CoreScope: Graph Mining Using k-Core Analysis - Patterns, Anomalies and Algorithms
(Supplementary Document)

Kijung Shin
Carnegie Mellon University
Pittsburgh, PA, USA
kijungs @cs.cmu.edu

Abstract—In this supplementary document, we provide addi-
tional proofs and experimental results, which supplement the
main paper [1].

1. PROOFS
A. Proof of Lemma 1

In this section, we prove Lemma 1 in the main paper. For
the proof, we use Lemmas 3 and 4, which give upper and
lower bounds of degeneracy.

Lemma 3 (Lower Bound of Degeneracy [2]). The half of the
average degree lower bounds the degeneracy. Let dq.q be the
average degree. Then, k,q > [m/n] > dayg/2.

Lemma 4 (Upper Bound of Degeneracy). The largest eigen-
value upper bounds the degeneracy. Let A1 be the largest
eigenvalue of the adjacency matrix. Then kpqar < M.

Proof. Let H be the degeneracy-core (i.e., ky,qz-core) of G
and dyi(H) be its minimum degree. By the definition of
the k-core and degeneracy, din(H) = kmaz(G). Since the
largest eigenvalue is lower bounded by minimum degree [3],
kmaz(G) = dmin(H) < A1 (H). The largest eigenvalue of a
graph is also lower bounded by that of its induced subgraph
[3]. Since the degeneracy-core is an induced subgraph due to
its maximality, kpq.(G) < A1 (H) < A\ (G) = A1 [|

Lemma 5 states that the graph measures used for upper and
lower bounding degeneracy in Lemmas 3 and Lemma 4 in-
crease exponentially with q, the power of Kronecker products,
in Kronecker Model.

Lemma 5. (Graph Measures Increasing Exponentially in Kro-
necker Graphs). The average degree, the degeneracy, and the
largest eigenvalue increase exponentially with q in {Cy}e>1,
graphs generated by Kronecker Model.

(D davg(Gq) = (davg(Gl))q; Vq > 1

(2) kmax(Gq) > (kmam(Gl))q; Vq > 1.

(3))\1(Gq) = (Al(Gl))q, Vq 2 1.

Proof. Let n(G) be the number of vertices and nz(G) be
the number of non-zero entries in the adjacency matrix.
Then, duwg(G) = nz(G)/n(G). As n(Gq) = (n(G1))?
and n2(Gy) = (n2(G1)% dang(Gy) = n2(Gy)/n(G,) =
(n2(G1))?/(n(G1))? = (nz(G1)/n(G1))T = (davg(G1))",
Vg > 1.

Tina Eliassi-Rad
Northeastern University
Boston, MA, USA
eliassi @ccs.neu.edu

Christos Faloutsos
Carnegie Mellon University
Pittsburgh, PA, USA
christos @cs.cmu.edu

For seed graph G1, kmaz(G1) > (kmaz(G1))'. Assume
Emaz(Gi) > (kmaz(G1))t. Bach vertex in Gj;;1 can be
represented as an ordered pair (v;,v1) where v; is a vertex
of G, and v; is a vertex of G;. Two vertices, (v;,v1)
and (v},v}), in Gi41 are adjacent if and only if v; and v;
are adjacent in G; and v; and v} are adjacent in G; [4].
Let G}(V/, E!) be the degeneracy-core of G;(V;, E;) where
V! = {v; € Vi|c(vi) = kmax(G;)}. Then, each vertex (v;,vy)
in S = {(v;,v1) € Vip1lv; € V/,u1 € V{} are adjacent
to dgr(vi) X dar (V1)(> kmae(Gi) X Kmaa(G1)) vertices
in S. Therefore, kpmar(Git1) > kmaz(Gi) X kmaz(G1) >
Emaz(G1)0HD. By induction, Epar(Gy) > (kmaz(G1))%,
Vg > 1.

Let A(G) = (A1,...,An) be the eigenvalues of the ad-
jacency matrix of G, and \;(G) be the largest eigenvalue.
Then, A(G,) = sort(AMGq—1) @ A(G1)) [5]. As \(Gy) =
)\1(Gq_1) X)\1(G1), /\1(Gq) = ()\1(G1))q, Vq > 1. [|

Proof of Lemma 1
Proof. Lemma 1 is proved by Lemmas 3, 4, and 5. |

B. Proof of Lemma 2

In this section, we prove Lemma 2 in the main paper.
For the proof, we have to deal with self-loops in Kronecker
graphs which happen naturally. We add one to the degree for
each self-loop and define a triangle in Kronecker graphs as an
unordered vertex triplet, which can contain multiple instances
of the same vertex, where every instance is connected to
all others either by self-loops or other edges. For example,
(v1,v1,v2) is a triangle in Kronecker graphs if v; has a
self-loop and v; and v, are adjacent. Note that Lemma 2
and Theorem 1 (in the main paper) hold equally, with the
original definitions of degree and a triangle, in Kronecker
graphs without self-loops.

Proof of Lemma 2

Proof. Let M(G;) = (M(Gy), ..., \pi(G;)) be the eigenval-
ues of the adjacency matrix of G;. The number of walks
of length 3 in G; that begin and end on the same ver-

tex is Z;‘;l()\j(Gi))g [6] and linearly related to the num-
ber of triangles, ie., #A(G;) = @(Z;il(/\j(Gi))?’). For

seed graph G, Y7, (A;(G1))® = (X)=y (A;(G1)*)'. As-
sume Y27 (A;(G))* = (0, (A;(G1))?)'. As M(Giy1) =
sort(A(G;) @ A(G1)) [5],

nGit+D) i

Z ()‘J (G1+1))3 = ZZ(AT(GZ))S()‘S(GI))?’
"~ n' nr_ N n (i+1)
= (DGO A(G))?) = (Z(As(Gl))3>

By induction, Z;il(/\j(Gq))g = (Z?Zl()\j(Gl))S)qv
Vg > 1. Hence, #A(G,) = @(Z?il()‘j(Gq))3> =
(S, (A5 (G1))")7), Vg > 1. .

C. Proof of Theorem 2
In this section, we prove Theorem 2 in the main paper.

Proof. From p = Q(logn/n), there exists ¢ > 0 such that
p > clogn/n. Let e = max(2,12/c) (> 1). Then,

P(AvweVstdw)>(1+e)(n—1)p)

<nP(d(v) > (1+¢€)(n—1)p) (Boole’s inequality)

< nexp{—(n — 1)pe/3} (Chernoff bound)
< nexp{—clog(n)(n —1)e/3n} (p > clogn/n)
< nexp{—4log(n)(n —1)/n} (e >12/c)

< nexp{—2logn} =n"".
Let g = P(Fv €V s.t. d(v) > (1 +€)(n — 1)p). Then,
< (1+)(n - Dp+ (n—1)/n = O(np)
Hence, Elkmaz] = O(np). As Elkmaz] > Eldavg/2] =
Q(np) by Lemma 3, Ekiq.] = O(np).
On the other hand, the expected number of triangles is the
sum of probabilities that each three vertices form a traingle:
—Hn-2) 4
6

nn

E[#A]
Therefore, E[#A] = O(n3p3) = O(E[kmax]?). []

II. ADDITIONAL EXPERIMENTS

A. CORE-D with Smaller Number of Samples

Figure 1 presents the accuracy of CORE-D with different
sample sizes in the two largest datasets. Even with small
number of samples less than the number of vertices, CORE-
D, especially OVERALL MODEL, accurately and reliably esti-
mated degeneracy. Thus, CORE-D is still effective even when
the amount of available memory space is less than n.

‘0‘2'5 Model: O Overall /\ Triangle H 60'65 H Model: O Overall /\ Triangle H

2.0 =

&5 j50.60

o!® Lo.55

©05 2050

Tool. ‘ ‘ - Tousi ‘ ‘ ‘
1075 107" 10°® 10° 1075 107" 10°® 10°
Samples / # Vertices # Samples / # Vertices

(a) Friendster (b) Twitter
Fig. 1: CORE-D is nimble and accurate. Points and error bars

represent the average accuracy and + one standard deviation over
ten runs, respectively. CORE-D reliably estimates degeneracy even
with small number of samples less than the number of vertices.

B. CORE-S with Different Numbers of Spreaders

In the main paper, we compared the average influence of
the ten vertices chosen by CORE-S with that of the vertices
chosen by other influential spreader identification methods. In
this section, we compared the methods when different numbers
of spreaders are chosen. Specifically, for different k values, we
compared the average influence of k vertices chosen by CORE-
S with that of the vertices chosen by the following methods:

o K-CORE [7]: all vertices with the highest coreness.

o K-TRuss [8]: all vertices with the highest truss number.

o Eigenvector Centrality (EC) [9]: top-k vertices with the
highest eigenvector centralities in the entire graph.

As in the main paper, we measured the influence of each vertex
using SIR simulation (see Appendix B in the main paper
for details) and also compared the time taken for choosing
influential vertices in each method.

Figure 2 presents the results in social networks, where
influential spreader identification has been used. Regardless
of k, CORE-S provided the best trade-off between speed and
accuracy. Specifically, the average influence of the vertices
chosen by CORE-S was up to 2.6x higher than that of all
the vertices in the degeneracy-core (K-CORE) although the
gap decreases as k increases. However, additional time taken
in CORE-A for further refining vertices in degeneracy-cores
was at most 12% of the time taken for the core decomposition
of entire graphs. Besides, CORE-S was up to 17x faster,
than EC, which has to compute the eigenvector centrality in
entire graphs (instead of only in degeneracy-cores). However,
the average influence of the vertices chosen by CORE-S was
comparable with that of the vertices found by EC (100% in
Orkut, 97-104% in Flickr, 99-100% in Catster, 88-100% in
Youtube, and 95-100% in Email).

REFERENCES

[1] K. Shin, T. Eliassi-Rad, and C. Faloutsos, “Corescope: Graph mining
using k-core analysis - patterns, anomalies and algorithms,” in /CDM,
2016.

[2] P. Erdos, “On the structure of linear graphs,” Israel J. of Math., vol. 1,
no. 3, pp. 156-160, 1963.

[3] A. E. Brouwer and W. H. Haemers, Spectra of graphs. Springer Science
& Business Media, 2011.

[4] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic,
mathematically tractable graph generation and evolution, using kronecker
multiplication,” in PKDD, 2005, pp. 133-145.

Core-S (Proposed) [] K-Core K-Truss Eigenvector Centrality (EC)
25071s ideal

o ideal
o 01250 8K T6X o
2 g 2 |x 2
[©1000 Q7K™ 3]
= = = - =
E E 750 = E
500
10' 10*° 10° 10° 10' 10 10° 10 10° 10' 10° 10° o' 102 10"
Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec)
(a) Orkut (k =1, 8 = 0.002) (b) Flickr (k =1, 8 = 0.001) (c) Catster (k =1, (d) Youtube (k =1, (e) Email (k =1, 8 = 0.01)
B = 0.002) B =0.01)
o ideal
1250 ax
: 2 : g
g 51000 E g 50l
= £ 750 = = Z100 ,%
500
100 10* 10° 10° 10' 10° 10° 10 10° 10" 10° 10°. o' 102 10"
Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec)
(f) Orkut (k =5, 8 = 0.002) (g) Flickr (k =5, 8 = 0.001) (h) Catster (k = 5, (i) Youtube (k = 5, (j) Email (k = 5, 8 = 0.01)
B = 0.002) B8 =0.01)
15004® ideal ® ideal
——
(0] (0]
[&] [&]
C C
() (0]
= 3
£ £
10' _10® 10° 10° 10' 10® 10° 107" 10°_10" 10® 10°. o' 102 _ 107"
Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec)
(k) Orkut (k = 10, (1) Flickr (k = 10, (m) Catster (k = 10, (n) Youtube (k = 10, (o) Email (k = 10, 8 = 0.01)
B = 0.002) B =0.001) B = 0.002) B =0.01)
« ideal 15001e ideal
=
(6] () () [©]
(8] (8] (8] (8]
c c c c
() () () ()
= =2 =2 =
£ £ £ £
10t 10* 10° 10° 10' 10° 10° " 10° 10" 107 10°. o' 102 10"
Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec)
(p) Orkut (k = 20, (q) Flickr (k = 20, (r) Catster (k = 20, (s) Youtube (k = 20, (t) Email (k = 20, 8 = 0.01)
B =0.002) £ =0.001) £ =0.002) £ =0.01)
o ideal * ideal
8 o 8 goK 8
5 5 5 5
=) 2 36K =)
E10k i= = =
4K
100 10* 10° 10° 10' 10° 10° 10 10° 10 10° 10°. o' 102 10"
Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec) Wall-Clock Time (sec)
(u) Orkut (k = 50, (v) Flickr (k = 50, (w) Catster (k = 50, (x) Youtube (k = 50, (y) Email (k = 50, 8 = 0.01)
B = 0.002) B = 0.001) B8 = 0.002) B8 =0.01)

Fig. 2: CORE-S achieves both speed and accuracy. 5 denotes the infection rate in SIR Model. Points in each plot represent the
performances of different methods. Upper-left region indicates better performance. CORE-S provided the best trade-off between speed and
accuracy. Specifically, it found up to 2.6 x more influential vertices than K-CORE with similar speed. Compared with EC, CORE-S was
up to 17 x faster, while still finding vertices with comparable influence (100% in Orkut, 97-104% in Flickr, 99-100% in Catster, 88-100%

in Youtube, and 95-100% in Email).
[S] C. F. Van Loan, “The ubiquitous kronecker product,” J. of comp. and without counting: Algorithms and laws,” in ICDM, 2008.
appl. math., vol. 123, no. 1, pp. 85-100, 2000. [7]1 M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley,

[6] C. E. Tsourakakis, “Fast counting of triangles in large real networks and H. A. Makse, “Identification of influential spreaders in complex

(8]

[9]

networks,” Nature Physics, vol. 6, no. 11, pp. 888-893, 2010.

M.-E. G. Rossi, F. D. Malliaros, and M. Vazirgiannis, “Spread it good,
spread it fast: Identification of influential nodes in social networks,” in
World Wide Web Companion, 2015.

B. Macdonald, P. Shakarian, N. Howard, and G. Moores, “Spreaders in the
network sir model: An empirical study,” arXiv preprint arXiv:1208.4269,
2012.

	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2

	Additional Experiments
	Core-D with Smaller Number of Samples
	Core-S with Different Numbers of Spreaders

	References

