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Graphs: Social Networks
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Graphs: Purchase History
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Graphs: Many More
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Properties of Real-world Graphs

* Large: many nodes, more edges

V/%N)i/\v 40B+ web pages “ 2B+ active users
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a 500M+ products
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5M+ articles

* Dynamic: additions/deletions of nodes and edges
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Properties of Real-world Graphs

* Rich with Attributes: timestamps, scores, text, etc.
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Matrices for Graphs

Adjacency Matrix
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Tensors for Rich Graphs

* Tensors: multi-dimensional array
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Research Goal and Tasks

*Goal:
To Understand
Large Dynamic Graphs and Tensors
on User Behavior
* Tasks

°T1. Structure Analysis ,x‘
o T2. Anomaly Detection .

> T3. Behavior Modeling {@{3‘

&
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Completed Work by Topics

T1. Structure T2. Anomaly | T3. Behavior
Analysis }‘ Detection Modeling C{"%
Triangle Count
Graphs | [1com17][PAKDD18] Anomalous Purchase
[submitted to KDD] Subgraph Behavior
. ? Degeneracy [ICDM16]* [KAIS18]* [JCAI17]
[ICDM16]* [KAIS18]*
L Progressive
Tensors | Summarization | P€NSE Subtensors g |
o WSDM17] [PKDD16][WSDM17] | Behavior
!fg" [KDD17][TKDD18] [WWW18]
W’
* Duplicated
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Approaches (Tools) ‘W

* Al. Distributed or external-memory algorithms

* A2. Streaming algorithms based on sampling
‘ O
oo B

* A3. Approximation algorithms

* and their combinations
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Roadmap

* Overview

* Completed Work <<
o T1. Structure Analysis }‘

°T2. Anomaly Detection

> T3. Behavior Modeling {ﬁ?
* Proposed Work

* Conclusion
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Completed Work by Topics

T1. Structure
Analysis L {ﬁ’%

Triangle Count
Graphs | [icom17][pAKDD18]

[submitted to KDD]
o E Degeneracy

[ICDM16]* [KAIS18]*

Tensors | Summarization

SIS WSDM17
e |
W’
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Roadmap

* Overview

* Completed Work
o T1. Structure Analysis ~

=" T1.1 Waiting-Room Sampling <<
= T1.2-T1.3 Related Completed Work

°T2. Anomaly Detection

> T3. Behavior Modeling {ié{}
* Proposed Work

* Conclusion

Kijung Shin, “WRS: Waiting Room Sampling for Accurate Triangle Counting in Real
Graph Streams”, ICDM 2017




Graph Stream Model

* Widely-used data model for graphs

* Sequence of edges
o graph is given over time as a sequence of edges
o appropriate for dynamic graphs

* Limited memory
o cannot store all edges in the stream
c only samples or summaries
o appropriate for large graphs

Sources Mo ‘)/o o/o Destination

Completed /



Relaxed Graph Stream Model

* Chronological order
o edges are streamed in the order that they are created

o natural for dynamic graphs
> temporal patterns can exist
° algorithms can exploit the patterns

Created at Created at Created at
9:21 AM 9:08 AM 9:02 AM

o 0/0 0/0 0/9

Destination

Completed /



Triangles in a Graph

* A triangle is 3 nodes connected to each other

* The count of triangles has many applications
> Community detection, spam detection, query optimization

* | Global triangle count: count of
all triangles in the graph

* Local triangle count: count of the
triangles incident to each node




Problem Definition

* Given:
> a sequence of edges in the chronological order
> memory budget k (i.e., up to k edges can be stored)

* Estimate: count of global triangles

* To Minimize: estimation error

“What are temporal patterns
in real graph streams?”

“How can we exploit the patterns
for accurate triangle counting?”

Completed / ‘ ’X‘



Roadmap

* Overview

* Completed Work
o T1. Structure Analysis },
" T1.1 Waiting-Room Sampling
> Temporal Pattern <<
o Algorithm
o Experiments
=" T1.2-T1.3 Related Completed Work

> T2. Anomaly Detection

> T3. Behavior Modeling {{%}
* Proposed Work

* Conclusion
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Time Interval of a Triangle

* Time interval of a triangle:

arrival order arrival order

of its last edge of its first edge

T|me interval

808208

o

ko)

1 I —

T
Time interval:

arrival order 79—k

S

H-
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Time Interval Distribution
* Temporal Locality: @ (11 Tube; 'i

o average time interval is
o 2X shorter in the chronological order
° than in a random order

G

150K - ? ??
chronological kel 23
>
O'100K order . .
o) / chronological arrival order
> random order
: o 9 ?
0K .- | . o (e (o
0K _ 150K 300K '|_|_|_H_|_|_|_|_|_H_|"
Time Interval random arrival order
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Temporal Locality

* One interpretation:
> edges are more likely to form 120K -

chronological

/ order

o triangles with edges close in time >
. . . LC) 80K - random
> than with edges far in time O order
-
. . o
* Another interpretation: 2 40K- '4

> new edges are more likely to form
o triangles with recent edges
> than with old edges

0K 300K 600K
Time Interval

“How can we exploit temporal locality
for accurate triangle counting?”

Completed /



Roadmap

* Overview

* Completed Work
o T1. Structure Analysis },
" T1.1 Waiting-Room Sampling
o Temporal Pattern
o Algorithm <<
o Experiments
=" T1.2-T1.3 Related Completed Work

> T2. Anomaly Detection

> T3. Behavior Modeling {{%}
* Proposed Work

* Conclusion
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Algorithm Overview

* A\: estimate of triangle count

* Dypw- Probability that triangle (u, v, w) is discovered

(1) Arrival Step (2) Counting Step (3) Sampling Step
newedge | u—v Uu—v | y—v ,//19
\y/ x,é
ulul|lv v » ulul|v|v » ulu|lv|v
. P L]
X |y |x |y X |y |x |y X|vi|x |y
memory A— A + 1/puvy
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Algorithm Overview (cont.)

* A\: estimate of triangle count

* Dypw- Probability that triangle (u, v, w) is discovered

(1) Arrival Step

newedge | u—v

X1y |x |y
memory

Completed / ‘ ’X‘



Algorithm Overview (cont.)

* A\: estimate of triangle count

* Dypw- Probability that triangle (u, v, w) is discovered

(1) Arrival Step (2) Counting Step
discover!
u—v U—"v
\x/
ulul|v |v » ujlul|lv |v
] .
O A R X1y (X |y
A




Algorithm Overview (cont.)

* A\: estimate of triangle count

* Dypw- Probability that triangle (u, v, w) is discovered

(1) Arrival Step (2) Counting Step
discover!

u—v Uu—"v

\y/

uifu|v|v » u|lu|v |v
] .
O A R X1y (X |y
memory A— A + 1/puvy

Completed /



Algorithm Overview (cont.)

* A\: estimate of triangle count

* Dypw- Probability that triangle (u, v, w) is discovered

(1) Arrival Step (2) Counting Step (3) Sampling Step
>
u—v u—7v o
o
wlu v |v wlu|v v » ulu|lv|v
I . L]
x|y |x |y xlv|x |y X|vi|x |y

memory A— A + 1/puvy

Completed / ‘A "}f.



Goal of Sampling Step

* to maximize discovering probability p,,,,,

Theorem. Variance of our estimate:
Var[A] ~ Z(u,v,w) (1/ Puvw — 1)

True Count

Theorem. Unbiasedness of our estimate: ‘
Bias[A] = Exp|A] —True count =0

Estimation Error = M+ Variance
0

o
i
o
6))
1

2e—-05 -

Probability Density
NN
3

950K 1000K 1050K
Estimated Count

—
=
[N

32/106

Completed / ‘A ‘Af.



Increasing Discovering Prob.

“How can we increase
discovering probabilities of triangles?”

* Recall Temporal Locality: N
> new edges are more likely to form © 00
> triangles with recent edges W
> than with old edges ‘?’ p :.’
* Waiting-Room Sampling (WRS) L S 4

° treats recent edges better than old edges  randomarrival order
° to exploit temporal locality

Completed / ‘ ’X‘



Waiting-Room Sampling (WRS)

* Divides memory space into two parts

\? Waiting Room: latest edges are always stored

6‘ Reservoir: the remaining edges are sampled

New edge | egg

\,Waiting Room (FIFO)

9‘ Reservoir (Random Replace)

€79 | €78 | €77 | €76 €61 | €7 | €18 |€25 | €40 | €1 | €28

a% of budget (100 — a)% of budget

Completed /



WRS: Sampling Steps (Step 1)

New edge | egg

\,Waiting Room (FIFO) 9‘ Reservoir (Random Replace)

€79 | €78 | €77 | €76 €61 | €7 |€18 | €25 | €40 | €1 | €28

|

Popped edge| e

\?Waiting Room (FIFO) 9‘ Reservoir (Random Replace)

€80 | €79 | €78 | €77 €61 | €7 | €18 |€25 | €40 | €1 | €28

Completed / ‘ ’X‘



WRS: Sampling Steps (Step 2)

Popped edge | e,

. O
\,Waltmg Room (FIFO) ‘ Reservoir (Random Replace)

€go | €79 | €78 | €77 €61 | €7 | €18 | €25 [ €40 | €1 | €28

Completed / ‘ ’l‘



Summary of Algorithm

Waiting-Room
Sampling!
(1) Arrival Step (2) Discovery Step (3) Sampling Step
discover! &
new edge | u—v Uu—v | y—v

D
7/','
N/ égg

»

u u | v v u u | v 1% u u | v 1%

. L ]

X y | X y X y | X y X v | X y
memory A— A + 1/puvx

Completed / ‘A ‘Af.



Roadmap

* Overview

* Completed Work
°T1. Structure Analysis }‘
=" T1.1 Waiting-Room Sampling
o Temporal Pattern
o Algorithm
o Experiments <<

=" T1.2-T1.3 Related Completed Work

> T2. Anomaly Detection

> T3. Behavior Modeling {{%}
* Proposed Work

* Conclusion
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Experimental Results: Accuracy
* Datasets: || @ You D) n

* WRS is most accurate (reduces error up to 47%)

e MASCOT

ot
(o]
]

20.012- S
L] Triest- LU 06 Triest-
_cés 0.008 - IMPR 5 WRS
I, e
(D 0.004 {\WRS —1 0.3
v better v better
50K 100K 150K 50K 100K 150K
Memory Budget (k) Memory Budget (k)
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Discovering Probability

* WRS increases discovering probability p,,u

* WRS discovers up to 3 X more triangles

o
o
1

O better
§g 1.0 1
= Triest-IMPR
o 4
0 o |
g2 L e l-
2 I_ 1 1 1 1

o
Muvef <’ n e

Completed / ‘ ’X‘



Roadmap

* Overview

* Completed Work M

o T1. Structure Analysis }‘

" T1.1 Waiting-Room Sampling
" T1.2-T1.3 Related Completed Work <<

°T2. Anomaly Detection

> T3. Behavior Modeling Gé?%

* Proposed Work

* Conclusion
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T1.2 Distributed Counting of Triangles

*Goal: to utilize multiple machines for triangle
counting in a graph stream?

Tri-Fly [PAKDD18] DiSLR [submitted to KDD]

Sources Workers Aggregators|| Sources Workers Aggregators

Broadcast | Shuffle Multicast

Shuffle

Kijung Shin, Mohammad Hammoud, Euiwoong Lee, Jinoh Oh, and Christos Faloutsos, “Tri-Fly:
Distributed Estimation of Global and Local Triangle Counts in Graph Streams”, PAKDD 2018




T1.2 Performance of Tri-Fly and DiSLR

e Estimation Error = % + Variance

0
S.
10™ - //79/@\
o S 1072- ”4‘90,5/.
13 = 9
S T Ny
B A12 .3
= 10 S 1077130X Tri-Fly
= 11 o DISLR
10 (D 10_4_¥ O/
1010 - . | | l6.3X |
10° 10" 102 better ¢— 10 105
Number of Workers Elapsed Time (millisec)

Completed /



T1.3 Estimation of Degeneracy

* Goal: to estimate the degeneracy* in a graph stream?

* Core-Triangle Pattern
o 3:1 power law between the triangle count and the degeneracy

L

>
0% @ Social Network
S 2 ™ Web Graph
102 -
o @ Citation Network
D —

0L 2N | tan 9 = 1/:?' A Internet Topology

10° 10" _ 10° 10"

Number of Triangles

*degeneracy: maximum k such that a subgraph where every node
has degree at least k exists.

Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos, “Patterns and Anomalies in kCores
of Real-world Graphs with Applications”, KAIS 2018 (previously ICDM 2016)




T1.3 Core-D Algorithm

* Core-D: one-pass streaming algorithm for degeneracy

/a = exp(a - log(}) + B)

o 3" :
Estimated O Estimated

Degeneracy LE 5 Triangle Count

O (obtained

-..% by WRS, etc.)

S8 1 -

)

o

O_

better =10 20 30 40
Elapsed Time (sec)
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Structure Analysis of Graphs
AModels: i) () ()

> Relaxed graph stream model f

o Distributed graph stream model ﬁ,o/i?/i @y/

}‘ Patterns:

o Temporal locality S o0k £ o
. S 8)102' ;
o Core-Triangle pattern g o 3
0K . . 10'1%_ : : :
L Algorithms: e Nuceol i Tionge
> WRS, Tri-Fly, and DiSLR > .
L 6e-05 !
o Core-D §4e_05 A
,X‘Analyses: bias and variance oo A
@ 0e+00 -

9_5I0K 1000K 1050K
Estimated Count

‘ T1.1/71.2/T1.3

Completed / ‘ AE.



Completed Work by Topics

T2. Anomaly

Detection

5

&

&,

Tensors

S,
OH
WY

(o
Anomalous

Subgraph
[ICDM16]* [KAIS18]*

Dense Subtensors

[PKDD16][WSDM17]
[KDD17][TKDD18]
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Roadmap

* Overview

* Completed Work i
o T1. Structure Analysis A

°T2. Anomaly Detection

*T2.1 M-Zoom <<
" T2.2-T2.3 Related Completed Work

> T3. Behavior Modeling @‘?
* Proposed Work

* Conclusion

Kijung Shin, Bryan Hooi, and Christos Faloutsos, “Fast, Accurate and Flexible Algorithms for
Dense Subtensor Mining”, TKDD 2018 (previously ECML/PKDD 2016)




Motivation: Review Fraud

Alice’s R ITIE Ve - REVIEWS

Lt Lt 8reviews

Get more 5-star Yelp

b ’ reviews for your
B O S * business
' @ 149 reviews WA

Carol’s
L 239 reviews

Completed /



Fraud Forms Dense Block

Accounts

Restaurants Accounts

Restaurants

Completed /



Problem: Natural Dense Subgraphs

Accounts

natural dense blocks
(core, community, etc.)

suspicious dense blocks
formed by fraudsters

* Question. How can we
distinguish them?

Completed /



Solution: Tensor Modeling

Accounts * Along the time axis...

(QQ Q 9 n &@@ o Natural dense blocks are
%&%

sparse (formed gradually)

o Suspicious dense blocks are
dense (synchronized behavior)

Z

°In the tensor model

> Suspicious dense blocks
become denser than
natural dense blocks

Restaurants

Completed /



Solution: Tensor Modeling (cont.)

* High-order tensor modeling:

> any side information can be used additionally

Ryann I3 LT 102016
Pittsburgh, PA

v+ 112 friends % 1 check-in
B3 71 reviews

Love it. Love it.

“

IP Address Keywords Number of stars

“Given a large-scale high-order tensor,
how can we find dense blocks in it?”

Completed /




Problem Definition

*Given: (1) R: an N-order tensor,

(2) p: a density measure,
(3) k: the number of blocks we aim to find

* Find: k distinct dense blocks maximizing p

&

Completed /



Density Measures

* How should we define “density” (i.e., p)?
° no one absolute answer
> depends on data, types of anomalies, etc.

* Goal: flexible algorithm working well with various
reasonable measures

v Arithmetic avg. degree py,

v Geometric avg. degree p;

/Suspiciousness (KL Divergence) pg

@Traditional Density: pr(B) = EntrySum(B)/Vol(B)

- maximized by a single entry with the maximum value

Completed /



Clarification of Blocks (Subtensors)

* The concept of blocks (subtensors) is independent of
the orders of rows and columns

* Entries in a block do not need to be adjacent

Accounts Accounts

& & S5
N

Restaurants
Restaurants

Completed /



Roadmap

* Overview

* Completed Work
°T1. Structure Analysis }‘

> T2. Anomaly Detection

=" T2.1 M-Zoom [PKDD 16]
o Algorithm <<
o Experiments
" T2.2-T2.3 Related Completed Work

> T3. Behavior Modeling C{%

* Proposed Work
* Conclusion

Completed /



Single Dense Block Detection

* Greedy search

e Starts from the entire tensor

lteration

Completed /



Single Dense Block Detection (cont.)

* Remove a slice to maximize density p

lteration

Completed /



Single Dense Block Detection (cont.)

* Remove a slice to maximize density p

4
29
(V]
a
1
0
0 2 4 6 8
lteration
p =3.3

Completed /



Single Dense Block Detection (cont.)

* Remove a slice to maximize density p




Single Dense Block Detection (cont.)

* Until all slices are removed

Q)
Density
o = N w N

Completed /



Single Dense Block Detection (cont.)

* OQutput: return the densest block so far

Density
O B N W b

Completed /



Speeding Up Process

* Lemma 1 [Remove Minimum Sum First]

Among slices in the same dimension, removing the
slice with smallest sum of entries increases p most

Completed /



Accuracy Guarantee

* Theorem 1 [Approximation Guarantee]

1
pa(B) = —=ps(B*)

7N

M-Zoom Result Order Densest Block

* Theorem 2 [Near-linear Time Complexity]

O(NMlogl)

~— 1 N\

Order # Non-zeros # Entries in each mode

Completed /



Optional Post Process

* Local search
o grow or shrink until a local maximum is reached

p=2 p=3.29
/1 /03 /1 ./0/3
grow
3 0 - 31410
5 0 [ 17 5170 | A
17101 1101
‘shrink
A3 result of our previous
greedy search
3 0 0
5 0 | A7)

Completed /



Optional Post Process (cont.)

* Local search
o grow or shrink until a local maximum is reached
p=3.29 p=3.33

/7073 T /073
shrink ¥

3140 » 3|4 0
51710 |17 5|7 1
0| 1

l,grow

/1 ./0/3

1 1101

Completed /



Optional Post Process (cont.)

* Local search
o grow or shrink until a local maximum is reached

p=3.29 p=3.33
17073 T 7043
grow ¥
31410 _ 3| 4 0
507 |0 |4 57 f
110 |1 11011
‘shrink
1,703
314 6
5|7 1
i lol1 1 V' Pp=3.8

Completed /



Optional Post Process (cont.)

* Local search
o grow or shrink until a local maximum is reached

* Return the local maximum p=3.33

17073
4
3|4 0
5|7 1
1101
tgrow
1.£0/3 . 1,073/ Local
shrink y :
3l alo | 3| 4 /| maximum
5170 |1 5|7 1
1lol1 [V P=3 |1]o|1 |V P=3.8

Completed /



Multiple Block Detection

* Deflation: Remove found blocks before finding others

Lo L
@@R? =Ger oo

‘ Find ‘ Find

Completed /

= ™

Restore




Roadmap

* Overview

* Completed Work
°T1. Structure Analysis }‘

> T2. Anomaly Detection

=" T2.1 M-Zoom [PKDD 16]
o Algorithm
o Experiments <<
" T2.2-T2.3 Related Completed Work

°T3. Behavior Modeling {%}

* Proposed Work
* Conclusion

Completed /



Speed & Accuracy

3:}:‘”“‘
* Datasets: ) . [?
WIKIPEE;Q
»6{
310°- S10°-
o ©
-] =
Q $ A Q _e I
& &)
< 2 < 2
= iy
o 114X o 101X
D108_I 1 1 1 1 Kl 1 H 1 D103-I KI 1 H 1
102 10°  10*  10° 102 10° 10* 10° 102 10°  10* 10°
Elapsed Time (sec) Elapsed Time (sec) Elapsed Time (sec)
Density metric: pg Density metric: py Density metric: pg

Completed /



Discoveries in Practice

Korean O§° " .
o . . dCcounts & =
Wikipedia . MKIPEDIA
| " revised 10 pages
J;" 'm'_’ (D)} . \.
2 IR 2,305 times o WARS
\ﬂ\ (ol . . ' P I
within 16 hours Y Y
W A %
méﬂfiﬁ:{edm Accou nt S \@ ﬁ
. User:COIBot
E n g I I S h 0&% From Wikipedia, the free encyclopedia
o . O o~ This user account is a bot
Wikipedia < = aFCOU"tS Q@
7 o 7 8 reV|sed 12 pages Emergency bot shutoff button
& 2.5 million times
W A
merlrﬂfcfc{o)pledia Accou nts

Completed /



Discoveries in Practice (cont.)

App Market 9 accounts
SQ? gives 1 product
\ﬂ(’ 369 reviews with
M’Q the same rating
Accounts within 22 hours
_é’o a block whose
o 772 | volume =2
et X and
Protocols mass = 2 millions

Completed /



Roadmap

* Overview

* Completed Work M

o T1. Structure Analysis }‘
> T2. Anomaly Detection
= M-Zoom
= T2.2-T2.3 Related Completed Work <<
> T3. Behavior Modeling {{%}

* Proposed Work

* Conclusion
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T2.2 Extension to Web-scale Tensors

* Goal: to find dense blocks in a disk-resident or
distributed tensor

* D-Cube: gives the same accuracy guarantee of M-Zoom
with much less iterations

)
Entry sum in slices // P 10°- 1000X_,
) 0
E 107 100 B
3 101_%g , nonzeros
Q @ in 5 hours
®© ;A-14
; 104 ®
Average\g 10° 107 10® 10 10101011
: Number of Non-zeros

Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos,
“D-Cube: Dense-Block Detection in Terabyte-Scale Tensors”, WSDM 2017




T2.3 Extension to Dynamic Tensors

* Goal: to maintain a dense block in a dynamic tensor that
changes over time

* DenseStream: incrementally computes a dense block
with the same accuracy guarantee of M-Zoom

* Neptune ® Smurf © Satan 4 Saint ® Edit War *Vandalism ®Bot ¢Bursty Edit

% > 100 - - Regio;alism
<Y presidentialm
3e+3 1 @ AgEe residentia Bot for auto
e+ 754 & election classification
- .
2 T N Wirepia  Religionfl @ Dicjator ®
‘0 2e+3 1 * *k ok X Xk 8 50 ' Local election "1/ sho
7 ||
(]C,) D it T‘erritory. \‘0
istory n
O 1e43- = 25 4
)
0 i 1 | 1 0 i I I
June July August 01/01/2012 01/01/2015

Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos,
“DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams”, KDD 2017




Anomaly Detection in Tensors
Algorithms:

> M-Zoom, D-Cube, and DenseStream

Analyses: approximation guarantees

Discoveries:

o Edit war, vandalism, and bot activities

o Network intrusion
o Spam reviews

WIKiPEDIA

Completed / & ‘ T2.1/T2.2/72.3



Completed Work by Topics

T3. Behavior
Modeling C{‘?"

5

&

&,

Tensors

S,
OH
WY

Purchase

Behavior
[JCAI17]

Progressive

Behavior
[WWW18]
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Motivation

Goal

LINKEDIN
PREMIUM m

Welcome to

Linked [}

Kijung Shin, Mahdi Shafiei, Myunghwan Kim, Aastha Jain, and Hema Raghavan,
“Discovering Progression Stages in Trillion-Scale Behavior Logs”, WWW 2018




Problem Definition

* Given:

> behavior log ”’

c number of desired latent stages: k

«\
* Find: k progression stages ag
o types of actions s foy
| El -
° frequency of actions _c_>
° transitions to other stages <

Users Q o (¢

* To best describe the given behavior log

Completed /



Behavior Model

* Generative process:
> Q,: action-type distribution in stage s
° ¢: time-gap distribution in stage s
° Y)c: next-stage distribution in stage s

(aay > (D (DD @"”3 e ||

P

/\qbl /\c/Jz /\¢z
llll llll llll l
§ L3 .l.m
con nect JObS message connect

* Constraint: “no decline” (progression but no cyclic patterns)

Completed /



Optimization Algorithm

* Goal: to fit our model to given data
o parameters: distributions (i.e., {Og, ¢, Y. }.) and latent stages

* repeat until convergence
o assignment step: assign latent stages while fixing prob. distributions

AN “no decline”
@ Y x Y XY XY XY — Dynamic

@ N N\ N N Programming

> update step: update prob. distributions while fixing latent stages
"e.g., O, « ratio of the types of actions in stage s
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Scalability & Convergence

* Three versions of our algorithm
° ln-memory
> Qut-of-core (or external-memory)
o Distributed

o ) 0.0.m o.o.d e 15
E % 1 05 - @ IO “i;‘:&:::-;ll:l:l;ll::t;l:ll:ll:l
— in- NS crye ~— 124/ 19U
— - 5 In memory“" P ﬁ/o 1 trllllon 5 SEEEEEEE0a00508095089860888
© .0 1071 \ : - \SIt T
R o2 N actions = _16- aten
o = - o .\ -of-1 -
o 2 10" 2o-o%.3 "\ %o | in 2 hours © stages
L 64 Y O -2.0 1
S iy ._.'\éOQ distributed 2 g
T T T T T T | I I I I
10" 10° 10° 10" 10'" 10' 0 10 20 30
Total Number of Actions Number of lterations
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Progression of Users in LinkedIn

Build one’s Onboarding
Profile Process

Grow one’s
Social
Network

Consume Have 30
Newsfeeds connections

Poke around

the service

Completed /



Completed Work by Topics
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Roadmap

* Overview

* Completed Work
o T1. Structure Analysis ~

> T2. Anomaly Detection

> T3. Behavior Modeling {3

* Proposed Work <<

* Conclusion
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Proposed Work by Topics

T1. Structure T2. Anomaly | T3. Behavior
Analysis A Detection Modeling {ﬂ"?
Graphs P1. Triangle P3.
‘5{ Counting in Fully Polarization
Dynamic Stream Modeling
Tensors P2. Fast and
, Scalable Tucker
"g:, Decomposition
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Proposed Work by Topics

T1. Structure
Analysis }‘ {‘E’F

Graphs P1. Triangle

‘5{ Counting in Fully
Dynamic Stream

%

Q

y /[ /
Y [/ /

«ey
“0‘0

A\ 1\
A\

\ 1\
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P1: Problem Definition

* Given:
° a fully dynamic graph stream,
"i.e., list of edge insertions and edge deletions

O Ao 2 O
(0/, +), (‘{, =), (({,+), (0/,—),

> Memory budget k

* Estimate: the counts of global and local triangles

* To Minimize: estimation error

/ Proposed ‘ X



P1: Goal

Handle
Method Accuracy Deletions?
Triest-FD Lowest Yes
MASCOT Low No
Triest-IMPR High No
WRS Highest No
Proposed Highest Yes

/ Proposed ‘ X




Proposed Work by Topics

T1. Structure

Analysis }‘ {‘E’F

W

24

P2. Fast and

Tensors
' ’ Scalable Tucker
'g:, Decomposition
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P2: Problem Definition

* Tucker Decomposition (a.k.a High-order PCA)
o Given: an N-order input tensor X

> Find: N factor matrices A" ... A" & core-tensor Y
> To satisfy:

AB)

X [input] y
~ VY

A2)

/ Proposed ‘ X



P2: Standard Algorithms

Input Intermediate Data Output
(large & sparse) (large & dense) (small & dense)
5! - -
' ' Materialized SV>
' VOOGB - 478 2GB
2GB Scalability
bottleneck

/ Proposed ‘ X



P2: Completed Work

* Our completed work [WSDM17]

Input
(large & sparse)

Intermwudjdte Data
(larg ense)

Output
(small & dense)

"
7

Incurs repeated
computation

>

Jinoh Oh, Kijung Shin, Evangelos E. Papalexakis, Christos Faloutsos, and Hwanjo Yu,
“S-HQOT: Scalable High-Order Tucker Decomposition”, WSDM 2017.




P2: Proposed Work

* Proposed algorithm

Input Intermediate Data Output
(large & sparse) (small & dense) (small & dense)

g% | —> mrrrr > .
5

o | On-thefly >
' e e o e o -

Partially materialize
intermediate datal

/ Proposed ‘ X



P2: Expected Performance Gain

* Which part of intermediate data should we
materialize?

* Exploit skewed degree distributions!

; S
10" - = -
2 ++ fE100
2 405 - > 75-
N =
q5103_ 8 5049
5 D o5-
Q10" =
O M
O 04
S 0 25 50 75 100
Degree > % of Materialized Data

/ Proposed ‘ X



Proposed Work by Topics

T3. Behavior

Modeling G:??

A
Graphs @ P3.
Polarization

Modeling

%

Q

Yy /7 /
oy
X

A\ 1\
A\ 1\
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P3. Polarization Modeling

* Polarization in social networks: division into

contrasting groups
' Legal . lllegal

change ; change

of beliefs of edges

Use of marijuana should be:

P
2

“How do people choose between
two ways of polarization?”

/ Proposed ‘ ﬁ ‘ i ‘ P3



P3. Problem Definition

* Given: time-evolving social network with nodes’
beliefs on controversial issues
° e.g., legalizing marijuana

* Find: actor-based model with a utility function
> depending on network features, beliefs, etc.

* To best describe: the polarization in data

* Applications:
o predict future edges
o predict the cascades of beliefs

/ Proposed ‘ 100/106



Proposed Work by Topics

&

P "
"

—

ﬂ
J:’
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A\ 1\
A\ 1\

Y /[ /
Y / /
«e
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Timeline

* Mar-May 2018
o P1. Triangle counting in fully dynamic graph streams

* Jun-Aug 2018
o P3. Polarization modeling

* Sep-Oct 2018
o P2. Fast and scalable tucker decomposition

* Nov 2018 —April 2019
> Thesis Writing & Job Application

* May 2019
o Defense
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Roadmap

* Overview

* Completed Work
o T1. Structure Analysis ~

> T2. Anomaly Detection

> T3. Behavior Modeling {3
* Proposed Work

* Conclusion <<
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Conclusion

* Goal:

To Understand Large Dynamic Graphs and Tensors

* Subtasks:
o structure analysis }‘

o anomaly detection

> behavior modeling C@-

* Approaches:
o distributed or external-memory algorithms

o streaming algorithms based on sampling
° approximation algorithms
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Thank You

* Papers, software, data: http://www.cs.cmu.edu/~kijungs/proposal/

* Email: kijungs@cs.cmu.edu

* Thanks to:
° Sponsors:

o Admins:
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