CoreScope: Graph Mining Using k-Core Analysis - Patterns, Anomalies and Algorithms (Supplementary Document)

Kijung Shin
Carnegie Mellon University
Pittsburgh, PA, USA
kijungs@cs.cmu.edu

Tina Eliassi-Rad
Northeastern University
Boston, MA, USA
eliassi@ccs.neu.edu

Christos Faloutsos
Carnegie Mellon University
Pittsburgh, PA, USA
christos@cs.cmu.edu

Abstract

In this supplementary document, we provide additional proofs and experimental results, which supplement the main paper [1].

I. Proofs

A. Proof of Lemma 1

In this section, we prove Lemma 1 in the main paper. For the proof, we use Lemmas 3 and 4, which give upper and lower bounds of degeneracy.

Lemma 3 (Lower Bound of Degeneracy [2]). The half of the average degree lower bounds the degeneracy. Let $d_{\text {avg }}$ be the average degree. Then, $k_{\max } \geq\lceil m / n\rceil \geq d_{\text {avg }} / 2$.

Lemma 4 (Upper Bound of Degeneracy). The largest eigenvalue upper bounds the degeneracy. Let λ_{1} be the largest eigenvalue of the adjacency matrix. Then $k_{\max } \leq \lambda_{1}$.

Proof. Let H be the degeneracy-core (i.e., $k_{\max }$-core) of G and $d_{\min }(H)$ be its minimum degree. By the definition of the k-core and degeneracy, $d_{\min }(H)=k_{\max }(G)$. Since the largest eigenvalue is lower bounded by minimum degree [3], $k_{\max }(G)=d_{\min }(H) \leq \lambda_{1}(H)$. The largest eigenvalue of a graph is also lower bounded by that of its induced subgraph [3]. Since the degeneracy-core is an induced subgraph due to its maximality, $k_{\max }(G) \leq \lambda_{1}(H) \leq \lambda_{1}(G)=\lambda_{1}$.

Lemma 5 states that the graph measures used for upper and lower bounding degeneracy in Lemmas 3 and Lemma 4 increase exponentially with q , the power of Kronecker products, in Kronecker Model.

Lemma 5. (Graph Measures Increasing Exponentially in Kronecker Graphs). The average degree, the degeneracy, and the largest eigenvalue increase exponentially with q in $\left\{C_{q}\right\}_{q \geq 1}$, graphs generated by Kronecker Model.
(1) $d_{\text {avg }}\left(G_{q}\right)=\left(d_{\text {avg }}\left(G_{1}\right)\right)^{q}, \forall q \geq 1$.
(2) $k_{\max }\left(G_{q}\right) \geq\left(k_{\max }\left(G_{1}\right)\right)^{q}, \forall q \geq 1$.
(3) $\lambda_{1}\left(G_{q}\right)=\left(\lambda_{1}\left(G_{1}\right)\right)^{q}, \forall q \geq 1$.

Proof. Let $n(G)$ be the number of vertices and $n z(G)$ be the number of non-zero entries in the adjacency matrix. Then, $d_{\text {avg }}(G)=n z(G) / n(G)$. As $n\left(G_{q}\right)=\left(n\left(G_{1}\right)\right)^{q}$ and $n z\left(G_{q}\right)=\left(n z\left(G_{1}\right)\right)^{q}, d_{\text {avg }}\left(G_{q}\right)=n z\left(G_{q}\right) / n\left(G_{q}\right)=$ $\left(n z\left(G_{1}\right)\right)^{q} /\left(n\left(G_{1}\right)\right)^{q}=\left(n z\left(G_{1}\right) / n\left(G_{1}\right)\right)^{q}=\left(d_{\text {avg }}\left(G_{1}\right)\right)^{q}$, $\forall q \geq 1$.

For seed graph $G_{1}, k_{\max }\left(G_{1}\right) \geq\left(k_{\max }\left(G_{1}\right)\right)^{1}$. Assume $k_{\max }\left(G_{i}\right) \geq\left(k_{\max }\left(G_{1}\right)\right)^{i}$. Each vertex in G_{i+1} can be represented as an ordered pair $\left(v_{i}, v_{1}\right)$ where v_{i} is a vertex of G_{i} and v_{1} is a vertex of G_{1}. Two vertices, $\left(v_{i}, v_{1}\right)$ and $\left(v_{i}^{\prime}, v_{1}^{\prime}\right)$, in G_{i+1} are adjacent if and only if v_{i} and v_{i}^{\prime} are adjacent in G_{i} and v_{1} and v_{1}^{\prime} are adjacent in G_{1} [4]. Let $G_{i}^{\prime}\left(V_{i}^{\prime}, E_{i}^{\prime}\right)$ be the degeneracy-core of $G_{i}\left(V_{i}, E_{i}\right)$ where $V_{i}^{\prime}=\left\{v_{i} \in V_{i} \mid c\left(v_{i}\right)=k_{\max }\left(G_{i}\right)\right\}$. Then, each vertex $\left(v_{i}, v_{1}\right)$ in $S=\left\{\left(v_{i}, v_{1}\right) \in V_{i+1} \mid v_{i} \in V_{i}^{\prime}, v_{1} \in V_{1}^{\prime}\right\}$ are adjacent to $d_{G_{i}^{\prime}}\left(v_{i}\right) \times d_{G_{1}^{\prime}}\left(v_{1}\right)\left(\geq k_{\max }\left(G_{i}\right) \times k_{\max }\left(G_{1}\right)\right)$ vertices in S. Therefore, $k_{\max }\left(G_{i+1}\right) \geq k_{\max }\left(G_{i}\right) \times k_{\max }\left(G_{1}\right) \geq$ $k_{\max }\left(G_{1}\right)^{(i+1)}$. By induction, $k_{\max }\left(G_{q}\right) \geq\left(k_{\max }\left(G_{1}\right)\right)^{q}$, $\forall q \geq 1$.

Let $\lambda(G)=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be the eigenvalues of the adjacency matrix of G, and $\lambda_{1}(G)$ be the largest eigenvalue. Then, $\lambda\left(G_{q}\right)=\operatorname{sort}\left(\lambda\left(G_{q-1}\right) \otimes \lambda\left(G_{1}\right)\right)$ [5]. As $\lambda_{1}\left(G_{q}\right)=$ $\lambda_{1}\left(G_{q-1}\right) \times \lambda_{1}\left(G_{1}\right), \lambda_{1}\left(G_{q}\right)=\left(\lambda_{1}\left(G_{1}\right)\right)^{q}, \forall q \geq 1$.

Proof of Lemma 1

Proof. Lemma 1 is proved by Lemmas 3, 4, and 5.

B. Proof of Lemma 2

In this section, we prove Lemma 2 in the main paper. For the proof, we have to deal with self-loops in Kronecker graphs which happen naturally. We add one to the degree for each self-loop and define a triangle in Kronecker graphs as an unordered vertex triplet, which can contain multiple instances of the same vertex, where every instance is connected to all others either by self-loops or other edges. For example, $\left(v_{1}, v_{1}, v_{2}\right)$ is a triangle in Kronecker graphs if v_{1} has a self-loop and v_{1} and v_{2} are adjacent. Note that Lemma 2 and Theorem 1 (in the main paper) hold equally, with the original definitions of degree and a triangle, in Kronecker graphs without self-loops.

Proof of Lemma 2

Proof. Let $\lambda\left(G_{i}\right)=\left(\lambda_{1}\left(G_{i}\right), \ldots, \lambda_{n^{i}}\left(G_{i}\right)\right)$ be the eigenvalues of the adjacency matrix of G_{i}. The number of walks of length 3 in G_{i} that begin and end on the same vertex is $\sum_{j=1}^{n^{i}}\left(\lambda_{j}\left(G_{i}\right)\right)^{3}$ [6] and linearly related to the number of triangles, i.e., $\# \Delta\left(G_{i}\right)=\Theta\left(\sum_{j=1}^{n^{i}}\left(\lambda_{j}\left(G_{i}\right)\right)^{3}\right)$. For
seed graph $G_{1}, \sum_{j=1}^{n}\left(\lambda_{j}\left(G_{1}\right)\right)^{3}=\left(\sum_{j=1}^{n}\left(\lambda_{j}\left(G_{1}\right)\right)^{3}\right)^{1}$. Assume $\sum_{j=1}^{n^{i}}\left(\lambda_{j}\left(G_{i}\right)\right)^{3}=\left(\sum_{j=1}^{n}\left(\lambda_{j}\left(G_{1}\right)\right)^{3}\right)^{i}$. As $\lambda\left(G_{i+1}\right)=$ $\operatorname{sort}\left(\lambda\left(G_{i}\right) \otimes \lambda\left(G_{1}\right)\right)$ [5],

$$
\begin{aligned}
& \sum_{j=1}^{n^{(i+1)}}\left(\lambda_{j}\left(G_{i+1}\right)\right)^{3}=\sum_{r=1}^{n^{i}} \sum_{s=1}^{n}\left(\lambda_{r}\left(G_{i}\right)\right)^{3}\left(\lambda_{s}\left(G_{1}\right)\right)^{3} \\
& =\left(\sum_{r=1}^{n^{i}}\left(\lambda_{r}\left(G_{i}\right)\right)^{3}\right)\left(\sum_{s=1}^{n}\left(\lambda_{s}\left(G_{1}\right)\right)^{3}\right)=\left(\sum_{s=1}^{n}\left(\lambda_{s}\left(G_{1}\right)\right)^{3}\right)^{(i+1)} .
\end{aligned}
$$

By induction, $\quad \sum_{j=1}^{n^{q}}\left(\lambda_{j}\left(G_{q}\right)\right)^{3}=\left(\sum_{j=1}^{n}\left(\lambda_{j}\left(G_{1}\right)\right)^{3}\right)^{q}$, $\forall q \geq 1$. Hence, $\# \Delta\left(G_{q}\right)=\Theta\left(\sum_{j=1}^{n^{q}}\left(\lambda_{j}\left(G_{q}\right)\right)^{3}\right)=$ $\Theta\left(\left(\sum_{j=1}^{n}\left(\lambda_{j}\left(G_{1}\right)\right)^{3}\right)^{q}\right), \forall q \geq 1$.

C. Proof of Theorem 2

In this section, we prove Theorem 2 in the main paper.

Proof. From $p=\Omega(\log n / n)$, there exists $c>0$ such that $p \geq c \log n / n$. Let $\epsilon=\max (2,12 / c)(>1)$. Then,

$$
\begin{array}{rlr}
P & (\exists v \in V \text { s.t. } d(v)>(1+\epsilon)(n-1) p) \\
& \leq n P(d(v)>(1+\epsilon)(n-1) p) & \text { (Boole’s inequality) } \\
& \leq n \exp \{-(n-1) p \epsilon / 3\} & (\text { Chernoff bound) } \\
& \leq n \exp \{-c \log (n)(n-1) \epsilon / 3 n\} & (p \geq c \log n / n) \\
& \leq n \exp \{-4 \log (n)(n-1) / n\} & (\epsilon \geq 12 / c) \\
& \leq n \exp \{-2 \log n\}=n^{-1} . &
\end{array}
$$

Let $q=P(\exists v \in V$ s.t. $d(v)>(1+\epsilon)(n-1) p)$. Then,

$$
\begin{aligned}
E\left[k_{\max }\right] & \leq E\left[d_{\max }\right] \leq(1-q)(1+\epsilon)(n-1) p+q(n-1) \\
& \leq(1+\epsilon)(n-1) p+(n-1) / n=O(n p)
\end{aligned}
$$

Hence, $E\left[k_{\max }\right]=O(n p)$. As $E\left[k_{\max }\right] \geq E\left[d_{\text {avg }} / 2\right]=$ $\Omega(n p)$ by Lemma $3, E\left[k_{\max }\right]=\Theta(n p)$.

On the other hand, the expected number of triangles is the sum of probabilities that each three vertices form a traingle:

$$
E[\# \Delta]=\frac{n(n-1)(n-2)}{6} p^{3}
$$

Therefore, $E[\# \Delta]=\Theta\left(n^{3} p^{3}\right)=\Theta\left(E\left[k_{\max }\right]^{3}\right)$.

II. Additional Experiments

A. Core-D with Smaller Number of Samples

Figure 1 presents the accuracy of CORE-D with different sample sizes in the two largest datasets. Even with small number of samples less than the number of vertices, CORED, especially OvERALL MODEL, accurately and reliably estimated degeneracy. Thus, Core-D is still effective even when the amount of available memory space is less than n.

Fig. 1: CORE-D is nimble and accurate. Points and error bars represent the average accuracy and \pm one standard deviation over ten runs, respectively. CORE-D reliably estimates degeneracy even with small number of samples less than the number of vertices.

B. Core-S with Different Numbers of Spreaders

In the main paper, we compared the average influence of the ten vertices chosen by CORE-S with that of the vertices chosen by other influential spreader identification methods. In this section, we compared the methods when different numbers of spreaders are chosen. Specifically, for different k values, we compared the average influence of k vertices chosen by CORES with that of the vertices chosen by the following methods:

- K-Core [7]: all vertices with the highest coreness.
- K-Truss [8]: all vertices with the highest truss number.
- Eigenvector Centrality (EC) [9]: top- k vertices with the highest eigenvector centralities in the entire graph.
As in the main paper, we measured the influence of each vertex using SIR simulation (see Appendix B in the main paper for details) and also compared the time taken for choosing influential vertices in each method.

Figure 2 presents the results in social networks, where influential spreader identification has been used. Regardless of k, CORE-S provided the best trade-off between speed and accuracy. Specifically, the average influence of the vertices chosen by CORE-S was up to $2.6 \times$ higher than that of all the vertices in the degeneracy-core (K-CORE) although the gap decreases as k increases. However, additional time taken in Core-A for further refining vertices in degeneracy-cores was at most 12% of the time taken for the core decomposition of entire graphs. Besides, CORE-S was up to $17 \times$ faster, than EC, which has to compute the eigenvector centrality in entire graphs (instead of only in degeneracy-cores). However, the average influence of the vertices chosen by CORE-S was comparable with that of the vertices found by EC (100% in Orkut, $97-104 \%$ in Flickr, $99-100 \%$ in Catster, $88-100 \%$ in Youtube, and 95-100\% in Email).

REFERENCES

[1] K. Shin, T. Eliassi-Rad, and C. Faloutsos, "Corescope: Graph mining using k-core analysis - patterns, anomalies and algorithms," in ICDM, 2016.
[2] P. Erdös, "On the structure of linear graphs," Israel J. of Math., vol. 1, no. 3, pp. 156-160, 1963.
[3] A. E. Brouwer and W. H. Haemers, Spectra of graphs. Springer Science \& Business Media, 2011.
[4] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, "Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication," in $P K D D, 2005$, pp. 133-145.

(a) Orkut $(k=1, \beta=0.002)$
(a) Orkut $(k=1, \beta=0.002)$
(b) Flickr $(k=1, \beta=0.001)$

(f) Orkut $(k=5, \beta=0.002)$
(g) Flickr $(k=5, \beta=0.001)$

(k) Orkut ($k=10$, $\beta=0.002$)

(p) Orkut ($k=20$, $\beta=0.002)$

Wall-Clock Time (sec)
(u) Orkut ($k=50$, $\beta=0.002$)

Wall-Clock Time (sec)
(l) Flickr $(k=10$,
(1) $\operatorname{Flickr}(k=10$,
$\beta=0.001)$

(q) Flickr $(k=20$, $\beta=0.001$)

Wall-Clock Time (sec)
(v) Flickr $(k=50$, $\beta=0.001$)

(c) Catster ($k=1$, $\beta=0.002$)
(d) Youtube $(k=1$, $\beta=0.01$)

(h) Catster $(k=5$, $\beta=0.002$)

Wall-Clock Time (sec)
(m) Catster $(k=10$, $\beta=0.002$)

(r) Catster $(k=20$, $\beta=0.002$)

Wall-Clock Time (sec)
(w) Catster $(k=50$, $\beta=0.002$)

(i) Youtube ($k=5$, $\beta=0.01$)

Wall-Clock Time (sec)
(n) Youtube $(k=10$, $\beta=0.01$)
(s) Youtube $(k=20$, $\beta=0.01)$

Wall-Clock Time (sec)
(x) Youtube ($k=50$, $\beta=0.01$)

(j) Email $(k=5, \beta=0.01)$
(o) Email $(k=10, \beta=0.01)$

(t) Email $(k=20, \beta=0.01)$

Wall-Clock Time (sec)
(y) Email ($k=50, \beta=0.01$)

Fig. 2: CORE-S achieves both speed and accuracy. β denotes the infection rate in SIR Model. Points in each plot represent the performances of different methods. Upper-left region indicates better performance. Core-S provided the best trade-off between speed and accuracy. Specifically, it found up to $2.6 \times$ more influential vertices than K-Core with similar speed. Compared with EC, Core-S was up to $17 \times$ faster, while still finding vertices with comparable influence (100% in Orkut, $97-104 \%$ in Flickr, $99-100 \%$ in Catster, $88-100 \%$ in Youtube, and $95-100 \%$ in Email).
[5] C. F. Van Loan, "The ubiquitous kronecker product," J. of comp. and appl. math., vol. 123, no. 1, pp. 85-100, 2000.
[6] C. E. Tsourakakis, "Fast counting of triangles in large real networks
without counting: Algorithms and laws," in ICDM, 2008.
[7] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, and H. A. Makse, "Identification of influential spreaders in complex
networks," Nature Physics, vol. 6, no. 11, pp. 888-893, 2010.
[8] M.-E. G. Rossi, F. D. Malliaros, and M. Vazirgiannis, "Spread it good, spread it fast: Identification of influential nodes in social networks," in World Wide Web Companion, 2015.
[9] B. Macdonald, P. Shakarian, N. Howard, and G. Moores, "Spreaders in the network sir model: An empirical study," arXiv preprint arXiv:1208.4269, 2012.

