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Graphs: Social Networks
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Graphs: Purchase History
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Graphs: Many More
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Properties of Real-world Graphs
• Large: many nodes, more edges
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2B+ active users

500M+ products

•Dynamic: additions/deletions of nodes and edges

40B+ web pages

5M+ articles



Properties of Real-world Graphs
•Rich with Attributes: timestamps, scores, text, etc. 
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Matrices for Graphs
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Tensors for Rich Graphs
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• Tensors: multi-dimensional array
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(3-dimensional array)

+ Stars
(4-order tensor)
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Research Goal and Tasks
•Goal:

•Tasks
◦ T1. Structure Analysis

◦ T2. Anomaly Detection

◦ T3. Behavior Modeling
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To Understand 
Large Dynamic Graphs and Tensors

on User Behavior



Tasks

Mining Large Dynamic Graphs and Tensors (by Kijung Shin) 12/106

Structure

Anomaly
& Fraud

Behavior
ModelContrast



Completed Work by Topics

Mining Large Dynamic Graphs and Tensors (by Kijung Shin) 13/106

T1. Structure 
Analysis

T2. Anomaly
Detection

T3. Behavior
Modeling

Graphs
Triangle Count
[ICDM17][PAKDD18]
[submitted to KDD]

Anomalous 
Subgraph

[ICDM16]* [KAIS18]*

Purchase
Behavior

[IJCAI17]Degeneracy    
[ICDM16]* [KAIS18]*

Tensors Summarization
[WSDM17]

Dense Subtensors
[PKDD16][WSDM17] 

[KDD17][TKDD18]

Progressive 
Behavior
[WWW18]

* Duplicated



Approaches (Tools) 
•A1. Distributed or external-memory algorithms

•A2. Streaming algorithms based on sampling

•A3. Approximation algorithms

• and their combinations
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Roadmap
•Overview

•Completed Work <<
◦ T1. Structure Analysis       

◦ T2. Anomaly Detection

◦ T3. Behavior Modeling

• Proposed Work

•Conclusion
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Completed Work by Topics
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Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis 
▪T1.1 Waiting-Room Sampling <<

▪T1.2-T1.3 Related Completed Work

◦ T2. Anomaly Detection

◦ T3. Behavior Modeling

• Proposed Work

•Conclusion
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Kijung Shin, “WRS: Waiting Room Sampling for Accurate Triangle Counting in Real

Graph Streams”, ICDM 2017



Graph Stream Model
•Widely-used data model for graphs

• Sequence of edges
◦ graph is given over time as a sequence of edges
◦ appropriate for dynamic graphs

• Limited memory
◦ cannot store all edges in the stream
◦ only samples or summaries
◦ appropriate for large graphs
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Sources Destination

T1.1 / T1.2 / T1.3Completed / Proposed



Relaxed Graph Stream Model
•Chronological order

◦ edges are streamed in the order that they are created

◦ natural for dynamic graphs

◦ temporal patterns can exist

◦ algorithms can exploit the patterns
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Sources Destination

Created at
9:21 AM

Created at
9:08 AM

Created at
9:02 AM

T1.1 / T1.2 / T1.3Completed / Proposed



Triangles in a Graph
•A triangle is 3 nodes connected to each other

• The count of triangles has many applications
◦ Community detection, spam detection, query optimization
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• Global triangle count: count of 
all triangles in the graph

• Local triangle count: count of the 
triangles incident to each node

3
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T1.1 / T1.2 / T1.3Completed / Proposed



Problem Definition
•Given: 

◦ a sequence of edges in the chronological order

◦ memory budget 𝑘 (i.e., up to 𝑘 edges can be stored)

• Estimate: count of global triangles

• To Minimize: estimation error

21/106T1.1 / T1.2 / T1.3Completed / Proposed

“What are temporal patterns 
in real graph streams?”

“How can we exploit the patterns 
for accurate triangle counting?”



Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis 
▪T1.1 Waiting-Room Sampling

◦ Temporal Pattern <<
◦ Algorithm
◦ Experiments

▪T1.2-T1.3 Related Completed Work

◦ T2. Anomaly Detection
◦ T3. Behavior Modeling

• Proposed Work

•Conclusion

22/106T1.1 / T1.2 / T1.3Completed / Proposed



Time Interval of a Triangle
• Time interval of a triangle:
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–
arrival order 

of its last edge 
arrival order 

of its first edge

arrival order 

1      2      3      4      5      6      7      8

Time interval 

Time interval: 
7 − 2 = 5

T1.1 / T1.2 / T1.3Completed / Proposed



Time Interval Distribution
• Temporal Locality:

◦ average time interval is 

◦ 2X shorter in the chronological order

◦ than in a random order
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random arrival order

chronological arrival order
random order

chronological 

order

T1.1 / T1.2 / T1.3Completed / Proposed



Temporal Locality
•One interpretation:

◦ edges are more likely to form 

◦ triangles with edges close in time

◦ than with edges far in time

•Another interpretation: 
◦ new edges are more likely to form 

◦ triangles with recent edges 

◦ than with old edges

25/106

“How can we exploit temporal locality 
for accurate triangle counting?”

chronological 

order

random 

order

T1.1 / T1.2 / T1.3Completed / Proposed



Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis 
▪T1.1 Waiting-Room Sampling

◦ Temporal Pattern
◦ Algorithm <<
◦ Experiments

▪T1.2-T1.3 Related Completed Work

◦ T2. Anomaly Detection
◦ T3. Behavior Modeling

• Proposed Work

•Conclusion

26/106T1.1 / T1.2 / T1.3Completed / Proposed



Algorithm Overview
•∆: estimate of triangle count

•𝑝𝑢𝑣𝑤: probability that triangle (𝑢, 𝑣, 𝑤) is discovered

27/106T1.1 / T1.2 / T1.3Completed / Proposed
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Algorithm Overview (cont.)
•∆: estimate of triangle count

•𝑝𝑢𝑣𝑤: probability that triangle (𝑢, 𝑣, 𝑤) is discovered
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Algorithm Overview (cont.)
•∆: estimate of triangle count

•𝑝𝑢𝑣𝑤: probability that triangle (𝑢, 𝑣, 𝑤) is discovered
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Algorithm Overview (cont.)
•∆: estimate of triangle count

•𝑝𝑢𝑣𝑤: probability that triangle (𝑢, 𝑣, 𝑤) is discovered
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Algorithm Overview (cont.)
•∆: estimate of triangle count

•𝑝𝑢𝑣𝑤: probability that triangle (𝑢, 𝑣, 𝑤) is discovered
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Goal of Sampling Step
• to maximize discovering probability 𝑝𝑢𝑣𝑤

Theorem. Variance of our estimate:

Theorem. Unbiasedness of our estimate:

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
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Var ∆ ≈ σ(𝑢,𝑣,𝑤) (1/𝑝𝑢𝑣𝑤 − 1)

Bias[∆] = Exp ∆ −True count = 0

0

True Count

T1.1 / T1.2 / T1.3Completed / Proposed



Increasing Discovering Prob.

•Recall Temporal Locality:
◦ new edges are more likely to form 

◦ triangles with recent edges

◦ than with old edges

•Waiting-Room Sampling (WRS)
◦ treats recent edges better than old edges

◦ to exploit temporal locality

33/106

“How can we increase 
discovering probabilities of triangles?”

T1.1 / T1.2 / T1.3Completed / Proposed



Waiting-Room Sampling (WRS)
•Divides memory space into two parts

◦ Waiting Room: latest edges are always stored

◦ Reservoir: the remaining edges are sampled
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𝑒79 𝑒78 𝑒77 𝑒76

Waiting Room (FIFO) Reservoir (Random Replace)

𝛼% of budget 100 − 𝛼 % of budget

𝑒80New edge

𝑒61 𝑒7 𝑒18 𝑒25 𝑒40 𝑒1 𝑒28

T1.1 / T1.2 / T1.3Completed / Proposed



WRS: Sampling Steps (Step 1)
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WRS: Sampling Steps (Step 2)
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discard

or or 
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T1.1 / T1.2 / T1.3Completed / Proposed



Summary of Algorithm
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Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis 
▪T1.1 Waiting-Room Sampling

◦ Temporal Pattern
◦ Algorithm
◦ Experiments <<

▪T1.2-T1.3 Related Completed Work

◦ T2. Anomaly Detection
◦ T3. Behavior Modeling

• Proposed Work

•Conclusion
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Experimental Results: Accuracy
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•Datasets: 

•WRS is most accurate (reduces error up to 𝟒𝟕%)

T1.1 / T1.2 / T1.3Completed / Proposed



Discovering Probability
•WRS increases discovering probability 𝑝𝑢𝑣𝑤

•WRS discovers up to 3 × more triangles 

40/106

WRS

Triest-IMPR

MASCOT

better

T1.1 / T1.2 / T1.3Completed / Proposed



Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis 
▪T1.1 Waiting-Room Sampling

▪T1.2-T1.3 Related Completed Work <<

◦ T2. Anomaly Detection

◦ T3. Behavior Modeling

• Proposed Work

•Conclusion
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T1.2 Distributed Counting of Triangles
•Goal: to utilize multiple machines for triangle 
counting in a graph stream?

42/106

Sources Workers Aggregators

Broadcast Shuffle

Sources Workers Aggregators

Multicast Shuffle

Tri-Fly [PAKDD18] DiSLR [submitted to KDD]

T1.1 / T1.2 / T1.3Completed / Proposed
Kijung Shin, Mohammad Hammoud, Euiwoong Lee, Jinoh Oh, and Christos Faloutsos, “Tri-Fly: 

Distributed Estimation of Global and Local Triangle Counts in Graph Streams”, PAKDD 2018



T1.2 Performance of Tri-Fly and DiSLR
•𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
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T1.1 / T1.2 / T1.3Completed / Proposed



T1.3 Estimation of Degeneracy
•Goal: to estimate the degeneracy* in a graph stream?

• Core-Triangle Pattern
◦ 3:1 power law between the triangle count and the degeneracy

44/106

*degeneracy: maximum 𝑘 such that a subgraph where every node 
has degree at least 𝑘 exists.

T1.1 / T1.2 / T1.3Completed / Proposed
Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos, “Patterns and Anomalies in kCores

of Real-world Graphs with Applications”, KAIS 2018 (previously ICDM 2016)



T1.3 Core-D Algorithm
•Core-D: one-pass streaming algorithm for degeneracy
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መ𝑑 = exp(𝛼 ⋅ log(෡∆) + 𝛽)

Estimated 
Degeneracy

Estimated 
Triangle Count

(obtained 
by WRS, etc.)

Core-D

better

T1.1 / T1.2 / T1.3Completed / Proposed



Structure Analysis of Graphs
Models:
◦ Relaxed graph stream model

◦ Distributed graph stream model

Patterns: 
◦ Temporal locality

◦ Core-Triangle pattern

Algorithms:
◦ WRS, Tri-Fly, and DiSLR

◦ Core-D

Analyses: bias and variance

46/106T1.1 / T1.2 / T1.3Completed / Proposed



Completed Work by Topics
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Motivation: Review Fraud

49/106

Bob’s

Carol’s

Alice’s

Alice

T2.1 / T2.2 / T2.3Completed / Proposed



Fraud Forms Dense Block
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Problem: Natural Dense Subgraphs

•Question. How can we 
distinguish them?
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formed by fraudsters
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(core, community, etc.)

T2.1 / T2.2 / T2.3Completed / Proposed



Solution: Tensor Modeling

•Along the time axis…
◦ Natural dense blocks are   

sparse (formed gradually)

◦ Suspicious dense blocks are 
dense (synchronized behavior)

• In the tensor model
◦ Suspicious dense blocks           

become denser than                       
natural dense blocks
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Solution: Tensor Modeling (cont.)
•High-order tensor modeling:

◦ any side information can be used additionally

53/106

IP Address Keywords Number of stars

“Given a large-scale high-order tensor, 
how can we find dense blocks in it?”

T2.1 / T2.2 / T2.3Completed / Proposed



Problem Definition
•Given: (1) 𝑹: an 𝑁-order tensor, 

(2) 𝝆: a density measure, 

(3) 𝒌: the number of blocks we aim to find

• Find: 𝒌 distinct dense blocks maximizing 𝝆

54/106

𝑹 = 𝒌 = 𝟑

, , }{

T2.1 / T2.2 / T2.3Completed / Proposed



Density Measures

•How should we define “density” (i.e., 𝜌)?
◦ no one absolute answer

◦ depends on data, types of anomalies, etc.

•Goal: flexible algorithm working well with various 
reasonable measures
◦ Arithmetic avg. degree ρ𝐴
◦ Geometric avg. degree ρ𝐺
◦ Suspiciousness (KL Divergence) ρ𝑆
◦ Traditional Density: ρ𝑇 𝐵 = EntrySum 𝐵 /Vol(B)

- maximized by a single entry with the maximum value

55/106T2.1 / T2.2 / T2.3Completed / Proposed



Clarification of Blocks (Subtensors)
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• The concept of blocks (subtensors) is independent of 
the orders of rows and columns

• Entries in a block do not need to be adjacent
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Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis
◦ T2. Anomaly Detection 
▪T2.1 M-Zoom [PKDD 16] 

◦ Algorithm <<
◦ Experiments

▪T2.2-T2.3 Related Completed Work

◦ T3. Behavior Modeling

• Proposed Work

•Conclusion
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Single Dense Block Detection
•Greedy search

• Starts from the entire tensor
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Single Dense Block Detection (cont.)

•Remove a slice to maximize density 𝜌
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T2.1 / T2.2 / T2.3Completed / Proposed
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•Remove a slice to maximize density 𝜌

Single Dense Block Detection (cont.)
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•Remove a slice to maximize density 𝜌

Single Dense Block Detection (cont.)

T2.1 / T2.2 / T2.3Completed / Proposed
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Iteration

•Until all slices are removed
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𝜌 = 0

Single Dense Block Detection (cont.)

T2.1 / T2.2 / T2.3Completed / Proposed



•Output: return the densest block so far
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5 3    

4 6    

2    0    𝜌 = 3.6

Single Dense Block Detection (cont.)

T2.1 / T2.2 / T2.3Completed / Proposed



Speeding Up Process

• Lemma 1 [Remove Minimum Sum First]

Among slices in the same dimension, removing the 
slice with smallest sum of entries increases 𝜌 most 

64/106

12 > 9 >  2

T2.1 / T2.2 / T2.3Completed / Proposed



Accuracy Guarantee

• Theorem 1 [Approximation Guarantee]
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M-Zoom Result Order Densest Block

• Theorem 2 [Near-linear Time Complexity]

# Entries in each mode

𝑶(𝑵𝑴 log 𝑳)

𝝆𝑨 𝑩 ≥
𝟏

𝑵
𝝆𝑨 𝑩∗

Order # Non-zeros
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Optional Post Process
• Local search

◦ grow or shrink until a local maximum is reached
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grow

shrink

𝝆 = 𝟐

𝝆 = 𝟏. 𝟖

𝝆 = 𝟑. 𝟐𝟗

T2.1 / T2.2 / T2.3Completed / Proposed
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Optional Post Process (cont.)
• Local search

◦ grow or shrink until a local maximum is reached
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grow

shrink

𝝆 = 𝟑. 𝟐𝟓

𝝆 = 𝟑. 𝟐𝟗 𝝆 = 𝟑. 𝟑𝟑
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Optional Post Process (cont.)
• Local search

◦ grow or shrink until a local maximum is reached
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grow

𝝆 = 𝟑. 𝟐𝟗 𝝆 = 𝟑. 𝟑𝟑

shrink

𝝆 = 𝟑. 𝟖
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Optional Post Process (cont.)
• Local search

◦ grow or shrink until a local maximum is reached

•Return the local maximum
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𝝆 = 𝟑. 𝟑𝟑

grow

𝝆 = 𝟑. 𝟖

shrink

𝝆 = 𝟑

Local 
maximum
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Multiple Block Detection

•Deflation: Remove found blocks before finding others
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Find Find Find

Restore

Remove Remove
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Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis
◦ T2. Anomaly Detection 
▪T2.1 M-Zoom [PKDD 16] 

◦ Algorithm 
◦ Experiments <<

▪T2.2-T2.3 Related Completed Work

◦ T3. Behavior Modeling

• Proposed Work

•Conclusion
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Speed & Accuracy
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•Datasets:                                                                       ….

2X

Density metric: 𝜌𝐺

3X
2X

T2.1 / T2.2 / T2.3Completed / Proposed

Density metric: 𝜌𝑆 Density metric: 𝜌𝐴



Discoveries in Practice

11 accounts
revised 10 pages
2,305 times
within 16 hours

Accounts

Korean 
Wikipedia

Pa
ge

s

Accounts

English 
Wikipedia

Pa
ge

s

8 accounts
revised 12 pages
2.5 million times

100%
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Discoveries in Practice (cont.)
9 accounts 
gives 1 product
369 reviews with
the same rating
within 22 hoursAccounts

App Market
(4-order)

a block whose 
volume = 2
and
mass = 2 millions

TCP Dump
(7-order)

Protocols

100%

100%
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Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis

◦ T2. Anomaly Detection 
▪M-Zoom 

▪T2.2-T2.3 Related Completed Work <<

◦ T3. Behavior Modeling

• Proposed Work

•Conclusion
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T2.2 Extension to Web-scale Tensors
•Goal: to find dense blocks in a disk-resident or 
distributed tensor

•D-Cube: gives the same accuracy guarantee of M-Zoom 
with much less iterations
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Entry sum in slices

Average

100 B 
nonzeros
in 5 hours

T2.1 / T2.2 / T2.3Completed / Proposed 76/106Mining Large Dynamic Graphs and Tensors (by Kijung Shin)
Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos, 

“D-Cube: Dense-Block Detection in Terabyte-Scale Tensors”, WSDM 2017



T2.3 Extension to Dynamic Tensors
•Goal: to maintain a dense block in a dynamic tensor that 
changes over time

•DenseStream: incrementally computes a dense block 
with the same accuracy guarantee of M-Zoom

77/106T2.1 / T2.2 / T2.3Completed / Proposed 77/106T2.1 / T2.2 / T2.3Completed / Proposed 77/106Mining Large Dynamic Graphs and Tensors (by Kijung Shin)
Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos, 

“DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams”, KDD 2017



Anomaly Detection in Tensors
•Algorithms:

◦ M-Zoom, D-Cube, and DenseStream

•Analyses: approximation guarantees

•Discoveries:
◦ Edit war, vandalism, and bot activities

◦ Network intrusion

◦ Spam reviews

78/106T2.1 / T2.2 / T2.3Completed / Proposed



Completed Work by Topics

Mining Large Dynamic Graphs and Tensors (by Kijung Shin) 79/106
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Motivation
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profile
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profile

Start Goal
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Problem Definition
•Given:

◦ behavior log

◦ number of desired latent stages: 𝑘

• Find: 𝑘 progression stages
◦ types of actions

◦ frequency of actions

◦ transitions to other stages

• To best describe the given behavior log

81/106
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Behavior Model
•Generative process:

◦ Θ𝑠: action-type distribution in stage 𝑠

◦ 𝜙𝑠: time-gap distribution in stage 𝑠

◦ 𝜓𝑠: next-stage distribution in stage 𝑠

•Constraint: “no decline” (progression but no cyclic patterns)
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𝜓0

Θ1

𝜓1

𝜙1 Θ2 𝜙2

𝜓2

Θ2 𝜙2

𝜓2 𝜓3

Θ3 𝜙3

1 2 3
1 2 3

1 2 32
Welcome to

connect message connectjobs
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Optimization Algorithm
•Goal: to fit our model to given data

◦ parameters: distributions  (i.e., Θ𝑠, 𝜙𝑠, 𝜓𝑠 𝑠) and latent stages

• repeat until convergence 
◦ assignment step: assign latent stages while fixing prob. distributions

◦ update step: update prob. distributions while fixing latent stages

▪e.g., Θ𝑠 ← ratio of the types of actions in stage 𝑠

83/106

1
2

3 “no decline”
→ Dynamic 
Programming
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Scalability & Convergence
• Three versions of our algorithm

◦ In-memory

◦ Out-of-core (or external-memory)

◦ Distributed

84/106

1 trillion
actions

in 2 hours

5 latent   
stages

10
15

20
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Progression of Users in LinkedIn
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Build one’s
Profile

Onboarding 
Process

Poke around 
the service
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Social 

Network

Consume 
Newsfeeds

Join
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Completed Work by Topics
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Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis

◦ T2. Anomaly Detection 

◦ T3. Behavior Modeling

•Proposed Work <<

•Conclusion
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Proposed Work by Topics
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P1: Problem Definition
•Given:

◦ a fully dynamic graph stream,

▪i.e., list of edge insertions and edge deletions

◦ Memory budget 𝑘

• Estimate: the counts of global and local triangles

• To Minimize: estimation error
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P1: Goal
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Method Accuracy
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Deletions?
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Proposed Work by Topics
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P2: Problem Definition
• Tucker Decomposition (a.k.a High-order PCA)

◦ Given: an 𝑁-order input tensor 𝑿

◦ Find:  𝑁 factor matrices 𝐴(1)… 𝐴(𝑁) & core-tensor 𝒀

◦ To satisfy:
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≈
𝑿 [input]

𝒀

𝐴(3)

𝐴(1)
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P2: Standard Algorithms 
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P2: Completed Work
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Input Intermediate Data Output
(large & sparse) (small & dense)(large & dense)

•Our completed work [WSDM17]

On-the-fly SVD

Incurs repeated 
computation
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P2: Proposed Work
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Input Intermediate Data Output
(large & sparse) (small & dense)(small & dense)

• Proposed algorithm

Materialized

On-the-fly

Partially materialize 
intermediate data!
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P2: Expected Performance Gain
•Which part of intermediate data should we 
materialize?

• Exploit skewed degree distributions!
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Proposed Work by Topics
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P3. Polarization Modeling
•Polarization in social networks: division into 
contrasting groups
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Use of marijuana should be:         Legal        Illegal

OR

“How do people choose between 
two ways of polarization?”

change 
of beliefs

change 
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P3. Problem Definition
•Given: time-evolving social network with nodes’ 
beliefs on controversial issues
◦ e.g., legalizing marijuana

• Find: actor-based model with a utility function
◦ depending on network features, beliefs, etc.

• To best describe: the polarization in data

•Applications:
◦ predict future edges

◦ predict the cascades of beliefs

100/106P1 / P2 / P3Completed / Proposed



Proposed Work by Topics
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Timeline
• Mar-May 2018

◦ P1. Triangle counting in fully dynamic graph streams

• Jun-Aug 2018
◦ P3. Polarization modeling

• Sep-Oct 2018
◦ P2. Fast and scalable tucker decomposition

• Nov 2018 –April 2019
◦ Thesis Writing & Job Application

• May 2019
◦ Defense
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Roadmap
•Overview

•Completed Work
◦ T1. Structure Analysis

◦ T2. Anomaly Detection 

◦ T3. Behavior Modeling

• Proposed Work

•Conclusion <<
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Conclusion
•Goal: 

To Understand Large Dynamic Graphs and Tensors

• Subtasks: 
◦ structure analysis

◦ anomaly detection

◦ behavior modeling

•Approaches:
◦ distributed or external-memory algorithms

◦ streaming algorithms based on sampling

◦ approximation algorithms
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Thank You
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