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Abstract

We address the problem of continuously observing and
forecasting long-term semantic activities of a first-person
camera wearer: what the person will do, where they will go,
and what goal they are seeking. In contrast to prior work
in trajectory forecasting and short-term activity forecast-
ing, our algorithm, DARKO, reasons about the future posi-
tion, future semantic state, and future high-level goals of the
camera-wearer at arbitrary spatial and temporal horizons
defined only by the wearer’s behaviors. DARKO learns and
forecasts online from first-person observations of the user’s
daily behaviors. We derive novel mathematical results that
enable efficient forecasting of different semantic quantities
of interest. We apply our method to a dataset of 5 large-
scale environments with 3 different environment types, col-
lected from 3 different users, and experimentally validate
DARKO on forecasting tasks.

1. Introduction

Imagine your daily activities. Perhaps you will be at
home today, relaxing and completing chores. Maybe you
are a scientist, and plan to conduct a long series of experi-
ments in a laboratory. You might work in an office building:
you walk about your floor, greeting others, getting coffee,
preparing documents, etc. There are many activities you
perform regularly in large environments. If a system under-
stood your intentions it could help you achieve your goals,
or automate aspects of your environment. More generally,
an understanding of human intentions would benefit, and is
perhaps prerequisite for, Al systems that assist and augment
human capabilities.

We present a framework that continuously forecasts
long-term spatial and semantic intentions (what you will
do and where you will go) of a first-person camera wearer.
We term our algorithm “Demonstrating Agent Rewards for
K-futures Online” (DARKO). We use a first-person camera
to meet the challenge of observing the wearer’s behavior
everywhere. In Figure 1, DARKO forecasts multiple quanti-
ties: (1) the user intends to go to the shower (out of all possi-
ble destinations in their house), (2) their trajectory through
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Figure 1: Forecasting future behavior from first-person
video. The overhead map shows where the person is likely
to go, predicted from the first frame. Each s; refers to the
state of the user at time 7. The histogram insets on each im-
age display the predictions of the person’s next long-term
semantic goal (inner right) and what objects they will ac-
quire along their way to their goal (inner left). Forecast-
ing is performed and learned continuously as the person be-
haves regularly.

space to this probable goal, and (3) the high expectation
that a user will pick up a towel along the way. In Figure 2,
DARKO is shown adapting its goal prediction for two se-
quences that share a similar beginning.
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Figure 2: Goal forecasting over time: Predictions of future goal for each frame. DARKO’s predictions change over time as
the person performs activities. In the top sequence, the acquisition of a plate and snack shifts probability mass to the “dining
room” goal. In the bottom sequence, the acquisition of a mug shifts probability mass to the “office” goal.

In contrast to the tasks of early event recognition and ac-
tivity prediction, [6, 8, 16, 19], DARKO predicts activities
at an arbitrary time horizon that can adapt as new behaviors
are observed: our primary inference task is to predict the
future goal. Our model reasons over the spatial and seman-
tic states of the agent and environment, yielding forecasts
of the future across space, time, and activities.

Long-term observation across large environments, such
as those in Figure 3, necessitates a suitable sensing modal-
ity. While it may be reasonable to instrument the environ-
ment with networked devices (e.g. surveillance cameras),
sensing will be constrained to the instrumented space. Ad-
ditionally, the user has less control over fixed sensors. A
first-person camera allows for observation of human actions
over large environments that expand as the wearer visits

new places. The camera is generally close to the wearer’s
hands and objects of interaction, thus it is placed at an ideal
vantage point from which to understand the wearer’s inter-
actions with the world.

Each person has a unique lifestyle and specific environ-
ment in which they live and work. Therefore, any feasi-
ble approach for learning and predict novel goals should be
personalized to an individual’s behaviors. A traditional su-
pervised learning approach, e.g. a deep network, to build
customized activity recognition algorithms can be quite ex-
pensive in terms of training data. A per-person online learn-
ing approach is more appropriate for the streaming setting,
and relaxes the data requirements. We apply the Maximum
Entropy Inverse Optimal Control (MaxEntIOC) [24] frame-
work to an online setting, which allows us to continuously



model each agent individually as a near-optimal agent in
their own environment. Our online approach allows for con-
tinuous estimation of and adaptation to the wearer’s behav-
iors, including when they visit new environments.

Our contributions include:

o the first online activity forecasting approach

o the first expansion of the spatial and temporal activity
prediction horizons beyond single views, single rooms,
and short timescales

e cfficient modeling of traversal between many goals

e new mathematical results for forecasting in the Max-
EntIOC framework

Our mathematical results include expected subspace fore-
casting, expected action visitation from a subspace, and
expected trajectory length forecasting, described in Sec-
tion 3.5. Subspace visitation forecasting is especially ap-
plicable to our scenario: as we will show, our state space
formulation can naturally be partitioned into subspaces that
retain important semantic meaning.

2. Related work

We discuss several topics of related prior work. First-
person vision encompasses a range of problems, including
activity and object detection. Early event and early action
recognition are the tasks of predicting the current ongoing
activity as soon as possible, whereas the problem of action
forecasting involves prediction a future activity for which
there is yet no direct evidence. Trajectory forecasting pro-
duces predictions of where a person will go in the future.
Maximum entropy IOC has been employed to learn goal-
directed models for humans.

First-person vision: The first-person vision tasks most
relevant to our work are those that undertake the challenging
problems of object and activity recognition from the first-
person view point [4, 10, 12, 15, 17]. In [5], the authors
note that actions are identifiable by how they change the
state of the environment, similar to how we seek to model
the state of the user in their environment. These recognition
tasks identify the present nature of the environment or user,
complementary to our task of inferring the future nature.

Early recognition and action forecasting: In [0, 10],
the tasks are to recognize an unfinished event or activity. In
[9], a hierarchical structured SVM is employed to forecast
actions about a second in the future, and [ 1 9] demonstrates a
semi-supervised approach for forecasting actions a second
into the future. Other related short-term prediction meth-
ods include [3, 11, 20]. These methods are constrained to
deal with activities that occur under small or fixed time win-
dows. However, many human activities are performed over
different time scales and longer time scales. Our framework

allows for prediction of different activities at different time
scales. In the extreme case, a person may not reach their
goal for hours (e.g., walking long distances), yet our frame-
work would allow for prediction of their future activities in
this scenario. Additionally, these methods do not adapt to
the specific environment of the agent: they are not aware
of the larger space in which the activities are situated and
history of the user’s behavior in that space.

Trajectory forecasting and Maximum Entropy I10C:
[18] forecasted short-term future trajectories of a first-
person camera wearer by retrieving the nearest neighbors
from a dataset of first-person trajectories under an obstacle-
avoidance cost function. Multiple human trajectory fore-
casting from a surveillance camera was investigated by [2,

]. Another trajectory forecasting approach uses demon-
strations observed from a bird’s-eye view of a scene to infer
latent goal locations [21]. The authors of [24] introduced
the maximum entropy approach for inverse reinforcement
learning, and modelled behavior of taxi-cab drivers in a
road network to perform taxi trajectory forecasting. [25]
demonstrated pedestrian trajectory forecasting in a single
room using the MaxEntlOC framework, tracking the per-
son’s movements with laser range finders. The work of [7]
brought the MaxEntIOC approach into the realm of com-
puter vision and forecasted the future trajectory of a person
from a 3rd-person surveillance image, using discrete loca-
tions on the ground plane as the state space.

Our approach introduces several novelties over exist-
ing forecasting approaches. We go beyond physical trajec-
tory forecasting and produce forecasts of semantic goals.
DARKO continuously expands the state space and learns a
model as the person demonstrates behaviors, enabling long-
term modeling for arbitrary users. Our method reasons
about futures far outside of the view of a single frame and
adapts to each individual’s environment. We model more
aspects of goal-directed behavior than prior MaxEntIOC
work, including the sequential nature of reaching goals, and
the interaction with objects. Finally, we contribute several
new inference methods to the MaxEntIOC framework.

3. Approach

We learn a model of the camera-wearer’s (hereafter
“agent” or “user”) behavior that facilitates forecasting of
future activities. We assume the agent will behave near-
optimally: they achieve their goals in a reasonably efficient
manner. Given demonstrations from the agent, the task of
inverse optimal control (I10C) is to recover a reward func-
tion (or cost function) that explains the agent’s behavior as
near-optimal in a Markov Decision Process (MDP). How-
ever, there is generally more than one choice of reward func-
tion that explains an agent’s behavior, among other ambi-
guities [1]. In [24], the principal of Maximum Entropy is
employed to resolve these ambiguities, which results in a
model that exhibits minimal preference between behaviors
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Figure 3: Environments: SLAM points and stylized blueprints of several environments from our dataset are shown. Inter-
environment distances not to scale. Doubly-dashed lines in Figure 3d indicate a shortened environment for layout clarity.

that obtain equivalent rewards. Thus, uncertainty is pre-
served at the beginning of a demonstrated behavior: possi-
ble future goals receive approximately equal probabilities.
We revisit this property later.

An MDP-based approach requires an estimate of the
state of a user (described further in Section 3.1). Our state
includes a spatial component, thus, we must continuously
estimate where the person is. We make use of a vision-
based SLAM algorithm, [ 4], to localize the agent in space.
To identify the end of a single demonstration (a trajectory),
we must detect when a person has arrived at a goal state.
Our state also includes a semantic component of object pos-
session: what objects a person is carrying.

The layout of Section 3 is as follows. We introduce our
terminology and framework in Section 3.1. We present our
main algorithm, DARKO, in Section 3.2. In Section 3.3, we
show how we construct our state space to enable modeling
an agent seeking goals sequentially. We overview known re-
sults of goal posterior prediction in Section 3.4, and derive
new results for subspace visitation and trajectory forecast-
ing in Section 3.5.

3.1. Terminology

Our Markov Decision Process framework is:

MDP = (SaAvT('v')ng('7'))> (D

where S is the expanding state space, which is the set of
states an agent can visit, and A is expanding action space
comprised of independent movement and activity transi-
tions. T'(s,a) — s’ is a deterministic transition function.
Ry(s,a) = 0T f(s,a) is an instantaneous linear reward
function of taking an action at a state, learned online from
demonstrations with features f(s,a) and parametrized by
6. A policy 7(als) gives the probability of taking action a
while in state s. A trajectory £ is composed of state-action

tuples: & = [(so,a0),---, (SN, an)]. We use &y—,+ to indi-
cate a trajectory starting at time 0 and ending at time ¢.
3.2. Algorithm

DARKO, shown in Algorithm 1, continuously forecasts
future activities. Frames are obtained from a first-person
camera (the NEWFRAME function), and a SLAM algorithm
is used to track the user’s location. Part of the wearer’s se-
mantic state is obtained from an action detection algorithm,
ACTIONDET. Feedback is obtained after every detected ar-
rival at a goal, providing a new demonstration trajectory, &.
This feedback is used to update the current policy, 7. Thus,
the policy is continually fit to incorporate new information
about a person’s behaviors. The policy is a model of the
wearer that can be forward simulated to obtain predictions
of the person’s future behavior.

The FORECAST function, parameterized by the current
policy 7, runs trajectory inference (Algorithm 11.4 from



Algorithm 1 DARKO: Demonstrating Agent Rewards for
K-futures Online

1: func DARKO(SLAM, ACTIONDET, GOALDET, T')

2 S(—O,S:{},fi[],g:{},aio

3 while True do

4: frame + NEWFRAME()

5: pose <~ SLAM.TRACK(frame)
6

7

8

9

a < ACTIONDET(pose, frame)
E+Ed(s,a),S + SU{s}

s+ T(s,a)

: FORECAST(§)
10: is_goal + GOALDET(s, pose, frame, G)
11: if is_goal then
12: G+ GU{s}
13: w4+ 10,8, T,£G), =)
14: s+ T(s,a = at_goal)
15: end if
16: end while
17: end func

Algorithm 2 Policy fitting
func FIT(0, S, T, €, G: \)
fi - Z(s,a)gf f(S, a)

1:

2

3 7 <~ SOFTVALUEITERATION(0, §, G, T)
4: fi + EXPECTEDFEATURE(S, 7, T)
5

6

7:

00— \fi— fi)
return m
end func

[23]) to compute Equations 2 and 3, and additionally com-
putes Equations 4, 6, and 8 for various queries. The pri-
mary quantity of interest is the goal posterior of Equation 2:
P(g|€0—¢)Vg € G. This represents probabilistically what
goal the user seeks given their current trajectory. Note that
goal states can share locations if their semantic states differ.
The FIT function, shown in Algorithm 2, performs gradient
descent on the current parameters of the policy, employing
the soft value iteration and expected feature algorithms of
[23] to calculate the gradient of the reward function and up-
date its parameters.

3.3. State space construction

Consider the following scenario: an agent starts in state
54 and travels to goal state s,. For example: a person travels
from an office to the kitchen to get coffee, and then travels
back from the kitchen to the office: s, — 54,5 — Sq.
The value of s, should be higher than the value at all other
states to encourage the agent to travel from s, to s, yet,
after arriving at s, the agent moves on to another goal. Un-
der the simple environment and value function V' unaware
of the previous goal, moving from s, to s, would be highly
suboptimal (i.e. V'(s4) > V(s,)): the optimal action is to

remain at s,. Therefore, we augment the state space with
the index of the previous goal: after arriving at s, the envi-
ronment (7") transitions the agent to a new state, s’g, identi-
cal to s, except for its previous goal index. Value iteration
propagates from goal states and does not spread across this
environmental barrier, decoupling the values of s, and s_’q.

We model the objects the person currently has in posses-
sion. The objects a person picks up and uses for various
activities are strong cues for their behaviors [4], and as dis-
cussed later, this formulation enables inference of the ob-
jects a person will acquire and release in the future. With
N objects and K possible goals, a state in our state space is
written

s=[2,9,2,91,---9K,01...,0N],

where x, y, z are the discretized 3D components of position,
g; = 1 if the person last arrived at goal category ¢, and
o; = 1 if the person has object j in their possession.

3.4. Future goal prediction

In MaxEntIOC with deterministic transitions, the poste-
rior over goals given a partial trajectory is defined in Equa-
tion 2:

P(G|&o—¢) P(G)eVSt(G)fVSI(G% @)

where V, (G) is inverted value function of G obtained by
performing soft-value iteration with s; as the goal state (sg
and s; are the starting and current states). Roughly, the
probability of a goal is exponentially proportional to the
progress made towards that goal under the value function.
Online goal forecasting thus requires running soft-value it-
eration twice.

3.5. Future state and subspace prediction

Goal forecasting predicts the long-term activity of a user.
We are also interested in what states a person will reach and
what actions they will perform along their way to the goal.
The posterior expected count of future visitation to a state
s, (Equation 11.4 in [23]) is defined as

T

DSm‘fO%t £ EP(£t+1~)T‘£O~>t) l Z I(ST = Sx)] . 3
T=t+1

This quantity represents how frequently the agent is ex-
pected to visit each state in the future given the current tra-
jectory, £y, under the maximum causal entropy distribu-
tion, P(&i+1-7|0—t), where I is the indicator function.
The maximum causal entropy distribution yields the proba-
bility of a future trajectory given the current trajectory.

The posterior expected count of future states in Equa-
tion 3 can be efficiently computed using Algorithm 11.4
from [23]. We are interested in generalizing this result from



a single state to a subset of states. By exploiting the struc-
ture of our state space, we can construct subsets of the state
space that have an interesting and relevant semantic mean-
ing, such as “having an object o;” or “all states closest to
goal k with O set of objects.”

Our interest now is in the quantity in Equation 4, the ex-
pected count of visitation to a subset of states S, satisfying
some property p.

T

= IEP(Et+1~>T|SO~>t) Z I(ST € Sp) (€]
T=t+1

Dsp ‘£0~>t

We show how to rewrite this in terms of Equation 3:

T
D‘SPKO%t = IEP(&‘t‘Fl*)T‘gOHt) Z Z I(s; = s4)

5z €Sy T=t+1
T
= Z Ep(eri1orléons) Z I(sr = sz)
52€85p r=t+1
= > Daior 5)

5z €Sy

Thus, we can efficiently compute the posterior expected
visitation count to a subset of states.

To answer questions like “what is the likelihood of ac-
quiring a specific object along the way to the goal” (e.g.
acquiring a coat before going to the exit), we must consider
the subspace of states with the action of interest available.
Also relevant is the policy’s probability of performing an
action at each state in the subspace. We formulate the pos-
terior expected visitation count of performing an action a,,
immediately after arriving in a subspace, Sy, as

D > maylse)Dssio - (6)

52€Sp

ay,Spléo—t =

Equation 6 is the straightforward extension of D, .
from [23] to the subspace case. We can push this result
further to compute expected transition counts of a joint over
subsets of both actions (A, ) and states (S,) in Equation 7,

Z Z W(ay|sI)DSm\§oﬂm (7

ay€Ay, 5. €Sy

Da, s, 60 =

by following a similar derivation to that of Equation 5.
Thus, under our state-space model, we can efficiently per-
form inference to answer questions like “what is the ex-
pected number of times the person will acquire any object
(subset of actions) in the next k steps, given their current
state?”

Given the user’s state, how long will it take them to reach
their next goal? The answer tells us more about the user’s
intentions than their goal and activities alone. We consider

the expected trajectory length in Equation 8. The notation
|€] is used to indicate the count of states in trajectory .

A
L€t+1~>T‘£O~>t = EP(£t+1~>T|€O~>t) |£t+1—>T‘ )]

This is nontrivial to compute at first glance, as it involves
the causal maximum entropy distribution over future trajec-
tories. Consider evaluating Ds ¢, ,, from Equation 5 by
setting S, = S, that is, by considering the expected future
visitation count to the entire state space. Then,

T
Dsigoe = Ep(giririgoss) [ Z I(s; €5)
T=t+1
T

= EP(étﬁ»lﬂT‘&O*)t) Z 1
T=t+1

=Ep(¢1ori€0o0) (G157

Z D5m|€0ﬁ»t = L€t+l~>T‘£0~>t €))
sz €S

Therefore, we can compute the expected future trajec-
tory length by summing the expected state frequencies over
the entire state space. We use this identity to continuously
estimate the agent’s future trajectory length.

4. Experiments

We introduce our dataset in Section 4.1, and evaluate
our primary inference task of online goal forecasting in
Section 4.2, comparing against several baselines related to
DARKO. In most experiments, we employ detectors derived
from the activity and goal labels. Although we also analyze
performance with a goal-detection approach in Section 4.3,
our focus is not to engineer the detectors that serve as in-
put to DARKO. Additionally, we evaluate online trajectory
length forecasting in Section 4.4 using the results derived in
Section 3.5.

4.1. Dataset

We collected a dataset of sequential goal-seeking behav-
ior in several different environments under the following
high-level scenarios “home,” “office,” and “laboratory.” The
users recorded a series of activities that naturally occur in
each scenario. Our dataset is comprised of 5 environments,
from 3 different users, and includes over 250 activities with
23 objects, 17 different goal types, at least 6 goals per en-
vironment, and about 200 different high-level activities. In
each environment, the user recorded 3-4 long sequences of
high-level activities, where each sequence represents a full
day of behavior, temporally compressed to be sequential
(very few large delays between activities). Thus, our dataset
represents over 15 days of recording. Large delays between
activities (e.g. sitting on a couch for a prolonged period of
time) are still handled by our framework, as the user’s state
will simply be static during this delay.
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Figure 4: DARKO vs. Logistic Regression goal poste-
riors for an example trajectory. Initially, uncertainty is
maintained by DARKO’s MaxEntIOC forecasting, as the
user could go to either goal. Logistic regression is overcon-
fident in its initial (incorrect) prediction and is underconfi-
dent in its final prediction, as it does not explicitly have in-
formation about the user’s history. As the user approaches
the true goal, DARKQO’s goal posterior is very confident in
its prediction - the user is very unlikely to go to the office
given the majority of the trajectory.
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Figure 5: Goal posterior forecasting over time: mean
P(g*|€) vs. fraction of trajectory length

4.2. Goal forecasting

Goal forecasting baselines: We introduce several online
methods for producing a posterior over future goals. Our
first baseline is a uniform posterior over possible goals.
This gives equal weight to all known goals for the current
frame. The next baseline is the normalized tabular counts
baseline. For K goal types, a K x K table, U, tracks the
number of visits to a goal state when starting from a start

Home 1 | Home2 | Office 1 | Office 2 Lab 1

DARKO 0.851 0.683 0.700 0.666 0.880
DARKOR(s) 0.735 0.574 0.581 0.549 0.892
Logit Reg. 0.517 0.519 0.650 0.657 0.774
Tabular 0.578 0.403 0.395 0.619 0.826
Uniform 0.153 0.128 0.154 0.151 0.167

Table 1: Goal posterior results. AUCs of P(g*|¢) vs. per-
centage of elapsed trajectory produced by DARKO and the
baselines.

state. A visit to goal j after starting at goal ¢ is recorded as
incrementing u,;, and predictions are formed by obtaining
the current starting state, and producing a posterior by nor-
malizing across u! . This baseline makes the reasonable as-
sumption that starting states are correlated with goal states.
A final baseline is logistic regression from state features to
goals, retrained online with the history of demonstration
trajectories as they become available, which is a Follow-
the-Leader online learning approach. This baseline has ac-
cess to the same information as DARKO, but only reasons
about the current state (and does not use the full history
of the trajectory). Each baseline requires the state tracking
and goal detection components of DARKO. The baselines
are limited in that they are not immediately applicable to
other inference tasks, such as computing the posterior prob-
abilities of trajectories, computing the estimated future tra-
jectory length, forecasting visitation to future intermediate
states and actions, etc.

Results and maintaining early uncertainty: A user may
be in a state and go to one of several goals (e.g. Figure 2),
but generally takes a near-optimal path to the goal they have
in mind. Our framework allows us to both maintain early
uncertainty and harness user history as they approach the
goal. Early uncertainty results from encouraging the pol-
icy to match observed behaviors that contain forking paths.
We evaluate the quantity P(g*|€), which is a method’s out-
put probability of the frue goal, g* given a partial trajectory.
We show in Figure 4 an example of DARKO maintaining
early uncertainty and converging to the correct answer as
the user approaches the goal. In contrast, logistic regres-
sion has no such guarantees and fails in in this example.
We plot statistics of P(g*|¢) vs. fraction of trajectory seen
for every trajectory in each environment in Figure 5, and
further summarize these results in Table | by computing
the Area Under the Curve for each: AUCp(4-|¢). We in-
clude in Table 1 a variant of our approach, DARKORs),
which does not use features of actions in the reward func-
tion (only features of state). This helps us measure the im-
portance of explicitly modelling future actions, and we find
that including both components in the feature is almost al-
ways better. We find that in all cases, DARKO outperforms
the best baseline, and in almost all cases, DARKO exhibits
the property of maintaining uncertainty early in the trajec-
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Figure 6: Goal forecasting examples: A temporal se-
quence of goal forecasting results is shown in each row from
left to right, with the forecasting destination icons, labels,
and probabilities inset sorted by probability. Top: the scien-
tist acquires a sample to boil in the gel room. Middle: the
user acquires a textbook and travels to the lounge to read.
Bottom: the user leaves their apartment.

tory and converging to the correct prediction as time elapses
(lim¢ ,; P(g%|€o—: =~ 1)). Visual examples of these re-
sults are shown in Figure 6.

4.3. Forecasting with goal detection

We analyze the results of DARKO with a scene-classifier-
based goal detection method. We reiterate that our focus is
not to engineer the required goal and low-level activity de-
tectors. We employ the off-the-shelf scene classifier from
[22] to build a temporal window detector on the outputs of
the scene classifier. We construct a mapping from scene
classification classes to goal types, and compute the win-
dowed average of the probability of each goal type. Us-
ing K per-goal averages, we employ K thresholds for goal
detection. With a larger dataset of environments, the per-
goal thresholds could be tuned automatically. DARKO with
a scene-classifier-based goal detector performed best on the
Home 1 environment, with an overall detector accuracy of
93.1% and only a 3.1% loss in performance. These results
are presented in Table 2. We found in one case (Office 1)
a slight increase in overall AUC due to the detector’s high

Home 1 | Home 2 | Office 1 | Office2 | Lab 1
% orig. AUC 96.9 89.2 101.0 89.9 75.0
Detector acc. 93.1 23.6 61.5 48.5 32.0

Table 2: Goal posterior results with goal detection. %
of original AUCp(,-|¢) after integrating a scene-classifier-
based goal detector, and goal detector overall accuracy.

Home 1 | Home 2 | Office 1 | Office2 | Lab 1

Median % Err. 9.0 12.1 3.0 3.4 0.4
Mean % Err. 38.6 105.2 85.6 22.0 5.8
=3V €] 20.5 31.0 27.1 13.7 23.5

Table 3: Trajectory length forecasting results. Error is
relative to the true length of each trajectory. Most trajectory
forecasts are fairly accurate (row 1), but the mean % error
(row 2) is high, primarily due to outlier trajectories in the
failure case of visiting unexplored goals.

accuracy for the most visited goal type in that environment
(“office”), and lower accuracy on other goals. More sophis-
ticated methods could be employed for goal detection, for
instance, a combination of object and scene classification
could be employed to handle goals that are better described
by specific objects rather than by specific rooms.

4.4. Expected trajectory length forecasting

We evaluate the trajectory length predictions by applying
the results derived in Section 3.5. We find that most trajec-
tory forecasts are accurate, and show the median and mean
% errors in Table 3. The main source of error is in forecast-
ing trajectories to new goals. When a user demonstrates a
new behavior, the trajectory length forecast can be arbitrar-
ily bad, as the system is constrained to predict to all known
states. For example, if there are only two known goals, the
user could walk from the first goal in the opposite direction
of the second goal, causing the trajectory forecast and its er-
ror to grow as a function of time, as DARKO would predict
the user will go to the second goal.

5. Conclusion

We have proposed a method for continuously modeling
and forecasting a first-person camera wearer’s future se-
mantic behaviors at far-reaching spatial and temporal hori-
zons. Our method goes beyond predicting the physical tra-
jectory of the user to predict their future semantic goals,
and models the user’s relationship to the objects in their
environment. We have proposed several efficient and ex-
tensible methods for forecasting other semantic quantities
of interest. Exciting avenues for future work include build-
ing upon the semantic state representation to model more
aspects of the environment (which enables forecasting of
more detailed futures), and further generalizing the notion
of a “goal” and how goals are discovered.
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A. Proof of Equations 6 and 7

Equation 6 gives the posterior expected visitation count of performing an action a,, immediately after arriving in a subspace
Sp. We use the definition and expansion of the expected action visitation count from [23] in Equations 10, 11.

T
Dayyszlg(]*)t 2 EP(£t+1~>T|§U~>t) [ Z I(ST = Sw)l(a’T = ay)‘| (10)

T=t+1
= W(ay|sw)Dsz|§rHt (11)

Ay,Sz [€0—t

Our definition of the posterior expected action subspace visitation count is given in Equation 12:

T
Day73p‘£0~>t £ EP(£t+1~>T|£O~>t) l Z I(s; € Sl))[(aT = ay)‘| (12)
T=t+1

T
= EP(§t+1~>T|foat) Z Z I(ST = SI)I(GJT — ay)

5z €Sy T=t+1
T
= Z EP(fH»lA»TlEO—)t) [ Z I(s7 = sz)I(ar = ay)‘|
52, E€ESp T=t+1
= Z Dayasz‘fﬂat
5z €Sy
5z E€Sp

Equation 6 gave the expected transition count from a subspace of states to a subspace of actions, which is defined in
Equation 14.

T
Day73p‘50~>t £ EP(£t+1~>T|£O~>t) l Z I(s; € SP)I(aT € Ay)] (14)
T=t+1

T
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T
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B. Goal-detection performance plots
Figures 7 and 8 show the results of using a scene-classification-based goal detector.
B.1. Office 2 performance (no goal detector)

Figure 9 was not shown in the main body for space reasons.

C. Negative-Log Likelihoods

The negative log-likelihood (NLL) measures the extent to which the demonstrated behavior (each &) can be explained
by the estimated policy . Low NLL scores indicate the policy matches the demonstrated behavior well. We compute the
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P(g”[€) vs. fraction of trajectory seen P(g"[¢) vs. fraction of trajectory seen
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(a) Home 1 with goal detector (b) Home 2 with goal detector

P(g*[¢) vs. fraction of trajectory seen P(g*|¢) vs. fraction of trajectory seen

= DARKO p DARKO 1
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(c) Office 1 with goal detector (d) Office 2 with goal detector

Figure 7: mean P(g*|¢) vs. fraction of trajectory length with CNN-based goal detectors

P(g*[€) vs. fraction of trajectory seen
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M DARKO p40/2
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(a) Lab 1 with goal detector

Figure 8: mean P(g*|¢) vs. fraction of trajectory length with CNN-based goal detector
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P(g*|€) vs. fraction of trajectory seen
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Figure 9: Office 2 with no goal detector

trajectory length-normalized average negative log-likelihood for all demonstrations in each environment as another measure
of model performance, and show the results in Table 4. This quantity is computed as:

N— [€i]—1

1 1
NLL = —N Z @ ' 10g<ﬂ(€z]a|62]5)>7 (16)

=

—

<
I
o

where &, is the action taken for trajectory 4 at timestep j, &;;, is the state of trajectory ¢ at timestep j, and 7 is the final
policy.

Home 1 | Home 2 | Office 1 | Office2 | Lab 1
Avg NLL. 1.235 1.836 1.050 1.129 0.584

Table 4: Average NLL for demonstrations in each environment.

D. Future state visitation examples

See Figure 10 for example visualizations of the expected future visitation counts. In order to visualize in 3 dimensions,
we take the max visitation count across all states at each position. In rows 1, 3, and 4, a single demonstration is shown, which
adapts to the agent’s trajectory (history). In row 2, the future state distribution drastically changes after each time the agent
reaches a new goal.

E. Value function examples

See Figure 11 for example visualizations of the value function over time. Note 1) the state space size changes, and 2) that
the value function changes over time, as the component of state that indicates the previous goal affects the value function.
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Figure 10: Future state visitation predictions changing as the agent (blue sphere) follows their trajectory. The state visitations
are projected to 3D by taking the max over all states at each location. The visualizations are, by row: Office 1, Lab 1, Home
1., Office 2
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Figure 11: Projections of the value function (V' (s)) for environments as time elapses (left to right). The state space expands
as the user visits more locations. For each position, the maximum value (across all states at that position) is displayed:
maxges, V (s). From top to bottom, the environments are Home 1, Office 1, Lab 1.
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