
CoreScope: Graph Mining Using k-Core Analysis - Patterns, Anomalies and Algorithms
(Supplementary Document)

Kijung Shin
Carnegie Mellon University

Pittsburgh, PA, USA
kijungs@cs.cmu.edu

Tina Eliassi-Rad
Northeastern University

Boston, MA, USA
eliassi@ccs.neu.edu

Christos Faloutsos
Carnegie Mellon University

Pittsburgh, PA, USA
christos@cs.cmu.edu

Abstract—In this supplementary document, we provide addi-
tional proofs and experimental results, which supplement the
main paper [1].

I. PROOFS

A. Proof of Lemma 1

In this section, we prove Lemma 1 in the main paper. For
the proof, we use Lemmas 3 and 4, which give upper and
lower bounds of degeneracy.

Lemma 3 (Lower Bound of Degeneracy [2]). The half of the
average degree lower bounds the degeneracy. Let davg be the
average degree. Then, kmax ≥ dm/ne ≥ davg/2.

Lemma 4 (Upper Bound of Degeneracy). The largest eigen-
value upper bounds the degeneracy. Let λ1 be the largest
eigenvalue of the adjacency matrix. Then kmax ≤ λ1.

Proof. Let H be the degeneracy-core (i.e., kmax-core) of G
and dmin(H) be its minimum degree. By the definition of
the k-core and degeneracy, dmin(H) = kmax(G). Since the
largest eigenvalue is lower bounded by minimum degree [3],
kmax(G) = dmin(H) ≤ λ1(H). The largest eigenvalue of a
graph is also lower bounded by that of its induced subgraph
[3]. Since the degeneracy-core is an induced subgraph due to
its maximality, kmax(G) ≤ λ1(H) ≤ λ1(G) = λ1.

Lemma 5 states that the graph measures used for upper and
lower bounding degeneracy in Lemmas 3 and Lemma 4 in-
crease exponentially with q, the power of Kronecker products,
in Kronecker Model.

Lemma 5. (Graph Measures Increasing Exponentially in Kro-
necker Graphs). The average degree, the degeneracy, and the
largest eigenvalue increase exponentially with q in {Cq}q≥1,
graphs generated by Kronecker Model.
(1) davg(Gq) = (davg(G1))q , ∀q ≥ 1.
(2) kmax(Gq) ≥ (kmax(G1))q , ∀q ≥ 1.
(3) λ1(Gq) = (λ1(G1))q , ∀q ≥ 1.

Proof. Let n(G) be the number of vertices and nz(G) be
the number of non-zero entries in the adjacency matrix.
Then, davg(G) = nz(G)/n(G). As n(Gq) = (n(G1))q

and nz(Gq) = (nz(G1))q , davg(Gq) = nz(Gq)/n(Gq) =
(nz(G1))q/(n(G1))q = (nz(G1)/n(G1))q = (davg(G1))q ,
∀q ≥ 1.

For seed graph G1, kmax(G1) ≥ (kmax(G1))1. Assume
kmax(Gi) ≥ (kmax(G1))i. Each vertex in Gi+1 can be
represented as an ordered pair (vi, v1) where vi is a vertex
of Gi and v1 is a vertex of G1. Two vertices, (vi, v1)
and (v′i, v

′
1), in Gi+1 are adjacent if and only if vi and v′i

are adjacent in Gi and v1 and v′1 are adjacent in G1 [4].
Let G′i(V

′
i , E

′
i) be the degeneracy-core of Gi(Vi, Ei) where

V ′i = {vi ∈ Vi|c(vi) = kmax(Gi)}. Then, each vertex (vi, v1)
in S = {(vi, v1) ∈ Vi+1|vi ∈ V ′i , v1 ∈ V ′1} are adjacent
to dG′

i
(vi) × dG′

1
(v1)(≥ kmax(Gi) × kmax(G1)) vertices

in S. Therefore, kmax(Gi+1) ≥ kmax(Gi) × kmax(G1) ≥
kmax(G1)(i+1). By induction, kmax(Gq) ≥ (kmax(G1))q ,
∀q ≥ 1.

Let λ(G) = (λ1, ..., λn) be the eigenvalues of the ad-
jacency matrix of G, and λ1(G) be the largest eigenvalue.
Then, λ(Gq) = sort(λ(Gq−1) ⊗ λ(G1)) [5]. As λ1(Gq) =
λ1(Gq−1)× λ1(G1), λ1(Gq) = (λ1(G1))q , ∀q ≥ 1.

Proof of Lemma 1

Proof. Lemma 1 is proved by Lemmas 3, 4, and 5.

B. Proof of Lemma 2

In this section, we prove Lemma 2 in the main paper.
For the proof, we have to deal with self-loops in Kronecker
graphs which happen naturally. We add one to the degree for
each self-loop and define a triangle in Kronecker graphs as an
unordered vertex triplet, which can contain multiple instances
of the same vertex, where every instance is connected to
all others either by self-loops or other edges. For example,
(v1, v1, v2) is a triangle in Kronecker graphs if v1 has a
self-loop and v1 and v2 are adjacent. Note that Lemma 2
and Theorem 1 (in the main paper) hold equally, with the
original definitions of degree and a triangle, in Kronecker
graphs without self-loops.

Proof of Lemma 2

Proof. Let λ(Gi) = (λ1(Gi), ..., λni(Gi)) be the eigenval-
ues of the adjacency matrix of Gi. The number of walks
of length 3 in Gi that begin and end on the same ver-
tex is

∑ni

j=1(λj(Gi))
3 [6] and linearly related to the num-

ber of triangles, i.e., #∆(Gi) = Θ(
∑ni

j=1(λj(Gi))
3). For

seed graph G1,
∑n

j=1(λj(G1))3 = (
∑n

j=1(λj(G1))3)1. As-

sume
∑ni

j=1(λj(Gi))
3 = (

∑n
j=1(λj(G1))3)i. As λ(Gi+1) =

sort(λ(Gi)⊗ λ(G1)) [5],

n(i+1)∑
j=1

(λj(Gi+1))3 =

ni∑
r=1

n∑
s=1

(λr(Gi))
3(λs(G1))3

= (

ni∑
r=1

(λr(Gi))
3)(

n∑
s=1

(λs(G1))3) =

(
n∑

s=1

(λs(G1))3

)(i+1)

.

By induction,
∑nq

j=1(λj(Gq))3 = (
∑n

j=1(λj(G1))3)q ,
∀q ≥ 1. Hence, #∆(Gq) = Θ(

∑nq

j=1(λj(Gq))3) =

Θ((
∑n

j=1(λj(G1))3)q), ∀q ≥ 1.

C. Proof of Theorem 2

In this section, we prove Theorem 2 in the main paper.

Proof. From p = Ω(log n/n), there exists c > 0 such that
p ≥ c log n/n. Let ε = max(2, 12/c) (> 1). Then,

P (∃v ∈ V s.t. d(v) > (1 + ε)(n− 1)p)

≤ nP (d(v) > (1 + ε)(n− 1)p) (Boole’s inequality)
≤ n exp{−(n− 1)pε/3} (Chernoff bound)
≤ n exp{−c log(n)(n− 1)ε/3n} (p ≥ c log n/n)

≤ n exp{−4 log(n)(n− 1)/n} (ε ≥ 12/c)

≤ n exp{−2 log n} = n−1.

Let q = P (∃v ∈ V s.t. d(v) > (1 + ε)(n− 1)p). Then,

E[kmax] ≤ E[dmax] ≤ (1− q)(1 + ε)(n− 1)p+ q(n− 1)

≤ (1 + ε)(n− 1)p+ (n− 1)/n = O(np)

Hence, E[kmax] = O(np). As E[kmax] ≥ E[davg/2] =
Ω(np) by Lemma 3, E[kmax] = Θ(np).

On the other hand, the expected number of triangles is the
sum of probabilities that each three vertices form a traingle:

E[#∆] =
n(n− 1)(n− 2)

6
p3.

Therefore, E[#∆] = Θ(n3p3) = Θ(E[kmax]3).

II. ADDITIONAL EXPERIMENTS

A. CORE-D with Smaller Number of Samples

Figure 1 presents the accuracy of CORE-D with different
sample sizes in the two largest datasets. Even with small
number of samples less than the number of vertices, CORE-
D, especially OVERALL MODEL, accurately and reliably esti-
mated degeneracy. Thus, CORE-D is still effective even when
the amount of available memory space is less than n.

● ● ● ● ●● ● ● ● ●● ● ● ● ●

0.0
0.5
1.0
1.5
2.0
2.5

10−1.5 10−1 10−0.5 100

Samples / # Vertices

R
el

at
ive

 E
rro

r Model: Overall Triangle

(a) Friendster

● ● ● ● ●● ● ● ● ●● ● ● ● ●

0.45

0.50

0.55

0.60

0.65

10−1.5 10−1 10−0.5 100

Samples / # Vertices

R
el

at
ive

 E
rro

r Model: Overall Triangle

(b) Twitter

Fig. 1: CORE-D is nimble and accurate. Points and error bars
represent the average accuracy and ± one standard deviation over
ten runs, respectively. CORE-D reliably estimates degeneracy even
with small number of samples less than the number of vertices.

B. CORE-S with Different Numbers of Spreaders

In the main paper, we compared the average influence of
the ten vertices chosen by CORE-S with that of the vertices
chosen by other influential spreader identification methods. In
this section, we compared the methods when different numbers
of spreaders are chosen. Specifically, for different k values, we
compared the average influence of k vertices chosen by CORE-
S with that of the vertices chosen by the following methods:

• K-CORE [7]: all vertices with the highest coreness.
• K-TRUSS [8]: all vertices with the highest truss number.
• Eigenvector Centrality (EC) [9]: top-k vertices with the

highest eigenvector centralities in the entire graph.

As in the main paper, we measured the influence of each vertex
using SIR simulation (see Appendix B in the main paper
for details) and also compared the time taken for choosing
influential vertices in each method.

Figure 2 presents the results in social networks, where
influential spreader identification has been used. Regardless
of k, CORE-S provided the best trade-off between speed and
accuracy. Specifically, the average influence of the vertices
chosen by CORE-S was up to 2.6× higher than that of all
the vertices in the degeneracy-core (K-CORE) although the
gap decreases as k increases. However, additional time taken
in CORE-A for further refining vertices in degeneracy-cores
was at most 12% of the time taken for the core decomposition
of entire graphs. Besides, CORE-S was up to 17× faster,
than EC, which has to compute the eigenvector centrality in
entire graphs (instead of only in degeneracy-cores). However,
the average influence of the vertices chosen by CORE-S was
comparable with that of the vertices found by EC (100% in
Orkut, 97-104% in Flickr, 99-100% in Catster, 88-100% in
Youtube, and 95-100% in Email).

REFERENCES

[1] K. Shin, T. Eliassi-Rad, and C. Faloutsos, “Corescope: Graph mining
using k-core analysis - patterns, anomalies and algorithms,” in ICDM,
2016.

[2] P. Erdös, “On the structure of linear graphs,” Israel J. of Math., vol. 1,
no. 3, pp. 156–160, 1963.

[3] A. E. Brouwer and W. H. Haemers, Spectra of graphs. Springer Science
& Business Media, 2011.

[4] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic,
mathematically tractable graph generation and evolution, using kronecker
multiplication,” in PKDD, 2005, pp. 133–145.

●●●●● 12X

● ideal

2.
6X

5K

10K

15K

20K

25K

101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(a) Orkut (k = 1, β = 0.002)

●●●●●4X

● ideal

1.
9X

500

750

1000

1250

100 101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(b) Flickr (k = 1, β = 0.001)

●●●●● 16X

● ideal

1.
3X

6K

7K

8K

10−1 100 101 102

Wall−Clock Time (sec)

In
flu

en
ce

(c) Catster (k = 1,
β = 0.002)

●●●●● 17X

● ideal

1.
8X

4K

6K

8K

100 101

Wall−Clock Time (sec)

In
flu

en
ce

(d) Youtube (k = 1,
β = 0.01)

●●●●● 4X

● ideal

2.
2X

100

150

200

250

10−2 10−1

Wall−Clock Time (sec)

In
flu

en
ce

(e) Email (k = 1, β = 0.01)

●●●●● 12X

● ideal

2.
6X

5K

10K

15K

20K

25K

101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(f) Orkut (k = 5, β = 0.002)

●●●●●4X

● ideal

1.
9X

500

750

1000

1250

100 101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(g) Flickr (k = 5, β = 0.001)

●●●●● 16X

● ideal

1.
3X

6K

7K

8K

10−1 100 101 102

Wall−Clock Time (sec)

In
flu

en
ce

(h) Catster (k = 5,
β = 0.002)

●●●●● 17X

● ideal

1.
7X

4K

6K

8K

100 101

Wall−Clock Time (sec)

In
flu

en
ce

(i) Youtube (k = 5,
β = 0.01)

●●●●●
4X

● ideal

2X

100

150

200

10−2 10−1

Wall−Clock Time (sec)

In
flu

en
ce

(j) Email (k = 5, β = 0.01)

(k) Orkut (k = 10,
β = 0.002)

(l) Flickr (k = 10,
β = 0.001)

(m) Catster (k = 10,
β = 0.002)

(n) Youtube (k = 10,
β = 0.01)

(o) Email (k = 10, β = 0.01)

●●●●● 12X

● ideal

2.
6X

10K

20K

101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(p) Orkut (k = 20,
β = 0.002)

●●●●●
4X

● ideal

1.
8X

500

750

1000

1250

1500

100 101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(q) Flickr (k = 20,
β = 0.001)

●●●●● 16X

● ideal

1.
2X

6K

7K

8K

10−1 100 101 102

Wall−Clock Time (sec)

In
flu

en
ce

(r) Catster (k = 20,
β = 0.002)

●●●●●
17X

● ideal

1.
6X

4K

6K

8K

100 101

Wall−Clock Time (sec)

In
flu

en
ce

(s) Youtube (k = 20,
β = 0.01)

●●●●●

4X

● ideal

1.
8X

100

150

200

10−2 10−1

Wall−Clock Time (sec)
In

flu
en

ce

(t) Email (k = 20, β = 0.01)

●●●●● 12X

● ideal

2.
6X

10K

20K

101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(u) Orkut (k = 50,
β = 0.002)

●●●●●
4X

● ideal

1.
7X

600

800

1000

1200

100 101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(v) Flickr (k = 50,
β = 0.001)

●●●●● 16X

● ideal

1.
2X

6K

7K

8K

10−1 100 101 102

Wall−Clock Time (sec)

In
flu

en
ce

(w) Catster (k = 50,
β = 0.002)

●●●●●

17X

● ideal

1.
5X

4K

6K

8K

100 101

Wall−Clock Time (sec)

In
flu

en
ce

(x) Youtube (k = 50,
β = 0.01)

●●●●●

4X

● ideal

1.
4X

100

150

10−2 10−1

Wall−Clock Time (sec)

In
flu

en
ce

(y) Email (k = 50, β = 0.01)

Fig. 2: CORE-S achieves both speed and accuracy. β denotes the infection rate in SIR Model. Points in each plot represent the
performances of different methods. Upper-left region indicates better performance. CORE-S provided the best trade-off between speed and
accuracy. Specifically, it found up to 2.6× more influential vertices than K-CORE with similar speed. Compared with EC, CORE-S was
up to 17× faster, while still finding vertices with comparable influence (100% in Orkut, 97-104% in Flickr, 99-100% in Catster, 88-100%
in Youtube, and 95-100% in Email).

[5] C. F. Van Loan, “The ubiquitous kronecker product,” J. of comp. and
appl. math., vol. 123, no. 1, pp. 85–100, 2000.

[6] C. E. Tsourakakis, “Fast counting of triangles in large real networks

without counting: Algorithms and laws,” in ICDM, 2008.

[7] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley,
and H. A. Makse, “Identification of influential spreaders in complex

networks,” Nature Physics, vol. 6, no. 11, pp. 888–893, 2010.
[8] M.-E. G. Rossi, F. D. Malliaros, and M. Vazirgiannis, “Spread it good,

spread it fast: Identification of influential nodes in social networks,” in
World Wide Web Companion, 2015.

[9] B. Macdonald, P. Shakarian, N. Howard, and G. Moores, “Spreaders in the
network sir model: An empirical study,” arXiv preprint arXiv:1208.4269,
2012.

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2

	Additional Experiments
	Core-D with Smaller Number of Samples
	Core-S with Different Numbers of Spreaders

	References

