
1

Supplemental Material for
TKDE-2015-05-0359

Kijung Shin, Lee Sael, U Kang

F

1 PROPOSED METHODS

1.1 Proofs of Update Rules

In this section, we present the proofs of the update
rules in Section 3.5 of the main paper. Specifically, we
prove the CDTF update rule for L1 regularization
(Theorem 7), the CDTF update rule for the non-
negativity constraint (Theorem 8), the SALS update
rule for coupled tensor factorization (Theorem 9),
and the update rule for bias terms commonly used
by CDTF and SALS for the bias model (Theorem 10).

Lemma 1 (Partial Derivative in CDTF): For a para-
meter a

(n)
ink

, let r̂i1...iN = xi1...iN−
∑

s6=k

∏N
l=1 a

(l)
ils

,

g = −2
∑

(i1,...,iN)∈Ω
(n)
in

(
r̂i1...iN

∏
l 6=n a

(l)
ilk

)
, and d =

2
∑

(i1,...,iN)∈Ω
(n)
in

∏
l 6=n(a

(l)
ilk

)2, as in the main paper.
Then,

∂

(∑
(i1,...,iN)∈Ω

(
xi1...iN −

K∑
s=1

N∏
l=1

a
(l)
ils

)2
)

∂a
(n)
ink

= g + a
(n)
inkd.

Proof:

∂

(∑
(i1,...,iN)∈Ω

(
xi1...iN −

K∑
s=1

N∏
l=1

a
(l)
ils

)2
)

∂a
(n)
ink

=
∑

(i1,...,iN)∈Ω
(n)
in

2

(
xi1...iN −

K∑
s=1

N∏
l=1

a
(l)
ils

)

×
∂

(
xi1...iN −

K∑
s=1

N∏
l=1

a
(l)
ils

)
∂a

(n)
ink

=
∑

(i1,...,iN)∈Ω
(n)
in

2

(
r̂i1...iN −

N∏
l=1

a
(l)
ilk

)−∏
l 6=n

a
(l)
ilk

= g + a

(n)
inkd.

Theorem 7: (Correctness of CDTF with L1-
regularization) The update rule (12) in the main
paper minimizes the loss function (11) with
respect to the updated parameter. For an updated
parameter a(n)

ink
, let r̂i1...iN = xi1...iN −

∑
s6=k

∏N
l=1 a

(l)
ils

,

g = −2
∑

(i1,...,iN)∈Ω
(n)
in

(
r̂i1...iN

∏
l 6=n a

(l)
ilk

)
, and

d = 2
∑

(i1,...,iN)∈Ω
(n)
in

∏
l 6=n(a

(l)
ilk

)2, as in the main
paper. Then,

arg min
a
(n)
ink

LLasso(A(1), ...,A(N)) =

(λ− g)/d if g > λ
−(λ+ g)/d if g < -λ
0 otherwise.

Proof: By Lemma 1,

∂LLasso(A(1), ...,A(N))

∂a
(n)
ink

=

∂

(∑
(i1,...,iN)∈Ω

(
xi1...iN −

K∑
s=1

N∏
l=1

a
(l)
ils

)2

+ λ
N∑
l=1

‖A(l)‖1

)
∂a

(n)
ink

= g + a
(n)
inkd+ λ

∂|a(n)
ink|

∂a
(n)
ink

=

{
g + a

(n)
inkd+ λ if a(n)

ink > 0

g + a
(n)
inkd− λ if a(n)

ink < 0.

Case 1: If g > λ (> 0), ∂LLasso

∂a
(n)
ink

> a
(n)
ink
d. Since d ≥

0, a(n)
ink

should be negative for ∂LLasso

∂a
(n)
ink

to be zero. If

a
(n)
ink

< 0, ∂LLasso

∂a
(n)
ink

= g+a
(n)
ink
d−λ, and a

(n)
ink

= (λ− g)/d

(< 0) makes ∂LLasso

∂a
(n)
ink

= 0. Since ∂2LLasso

∂
(
a
(n)
ink

)2 = d ≥ 0,

a
(n)
ink

= (λ−g)/d minimizes LLasso(A(1), ...,A(N)) with
respect to a

(n)
ink

.
Case 2: Likewise, if g < −λ (< 0), ∂LLasso

∂a
(n)
ink

< a
(n)
ink
d.

Since d ≥ 0, a(n)
ink

should be positive for ∂LLasso

∂a
(n)
ink

to

be zero. If a(n)
ink

> 0, ∂LLasso

∂a
(n)
ink

= g + a
(n)
ink
d + λ, and

a
(n)
ink

= −(λ + g)/d (> 0) makes ∂LLasso

∂a
(n)
ink

= 0. Since
∂2LLasso

∂
(
a
(n)
ink

)2 = d ≥ 0, a(n)
ink

= −(λ + g)/d minimizes

LLasso(A(1), ...,A(N)) with respect to a
(n)
ink

.
Case 3: On the other hand, if −λ ≤ g ≤ λ,

∂LLasso

∂a
(n)
ink

=

{
g + a

(n)
inkd+ λ ≥ a(n)

inkd ≥ 0 if a(n)
ink > 0

g + a
(n)
inkd− λ ≤ a

(n)
inkd ≤ 0 if a(n)

ink < 0

That is, LLasso(A(1), ...,A(N)) decreases if a(n)
ink

< 0

and increases if a(n)
ink

> 0, given other parameters.
Thus, LLasso(A(1), ...,A(N)), which is a continuous

2

function, is minimized with respect to a(n)
ink

if a(n)
ink

= 0.
Hence,

arg min
a
(n)
ink

LLasso(A(1), ...,A(N)) =

(λ− g)/d if g > λ
−(λ+ g)/d if g < -λ
0 otherwise.

Theorem 8: (Correctness of CDTF with the non-
negativity constraint) The update rule (14) in the
main paper minimizes the loss function (1) with
respect to the updated parameter under the non-
negativity constraint. For an updated parame-
ter a

(n)
ink

, let r̂i1...iN = xi1...iN −
∑

s6=k

∏N
l=1 a

(l)
ils

,

g = −2
∑

(i1,...,iN)∈Ω
(n)
in

(
r̂i1...iN

∏
l 6=n a

(l)
ilk

)
, and d =

2
∑

(i1,...,iN)∈Ω
(n)
in

∏
l 6=n(a

(l)
ilk

)2, as in the main paper.
Then,

arg min
a
(n)
ink
≥0

L(A(1), ...,A(N)) = max

(
−g

d+ 2λ
, 0

)
.

Proof: By Lemma 1,

∂L(A(1), ...,A(N))

∂a
(n)
ink

=

∂

(∑
(i1,...,iN)∈Ω

(
xi1...iN −

K∑
s=1

N∏
l=1

a
(l)
ils

)2

+ λ
N∑
l=1

‖A(l)‖2F

)
∂a

(n)
ink

= g + (d+ 2λ)a
(n)
ink.

Thus,

∂L

∂a
(n)
ink

 > 0 if a(n)
ink > −g/(d+ 2λ)

= 0 if a(n)
ink = −g/(d+ 2λ)

< 0 otherwise.

Case 1: If −g/(d+2λ) ≥ 0, since ∂2L

∂
(
a
(n)
ink

)2 = d+2λ ≥

0, L(A(1), ...,A(N)) is minimized if a(n)
ink

= −g/(d+2λ)

with respect to a
(n)
ink

.
Case 2: On the other hand, if −g/(d + 2λ) < 0,

under the constraint that a(n)
ink
≥ 0, L(A(1), ...,A(N))

is minimized with respect to a
(n)
ink

if a(n)
ink

= 0. This
is because L(A(1), ...,A(N)), which is a continuous
function, monotonically increases (i.e., ∂L

∂a
(n)
ink

> 0) if

a
(n)
ink
≥ 0 (> −g/(d+ 2λ)).

Hence,

arg min
a
(n)
ink
≥0

L(A(1), ...,A(N)) = max

(
−g

d+ 2λ
, 0

)
.

Theorem 9: (Correctness of SALS in Coupled Ten-
sor Factorization) The update rule (16) in the main
paper minimizes (15) with respect to the updated
parameters. Let xR and yR be the residual ten-
sors for X and Y, respectively. That is, for C up-
dated parameters a(1)

i1k1
, ..., a

(1)
i1kC

, xr̂i1...iNx
= xi1...iNx

−∑K
k=1

∏Nx

n=1 xa
(n)
ink

+
∑C

c=1

∏Nx

n=1 xa
(n)
inkc

and y r̂i1...iNy
=

yi1...iNy
−
∑K

k=1

∏Ny

n=1 ya
(n)
ink

+
∑C

c=1

∏Ny

n=1 ya
(n)
inkc

. Like-
wise, let xΩ and yΩ be the sets of indices of the
observable entries in X and Y, respectively. Then,

arg min
[a

(1)
i1k1

,...,a
(1)
i1kC

]T

LCoupled(xA
(1), ..., xA

(Nx), yA
(1), ..., yA

(Ny))

= (xB
(1)
i1

+ yB
(1)
i1

+ λIC)−1(xc
(1)
i1

+ yc
(1)
i1

),

where xB
(1)
i1

and yB
(1)
i1

are C by C matrices whose
entries are

(xB
(1)
i1

)c1c2 =
∑

(i1,...,iNx)∈xΩ
(1)
i1

∏
n 6=1

xa
(n)
inkc1

∏
n6=1

xa
(n)
inkc2

 ,

(yB
(1)
i1

)c1c2 =
∑

(i1,...,iNy)∈yΩ
(1)
i1

∏
n 6=1

ya
(n)
inkc1

∏
n 6=1

ya
(n)
inkc2

 ,∀c1, c2,

xc
(1)
i1

and yc
(1)
i1

are length C vectors whose entries are

(xc
(1)
i1

)c =
∑

(i1,...,iNx)∈xΩ
(1)
i1

xr̂i1...iN
∏
n 6=1

xa
(n)
inkc

 ,

(yc
(1)
i1

)c =
∑

(i1,...,iNy)∈yΩ
(1)
i1

y r̂i1...iN
∏
n6=1

ya
(n)
inkc

 ,∀c

and IC is the C by C identity matrix.
Proof:

∂L(xA
(1), ..., xA

(Nx))

∂a
(1)
i1kc

=
∂L(xA

(1), ..., xA
(Nx))

∂(xa
(1)
i1kc

)

=

∂

(∑
(i1,...,iNx)∈xΩ

(
xi1...iNx

−
K∑

s=1

Nx∏
n=1

xa
(n)
ins

)2
)

∂(xa
(1)
i1kc

)

+

∂λ
Nx∑
n=1

‖xA(n)‖2F

∂(xa
(1)
i1kc

)

=
∑

(i1,...,iNx)∈xΩ
(1)
i1

2

(
xi1...iNx

−
K∑

s=1

Nx∏
n=1

xa
(n)
ins

)

×
∂

(
xi1...iNx

−
K∑

s=1

Nx∏
n=1

xa
(n)
ins

)
∂(xa

(1)
i1kc

)
+ 2λ(xa

(1)
i1kc

)

=
∑

(i1,...,iNx)∈xΩ
(1)
i1

2

(
C∑

s=1

Nx∏
n=1

xa
(n)
inks
− xr̂i1...iNx

)∏
n6=1

xa
(n)
inkc

+ 2λa
(1)
i1kc

.

Likewise,

∂L(yA
(1), ..., yA

(Ny))

∂a
(1)
i1kc

=
∑

(i1,...,iNy)∈yΩ
(1)
i1

2

 C∑
s=1

Ny∏
n=1

ya
(n)
inks
− y r̂i1...iNy

∏
n6=1

ya
(n)
inkc

+ 2λa
(1)
i1kc

.

3

From these,

∂LCoupled

∂a
(1)
i1kc

= 0, ∀c, 1 ≤ c ≤ C

⇔
∑

(i1,...,iNx)∈xΩ
(1)
i1

(
C∑

s=1

Nx∏
n=1

xa
(n)
inks
− xr̂i1...iNx

)∏
n 6=1

xa
(n)
inkc

+
∑

(i1,...,iNy)∈yΩ
(1)
i1

 C∑
s=1

Ny∏
n=1

ya
(n)
inks
− y r̂i1...iNy

∏
n 6=1

ya
(n)
inkc

+ λa
(1)
i1kc

= 0, ∀c

⇔
∑

(i1,...,iNx)∈xΩ
(1)
i1

 C∑
s=1

xa
(1)
i1ks

∏
n6=1

xa
(n)
inks

∏
n6=1

xa
(n)
inkc

+

∑
(i1,...,iNy)∈yΩ

(1)
i1

 C∑
s=1

ya
(1)
i1ks

∏
n 6=1

ya
(n)
inks

∏
n 6=1

ya
(n)
inkc

+ λa

(1)
i1kc

=
∑

(i1,...,iNx)∈xΩ
(1)
i1

xr̂i1...iNx

∏
n6=1

xa
(n)
inkc

+

∑
(i1,...,iNy)∈yΩ

(1)
i1

y r̂i1...iNy

∏
n6=1

ya
(n)
inkc

 ,∀c

⇔ (xB
(1)
i1

+ yB
(1)
i1

+ λIC)[a
(1)
i1k1

, ..., a
(1)
i1kC

]T = (xc
(1)
i1

+ yc
(1)
i1

).

Hence,

arg min
[a

(1)
i1k1

,...,a
(1)
i1kC

]T

LCoupled(xA
(1), ..., xA

(Nx), yA
(1), ..., yA

(Ny))

= (xB
(1)
i1

+ yB
(1)
i1

+ λIC)−1(xc
(1)
i1

+ yc
(1)
i1

).

Theorem 10: (Correctness of the Update Rule for Bias
Terms) The update rule (18) in the main paper min-
imizes (17) with respect to the updated parameter.
For an updated parameter b(n)

in
, let r̄i1...iN = xi1...iN −∑K

k=1

∏N
l=1 a

(l)
ilk
−
∑

l 6=n b
(l)
il
− µ, as in the main paper.

Then,

arg min
b
(n)
in

LBias(A(1), ...,A(N),b(1), ...,b(N))

=
∑

(i1,...,iN)∈Ω
(n)
in

r̄i1...iN /(λb + |Ω(n)
in
|).

Proof:

∂LBias(A(1), ...,A(N),b(1), ...,b(N))

∂b
(n)
in

=

∂

(∑
(i1,...,iN)∈Ω

(
xi1...iN −

K∑
s=1

N∏
l=1

a
(l)
ils
−

N∑
l=1

b
(l)
il
− µ

)2
)

∂b
(n)
in

+

∂

(
λA

N∑
l=1

‖A(l)‖2F
)

∂b
(n)
in

+

∂

(
λb

N∑
l=1

‖b(l)‖2F
)

∂b
(n)
in

=
∑

(i1,...,iN)∈Ω
(n)
in

2

(
xi1...iN −

K∑
s=1

N∏
l=1

a
(l)
ils
−

N∑
l=1

b
(l)
il
− µ

)

×
∂

(
xi1...iN −

K∑
s=1

N∏
l=1

a
(l)
ils
−

N∑
l=1

b
(l)
il
− µ

)
∂b

(n)
in

+

λb

N∑
l=1

‖b(l)‖2F

∂b
(n)
in

=
∑

(i1,...,iN)∈Ω
(n)
in

−2(r̄i1...iN − b
(n)
in

) + 2λbb
(n)
in

= 2(λb + |Ω(n)
in
|)b(n)

in
−

∑
(i1,...,iN)∈Ω

(n)
in

2r̄i1...iN .

Since ∂2LBias

∂
(
b
(n)
in

)2 = 2(λb + |Ω(n)
in
|) ≥ 0,

LBias(A
(1), ...,A(N),b(1), ...,b(N)) is minimized with

respect to b
(n)
in

if b(n)
in

=
∑

(i1,...,iN)∈Ω
(n)
in

r̄i1...iN /(λb +

|Ω(n)
in
|), which entails ∂LBias

∂b
(n)
in

= 0. Hence,

arg min
b
(n)
in

LBias(A(1), ...,A(N),b(1), ...,b(N))

=
∑

(i1,...,iN)∈Ω
(n)
in

r̄i1...iN /(λb + |Ω(n)
in
|).

1.2 Pseudocodes
We present the pseudocodes of the SALS variants
described in Section 3.5 of the main paper.

1.2.1 SALS for Coupled Tensor Factorization
Algorithm 6 describes SALS for coupled tensor fac-
torization, where two tensors, denoted by X and Y,
share their first mode without loss of generality. We
denote the residual tensors for X and Y by xR and
yR, respectively. The lengths of the n-th modes of X

and Y are denoted by xIn and yIn, respectively.

Algorithm 6: SALS for Coupled Tensor Factorization
Input : X, Y, K, λ
Output: A(1), xA(n) for n = 2...Nx, yA(n) for n = 2...Ny

initialize xR, yR, A(1), xA(n) and yA(n) for all n ≥ 21
for outer iter = 1..Tout do2

for split iter = 1..dK
C
e do3

choose k1, ..., kC (from columns not updated yet)4
compute xR̂ and yR̂ using (8)5
for inner iter = 1..Tin do6

for i1 = 1..I1(= xI1 = yI1) do7

update a(1)
i1k1

, ..., a
(1)
i1kC

using (16)8

for n = 2..Nx do9
for in = 1..xIn do10

update xa
(n)
ink1

, ..., xa
(n)
inkC

using (9)11

for n = 2..Ny do12
for in = 1..yIn do13

update ya
(n)
ink1

, ..., ya
(n)
inkC

using (9)14

update xR and yR using (10)15

4

Algorithm 7: SALS for Bias Model
Input : X, K, λA, λb
Output: A(n) for all n, b(n) for all n, µ

compute µ (the mean of the observable entries of X)1
initialize R, A(n) for all n, and b(n) for all n2
for outer iter = 1..Tout do3

for split iter = 1..dK
C
e do4

choose k1, ..., kC (from columns not updated yet)5
compute R̂ using (8)6
for inner iter = 1..Tin do7

for n = 1..N do8
for in = 1..In do9

update a(n)
ink1

, ..., a
(n)
inkC

using (9)10

update R using (10)11

for n = 1..N do12
for in = 1..In do13

update b(n)
in

using (18)14
update R using (19)15

1.2.2 SALS for Bias Model
SALS for the bias model is described in Algorithm 7,
where each (i1, ..., iN)th entry of R is ri1...in =

xi1...iN −µ−
∑N

n=1 b
(n)
in
−
∑K

k=1

∏N
n=1 a

(n)
ink

, as explained
in Section 3.5.5 of the main paper.

2 OPTIMIZATION ON MAPREDUCE

In this section, we present the details of the optimiza-
tion techniques described in Section 4 of the main
paper.

2.1 Local Disk Caching
As explained in Section 4.1 of the main paper, in
our MAPREDUCE implementation of CDTF and SALS
with local disk caching, X entries are distributed
across machines and cached in their local disk during
the map and reduce stages. Algorithm 8 gives the
details of the map and reduce stages. The rest of
CDTF and SALS runs in the close stage (cleanup
stage in Hadoop) using the cached data.

2.2 Direct Communication
In the main paper, we introduce direct communi-
cation between reducers using distributed file sys-
tem to overcome the rigidity of MAPREDUCE model.
Algorithm 9 describes the implementation of ma

(n)
∗k

broadcast in CDTF (line 10 of Algorithm 3 in the main
paper) based on this communication method.

2.3 Greedy Row Assignment
Our MAPREDUCE implementation of SALS and
CDTF uses the greedy row assignment, explained
in Section 3.4.3 of the main paper. In this section,
we explain our MAPREDUCE implementation of the
greedy row assignment. We assume that X is stored

Algorithm 8: Data distribution in CDTF and SALS
with local disk caching

Input : X, mSn for all m and n
Output: mΩ(n) entries of R(= X) for all m and n

Map(Key k, Value v)1
begin2

((i1, ..., iN), xi1...iN) ← v3
for n = 1,...,N do4

find m where in ∈ mSn5
emit < (m,n), ((i1, ..., iN), xi1...iN) >6

end7

Partitioner(Key k, Value v)8
begin9

(m,n) ← k10
assign < k, v > to machine m11

end12

Reduce(Key k, Value v[1..|v|])13
begin14

(m,n) ← k15
create a file on the local disk to cache mΩ(n) entries of R16
foreach ((i1, ..., iN), xi1...iN) ∈ v do17

write ((i1, ..., iN), xi1...iN) to the file18

end19

Algorithm 9: ma
(n)
∗k broadcast in CDTF

Input : ma
(n)
∗k (parameters to broadcast)

Output: a
(n)
∗k (parameters received from others)

begin1
create a data file mA on the distributed file system (DFS)2

write ma
(n)
∗k on the datafile3

create a dummy file mD on DFS4
while not all data files are read do5

get the list of dummy files from DFS6
foreach m′D in the list do7

if m′A are not read then8

read m′a
(n)
∗k from m′A9

end10

on the distributed file system. At the first stage, |Ω(n)
in
|

for all n and in is computed. Specifically, mappers
output < (n, in), 1 > for all n for each entry xi1...iN ,
and reducers output < (n, in), |Ω(n)

in
| > for all n and

in by counting the number of values for each key.
At the second stage, the outputs are aggregated to a
single reducer which runs the rest of Algorithm 5 in
the main paper.

3 EXPERIMENTS

In this section, we design and conduct additional
experiments to answer the following questions:
• How do different numbers of inner iterations

(Tin) affect the convergence of SALS?
• How do different numbers of columns updated

at a time (C) affect the running time of SALS?

3.1 Experimental Settings
We ran experiments on a 20-node Hadoop cluster.
Each node had an Intel Xeon E3-1230 3.3GHz CPU.

5

(a) Netflix3 (C = 10) (b) Netflix3 (C = 20)

(c) Yahoo-music4 (C = 20) (d) Yahoo-music4 (C = 40)

Fig. 14: Effects of Tin (i.e., inner iterations) on the convergence of SALS when C (i.e., the number of columns updated
at a time) has large enough values. The effects of Tin on convergence speed and the quality of converged solutions are
marginal.

(a) Netflix3

(b) Yahoo-music4

Fig. 15: Effects of the number of columns updated at a
time (C) on the running time of SALS. Running time per
iteration decreased until C = 20, then started to increase.

The maximum heap size per reducer was set to 8GB.
Other experimental settings, including datasets and
parameter values (λ and K), were the same as those
in the main paper. The number of reducers was set
to 20. We used the root mean square error (RMSE)
on a held-out test set, which is commonly used in
recommender systems, to measure the accuracy, as in
the main paper.

3.2 Effects of the Number of Inner Iterations (i.e.,
Tin) on the Convergence of SALS
We compared the convergence properties of SALS
with different Tin values. Especially, we focused on
cases where C (i.e., the number of columns updated
at a time) has large enough values. The effect of Tin
when C is set to one and thus SALS is equivalent
to CDTF can be found in the main paper. As seen in
Figure 14, the effects of Tin on convergence speed and
the quality of converged solutions are neither distinct
nor consistent. When C is set to one, however, high
Tin values are preferred (see Section 5.7 of the main
paper for detailed experimental results).

3.3 Effects of the Number of Columns Updated at
a Time (i.e., C) on Running Time of SALS
We measured the running times per iteration in SALS,
as we increased C from 1 to K. As seen in Figure 15,
running time per iteration decreased until C = 20,
then started to increase. As C increases, the amount
of disk I/O declines since it depends on the number
of times that the entries of R or R̂ are streamed from
disk, which is inversely proportional to C. Conversely,
computational cost increases quadratically with re-
gard to C. At small C values, the decrease in the
amount of disk I/O was greater and leaded to a
downward trend of running time per iteration. The
opposite happened at large C values.

