, we propose to frame hand re-
gion detection for egocentric videos as a model recommen-
dation task, where a dynamic virtual probe set is used to
recommend a set of detectors for a dynamically changing
test distribution. The contributions of this work are: (1) a
novel dynamic classifier selection methodology applied to
first-person hand detection and (2) a recommendation sys-
tem framework that does not require a labeled probe set.
In particular, we show that virtual probe features, namely
global appearance and detector correlation, can be use to
recommend the best detectors for test-time performance.
Moreover, we show the effectiveness of our approach by
showing improved performance on cross-user experiments
for egocentric hand detection.

2. Previous Work
Previously the extraction of hands for egocentric vision

has been posed as a figure-ground segmentation problem
using motion cues [15, 5, 13]. One of the major advan-
tages of motion-based hand detection approaches is that
they are robust to a wide range of illumination and imag-
ing conditions. A common feature among motion-based
segmentation techniques is that they need to compute the
dense [13] or sparse [15, 5] optical flow over a temporal
window to discover the motion subspace spanned by fore-
ground and background motion. A natural consequence of
motion-based approaches is that they have a hard time seg-
menting regions for cases of extreme motion (i.e. no motion
or large motion).

Traditional approaches to hand detection based on skin
color [7] require that the statistics of the appearance are
known in advance but have the benefit of being agnostic
to motion. However, a problem arises when the distribution
of hand skin color changes over time because a single skin
color classifier cannot account for these changes. Previous
work has explored the use of dynamic models to handle the
gradual change in appearance [17] but may be prone to drift-
ing when the change in the illumination is extreme.

In the case of an egocentric camera, the camera is mo-
bile and unconstrained (i.e. the user can walk indoors or

outdoors), so it is important that the hands can be detected
under a wide range of imaging conditions and also be ro-
bust to extreme motion. In a recent work, Li and Kitani [9]
have shown that hands can be detected at the pixel-level for
egocentric videos under different imaging conditions using
only appearance. In their framework, a global color his-
togram was used as a proxy feature to find a hand region
detector trained under similar imaging conditions. How-
ever, since a color histogram folds both the appearance and
illumination conditions onto a single feature space, it has
difficulty generalizing to new scenes with similar imaging
conditions but with different appearance (e.g. hand under
sunlight in a previously unseen environment).

Matikainen et al. [10] has shown that the recommenda-
tion system paradigm can be very effective for automated
visual cognition tasks such as action recognition, when only
a small amount of training data is available. However, in
their scenario the test distribution was assumed to be static.
As we have described above this is not the case for egocen-
tric hand detection where the test distribution is undergoing
constant change. We present a probe-free recommendation
approach over a dynamically changing test distribution.

A recommendation system approach differs from a stan-
dard supervised detection paradigm in that the detector is
given the ability to adaptively change its parameters based
on features extracted from the test distribution. Similar
ideas have been investigated in areas of domain adapta-
tion [14], transductive learning [6], kernel density ratio
estimation[18], multi-task learning [2] and list/sequence op-
timization [4]. While a full comparison of differing ap-
proaches is outside the scope of this paper, we believe that
leveraging the test distribution as part of the detection pro-
cess is a powerful approach when applied to many vision
tasks.

3. Preliminaries
Under our recommendation system paradigm, it is nec-

essary to define the (1) set of models, (2) set of tasks, (3) a
score (or ratings) matrix, (4) a set of probe models and (5)
the recommender system.

The set of tasks is a large set of labeled data
{xn,yn}Nn=1, where x is the data and y is the label. In
our scenario, each data sample x is a color image and y is
a pixel-wise labeling of the hand regions.

The set of models is a large pool of functions
{fm(x)}Mm=1, where each function generates a scalar value
response for each task. In our scenario, a model is a random
forest regressor that predicts a value between 0 and 1, where
the regressor has been trained on various subsets of an ego-
centric hand dataset using a specific set of image features
(e.g., color descriptors, texture descriptors). However, there
is no constraint on the type of classifier or input features, as
long as the features can be extracted from the test set and



Figure 2. Sample images of the ego-centric videos used for evaluation.

models share a common output space.
The score matrix R ∈ RM×N consists of the score

rmn = fm(xn) of the m-th model evaluated on the data
of the n-th task . The rows of the score matrix are indexed
by the models and the columns are indexed by the tasks. In
our scenario each element of the matrix contains the 0−1
loss computed by testing a regressor on a labeled image.

The set of probe models is a small number of models,
which are used to evaluate a small group of labeled data
from the test distribution (this small group of labeled data
is sometimes called the ‘training data’ but we will call it the
probe data to avoid confusion). The set of probe models
fp(x) is typically a subset of the collection of models. Later
we will introduce a disjoint set of models called the virtual
probe features as a proxy to this set of probe models.

The role of a recommendation system is to use the re-
sponse of the probe models on the probe data in order to
recommend the best model for evaluating the test set. The
recommendation system defines a mapping from probe re-
sponses to a model.

4. Detecting Pixel-wise Hand Regions
Due to the dynamic nature of first-person vision, we

would like to adaptively select an appropriate hand model
for every incoming image frame. In the following, we ex-
plain our use of virtual proxy features which can be used in
the place of a probe set, thereby allowing the model to re-
tain the predictive capabilities of a recommendation system
without the restriction of a labeled probe data set.

4.1. Virtual Probe Features

Since we do not have access to labeled probe data, we
would like to identify a set of proxy models or features
{f̂v(x)}Vv=1 to help define a mapping from the test image
to a list of high-performance detectors. We call this set
of proxy features as virtual probe features. We propose

two types of virtual probe features: (1) global appearance
features (extending the work of [9]) and (2) detector cross-
correlation features.

Global appearance features such as a HSV histograms
can be used as a proxy to the imaging conditions. Similarly,
a large HOG [3] feature extracted of the entire image, sim-
ilar to [16, 11] can be used to capture the structure of the
scene. A full list of appearance-based virtual probe features
are given in section 6.1 in Table 1.

In an effort to capture the predicted performance of de-
tectors on the test image, we also propose the use of de-
tector cross-correlation. For example, given a pair of de-
tectors, where one is always better in bright scenes and the
other is always better in low lit scenes, we can use the rela-
tive performance difference to infer the illumination of the
scene. To compute the detector cross-correlation score, we
first evaluate a base detector (e.g., a mean detector) and a
secondary detector on the test image to produce two re-
sponse maps. The cross-correlation score is computed by
aggregating the difference between the two response maps.
Notice that this process does not require any labeled data
since the cross-correlation score only encodes the relative
performance of the two detectors. A similar representation
was used in [10] for the internal representation of the score
matrix but we are using it here as the virtual probe feature.

4.2. Augmented Score Matrix

Under the analogy of movie recommendation, a rank-
ings database tell us how a particular user has ranked dif-
ferent movies. In the same way, our score matrix tells us
how each model performed on each training image. Typi-
cally the recommendation system uses this score matrix to
suggest a set of detector based on the response of the probe
models. However, since we do not have access to a probe
set and therefore cannot evaluate the probe models, we will
use a set of virtual probe features as a proxy to the probe
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Figure 3. Structure of the augmented score matrix – a concatena-
tion of models and virtual probe features on the training images.

models. This requires that we also store the response of the
virtual probe features as part of the score matrix.

The standard score matrix is a large matrix R ∈ RM×N
of values indexed by a training image index n and a model
index m. Each element rmn ∈ R contains a scalar output
of a model m when tested on training image n. In our ex-
periments, rmn is the normalized 0-1 loss computed from
the thresholded output of a random tree regressor evaluated
on a training image.

To incorporate the virtual proxy features, we augment
the score matrix with virtual probe feature responses r̂vn on
the training data with the feature matrix R̂ ∈ RV×N , where
V is the number of virtual probes. Concatenating the score
matrix with the features matrix, we obtain an augmented
score matrix R̃ ∈ R(M+V )×N . A visualization of the trans-
pose of the augmented score matrix is given in Figure 3,
where each row is indexed by training images n and the
columns are indexed by models and virtual probe features.

4.3. Recommendation System

We would like our recommendation system to tell us the
best performing hand detector given an arbitrary test im-
age. In our scenario our recommendation system defines
a mapping h(r̂) → r, from a set of probe feature values
r̂ = f̂(xtest) extracted from a test image xtest to the es-
timated scores of the all models r = f(xtest) on the test
image. Following [10], we describe several strategies we
evaluate for learning the recommendation (mapping) func-
tion h(r̂).

4.3.1 Factorization

Matrix factorization can be used to discover a latent low
dimensional representation of the augmented score matrix.
We use non-negative matrix factorization [8] to decompose
the augmented score matrix, R̃ = Ũ>W̃, where U is a
non-negative (M + V ) ×K matrix and W̃ a non-negative
K × N matrix. Ũ spans a K dimensional imaging sub-
space and W describes each of the N training images as a
K-dimensional mixture vector. Recall that the rows of the

augmented score matrix can be separated into the V virtual
probe responses and M model responses. At test time, the
virtual probe features of the test image r̂ can be used to
solve for the weight vector θ of the sub-matrix Û to satisfy

Û>θ = r̂. (1)

Then to predict the models response on the test image, we
solve r = U>θ.

4.3.2 Sparse Coding

A sparsity prior can also be enforced on the matrix R̂ via a
sparse weight vector α, which is used to select a sparse set
of virtual probe features to span the imaging conditions. An
optimal sparse weight vector is computed by

α∗ = argmin
α
‖r̂ − R̂α‖22 + τ‖α‖1, (2)

where r̂ are the responses of the virtual probe features on
the test image, R̂ are the rows of the augmented score ma-
trix corresponding to the virtual probe features, and α is
the vector of weights for the sparse reconstruction. τ is the
sparsity hyper-parameter. Once α∗ has been computed, the
predicted model responses r can be computed simply as the
weighted combination of columns of R.

4.3.3 Nearest Neighbor

Another simple way to map a set of virtual probe features
r̂ to model scores r, is to treat the virtual probe features
as a direct index into the augmented score matrix. At test
time, we extract the virtual probe features and then find the
training image with the most similar virtual probe feature
response distribution using a nearest neighbor search. This
is the same approach used in [9], where a HSV color his-
togram was used as an index to find the nearest image frame
in the database and then used a set of classifiers associated
with that image on the test image. It was shown that this
feature can be effective when the dataset is always a super-
set of the test images.

4.3.4 Non-linear Regression

Since our augmented score matrix is dense (no missing
data) we can take a step further and attempt to learn a non-
linear mapping between virtual probe features r̂ and model
scores r with a non-linear regressor g(r̂) → r. In our ex-
periments we evaluate a random forest regressor to estimate
test time model scores.

5. Hand Region Segmentation
While our proposed pixel-level detection of hand regions

is robust in various scenarios, it also important to ensure



Figure 4. Hand region detection results: per-pixel likelihood (top), segmentation (middle) and final result (bottom).

global consistency between pixel-wise detections using top-
down cues. As in many segmentation techniques, we for-
mulate the task of hand region contour segmentation as an
energy minimization problem [1] over super-pixel regions
[13, 15, 5]. Our spatio-temporal super-pixel graph aims
to extract consistent regions by modeling temporal smooth-
ness, spatial smoothness and a spatial prior.

Our energy function is defined as

log p(L|x) =
∑
i

φlike
i li +

∑
i

θφpos
i li

+
∑
ij

λφspat
ij

[
2lilj − (li + lj) + 1

]
+
∑
ik

νφtemp
ik

[
2lilk − (li + lk) + 1

]
,

(3)

where i indexes the superpixels at time t, j indexes all spa-
tially neighboring super-pixel at time t, and k indexes all
temporally neighboring superpixels within a finite temporal
window. An illustration of the spatial and temporal poten-
tials are given in Figure 5. The optimization yields segmen-
tation results visualized in Figure 4.

The unary likelihood potential φlike is defined as the log
odds, the mean hand likelihood of all pixels within a super-
pixel belonging to the foreground class divided by the likeli-
hood of the background class. Likewise the unary position
prior φpos is computed from the mean position likelihood
of pixels (computed from a 2D Gaussian centered at the
centroid of the nearest connected component ). The spa-
tial binary potentials φspat

ij is defined as the probability of
the mean LAB values of super-pixel j, modeled by a Gaus-
sian centered at the mean of super-pixel i. Following [19],

t

φspat

φtemp. φtemp.

t-3 t+3

Figure 5. Visualization of the binary potentials of our spatio-
temporal graph used for segmentation.

the temporal binary potential φtemp
ik is an indicator function

that is unity when two super-pixels overlap, where overlap
is computed at the spatial intersection of two super-pixels i
and k, after super-pixel i has been shifted according to the
average optical flow between time t and t + w (the time
index of super-pixel k). We use a temporal window of ± 6.

6. Experimental Evaluation

We use three publicly available ego-centric datasets to
evaluate our proposed hand detection algorithm. The CMU
EDSH dataset contains three sequences, containing over
400 pixel-level image labels [9]. As this dataset was created
for hands under varying illumination, the hands of one per-
son is recorded under various imaging conditions but does
not contain a wide range of actions. We use videos from
6 different subjects from the UCI dataset [12], where users
are engaged in various activities of daily living (ADL). This



dataset is the most challenging, as video is taken by a chest
worn camera (fingers are harder to detect) and taken in a
wide range of indoor imaging conditions. We also used the
Georgia Tech egocentric activities (GTEA) dataset [5] to
test our segmentation algorithm.

For all of our experiments, we use the local patch-based
random forest regressor used in [9] as our base detector us-
ing LAB, HSV and BRIEF features.

6.1. Evaluating Probe Features

In this experiment we are interested in the ability of vir-
tual probe features (global appearance features and detec-
tor cross-correlation features) to improve the performance
of hand detection. We tested 20 different variations of vir-
tual probe combinations over the CMU EDSH dataset and
the UCI ADL dataset. The set of models for the CMU
EDSH dataset were generated from the EDSH1 video, by
clustering images by their HSV histogram and training a
separate model for each cluster. We used the same proce-
dure for the UCI ADL dataset to generate a pool of models.
For the EDSH data the average of the top 19 models were
used to compute the F-measure and in the ADL dataset the
weighted average of the top 5 models were used to com-
pute the F-measure. NMF was used as the recommendation
technique. The results are summarized in Table 1.

The baseline method is a single detector trained on all
the training data. This baseline represents a model without
any concept of model recommendation and therefore has no
virtual probe features. Since the model is forced to repre-
sent all hand features with a single model it yields the lowest
performance.

First, we evaluated HSV color histograms and global
HOG [3] over a variety of spatial bins as a virtual probe
feature. The HSV histogram is 64d (4 × 4 × 4) and the
HOG template is 81d. The F-measures of the appearance
features are given to the left of the slash symbol in Table
1. We can see from the distribution of scores in bold, that
the HSV-based virtual probes obtain the best performance
for the majority of datasets. Although in 4 of the 8 ADL
datasets the HOG feature also generates the best score. This
indicates that both the color of the scene and the structure
of the scene are helpful in determining the best selection of
models.

Second, we evaluated cross-correlation features. We
treat the output of a mean model f0 as ‘true’ and compute
the 0-1 loss of another model m with respect to the out-
put of the mean model. For each test of the CMU EDSH
dataset, the number of models was M = 242 (including
the mean model) and therefore has M − 1 cross-correlation
features. Each test of the UCI ADL dataset utilized 180
models. The F-measure obtained by the addition of the
cross-correlation feature is given to the right of the slash
symbol in Table 1. We see from the right-most column that

Table 1. Evaluating different variations of probe features. Left of
slash is the F-measure with only global feature and the right of
slash performance combined with cross-correlation features.

Virtual Probe EDSH2 EDSH-K ADL (avg.)
No Probe 0.788 0.806 0.265
HSV (1) 0.821 / 0.844 0.849 / 0.822 0.302 /0.351

HSV (top/bot) 0.822 / 0.847 0.846 / 0.822 0.229 /0.348
HSV (2 by 2) 0.825 / 0.845 0.839 / 0.822 0.212 /0.309
HSV (3 by 3) 0.824 / 0.848 0.837 / 0.82 0.215 /0.342
HSV (1+3) 0.820 / 0.846 0.841 / 0.823 0.264 /0.331

HoG (1) 0.752 / 0.836 0.801 / 0.814 0.285 / 0.358
HoG (top/bot) 0.768 / 0.838 0.807 / 0.811 0.235 /0.339
HoG (2 by 2) 0.777 / 0.843 0.807 / 0.813 0.200 /0.325
HoG (3 by 3) 0.774 / 0.836 0.808 / 0.814 0.200 /0.307

Corr. only 0.000 / 0.843 0.000 / 0.810 0.000 /0.339

Table 2. Evaluating recommendation strategies.

Recommendation EDSH2 EDSH-K ADL AVG
NMF 0.834 0.811 0.322
SC 0.781 0.812 0.252
KNN 0.843 0.805 0.384
RF 0.848 0.825 0.357
No Probe (single) 0.765 0.800 0.265
Sparse Feature [9] 0.781 0.808 0.346

the cross-correlation feature improves performance on av-
erage. This indicates that the cross-correlation feature is
indeed encoding useful information about performance on
the test distribution.

6.2. Comparing Recommendation Strategies

We now compare the four recommendation strategies ex-
plained in section 4.3 and two baseline models. For each
recommendation experiment, we use the same parameters
as the previous experiment but using the best combination
of virtual probe features (i.e. the best HSV, best HOG and
cross-correlation feature combination).

Table 2 shows that our recommendation approach beats
the state-of-the-art detection of [9]. Furthermore, we ob-
serve that the non-linear models (NN regression and RF re-
gression) perform better than the linear factorization (NMF
and SC) models on both datasets. Non-linear models have
the benefit of capturing more complex mappings between
the probe features and the unobserved features. However,
non-linear models also have two drawbacks. First, a large
number of virtual features increases the possibility of over-
fitting to the data in the score matrix. Second, in the case
of the RF model, the mapping from virtual probes to model
scores is expensive, since a single RF model is trained for
each entry of the score matrix. We will analyze and evaluate
these characteristics in the next section 6.3.

6.3. Minimizing Correlation Feature Usage

In the previous experiments, many cross-correlation fea-
tures were used as virtual probe features. However, since



Figure 6. Performance versus number of correlation probe fea-
tures. Only a small number (around 10) of probes are necessary
for robust and efficient performance.

each cross-correlation requires the evaluation of the entire
test image, using a large number of cross-correlation fea-
tures can be expensive and not practical for real-time appli-
cations that require a fast response time. Also as mentioned
previously, a large number of probe features can also cause
the non-linear recommendation schemes to over-fit to the
data. In this section, we examine the tradeoff between com-
putation time and performance, by varying the number of
virtual cross-correlation probe features.

We plot the change in performance on the EDSH dataset
by increasing the number of cross-correlation probe fea-
tures. The number of global appearance probe features
(combination of HSV and HOG features) remains con-
stant throughout. When the number of probes is 0, only
the global appearance features are being used. Figure 6
shows the results for the top performing non-linear recom-
mendation strategies using the random forest (RF) and k-
nearest neighbors (KNN). The dotted lines indicate the per-
formance when all 241 cross-correlation features are used.

Although we expected the RF recommendation approach
to overfit to the data, we observed that the RF is relatively
stable. We believe this robustness comes from the built-in
random features selection process of the RF model. When
the set of models is smaller than the number of pixels in
the test image, the RF model will be the most efficient ap-
proach. It is interesting to note that the simple KNN ap-
proach can obtain the same level of performance as the RF
approach when about 30 cross-correlation features are used
but it also quickly overfits as more features are introduced.

6.4. Evaluating Potentials for Post-Processing

In our segmentation step we introduced an energy func-
tion based on three potential functions and a label bias pa-
rameter. Table 3 shows the results of ablative analysis by
removing one potential at a time. F-measures values are
given for the EDSH dataset and GTEA dataset. We ob-
served that the temporal potential provided the greatest con-
tribution, especially on the EDSH dataset which contains

Table 3. Time-Space MRF with one parameter fixed in zero

EDSH2 EDSH-K GT-T GT-P
All parameters 0.828 0.883 0.911 0.800
No position prior (θ = 0) 0.812 0.874 0.898 0.791
No temporal smoothing (ν = 0) 0.806 0.872 0.897 0.784
No spatial smoothing (λ = 0) 0.827 0.863 0.894 0.784
All parameters (keep 3 contours) 0.828 0.886 0.942 0.825

Figure 7. Segmentation results on the GTEA dataset.

Table 4. Cross-User Performance on the UCI ADL dataset. Leave-
one-out style training where probe includes global appearance and
detector cross-correlation features.

Probe User1 User2 User3 User4 User5 User6 avg.
No probe 0.204 0.209 0.326 0.172 0.342 0.337 0.265
NMF 0.199 0.291 0.572 0.169 0.288 0.413 0.322
SC 0.186 0.321 0.386 0.135 0.068 0.418 0.252
KNN 0.254 0.414 0.569 0.358 0.232 0.480 0.384
RF 0.274 0.298 0.650 0.232 0.327 0.362 0.357

large degrees of ego-motion, where the user is walking for
most of the sequence. The best performance was achieved
by using all potentials. We also obtain a small improve-
ment when we use a simple post-process step to keep only
the top 3 largest contours. Examples of segmentation from
the GTEA dataset are given in Figure 7 and results for the
EDSH dataset are given in Figure 4.

6.5. Cross-user Performance

Many first-person vision systems can be personalized to
a single user since the camera will only be used for one per-
son. However, in other applications, it may not be possible
to gather labeled pixel-wise ground truth data of a specific
user. Therefore, we would like to know the performance of
our proposed approach when we are not given any training
data for the test user. For this experiment we use only the
ADL dataset, since the EDSH dataset only contains data for
a single person.

Table 4 shows the performance of cross-user perfor-
mance on the UCI ADL dataset, where training data from
5 users are tested on single held out user in a leave-one-out
style rotation of the data. We use the same no probe sin-
gle detector baseline to show how our recommendation ap-
proach can be used to adapt to new users in various lighting
conditions. A sample of the final output is given in Figure
8. The absolute scores and segmentations (Figure 9) are far
from perfect. This shows the challenging nature of detect-
ing hands in real life scenarios especially in very dim lit
scenes where it is hard to detect skin texture.



Figure 8. Sample results on the UCI ADL dataset.

Figure 9. Incomplete detections.

7. Conclusion

In this work it was our aim to extend the state-of-the-
art in egocentric hand detection to provide a more stable
pixel-resolution detection of hand regions. In particular, we
showed that the problem of pixel-wise hand detection can
be effectively solved, by posing the problem as a model
recommendation task. Through quantitative analysis we
showed that our proposed approach is able to retrieve the
best hand detectors based on global appearance features
and cross-correlation feature extracted from the test im-
age. We also evaluated the role of proper post-processing
and showed that pixel-level detections should be verified

by a top-down post-processing step to ensure certain global
properties about the hands. In our experiments we showed
robust hand detection by testing our model across multiple
users and showed that our proposed approach attains state-
of-the-art performance.
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