Distributed Methods for High-dimensional and Large-scale Tensor Factorization

Kijung Shin

Dept. of Computer Science and Engineering

Seoul National University
Seoul, Republic of Korea
koreaskj @ snu.ac.kr

Abstract—Given a high-dimensional and large-scale tensor,
how can we decompose it into latent factors? Can we process
it on commodity computers with limited memory? These ques-
tions are closely related to recommendation systems exploiting
context information such as time and location. They require
tensor factorization methods scalable with both the dimension
and size of a tensor. In this paper, we propose two distributed
tensor factorization methods, SALS and CDTF. Both methods
are scalable with all aspects of data, and they show an
interesting trade-off between convergence speed and memory
requirements. SALS updates a subset of the columns of a factor
matrix at a time, and CDTF, a special case of SALS, updates
one column at a time. On our experiment, only our methods
factorize a 5-dimensional tensor with 1B observable entries,
10M mode length, and 1K rank, while all other state-of-the-
art methods fail. Moreover, our methods require several orders
of magnitude less memory than the competitors. We implement
our methods on MAPREDUCE with two widely applicable
optimization techniques: local disk caching and greedy row
assignment.

Keywords-Tensor factorization; Recommender system; Dis-
tributed computing; MapReduce

I. INTRODUCTION AND RELATED WORK

The recommendation problem can be viewed as complet-
ing a partially observable user-item matrix whose entries
are ratings. Matrix factorization (MF), which decomposes
the input matrix into a user factor matrix and an item factor
matrix so that their multiplication approximates the input
matrix, is one of the most widely used methods [2, 7, 14].
To handle web-scale data, efforts have been made to find
distributed ways for MF, including ALS [14], DSGD [4],
and CCD++ [12].

On the other hand, there have been attempts to improve
the accuracy of recommendation by using additional infor-
mation such as time and location. A straightforward way to
utilize such extra factors is to model rating data as a partially
observable tensor where additional dimensions correspond to
the extra factors. As in the matrix case, tensor factorization
(TF), which decomposes the input tensor into multiple factor
matrices and a core tensor, has been used [5, 9, 13].

As the dimension of web-scale recommendation problems
increases, a necessity for TF algorithms scalable with the
dimension as well as the size of data has arisen. A promising
way to find such algorithms is to extend distributed MF

U Kang
Dept. of Computer Science
KAIST
Dacejeon, Republic of Korea
ukang @cs.kaist.ac.kr

Table I: Summary of scalability results. The factors which each
method is scalable with are checked. Our proposed SALS and
CDTF are the only methods scalable with all the factors.

‘ CDTF SALS ALS PSGD FLEXIFACT
Dimension v v v v
Observations \/ v v v v
Mode Length v v v
Rank v v v
Machines v v v

algorithms to higher dimensions. However, the scalability
of existing methods including ALS [14], PSGD [8], and
FLEXIFACT [1] is limited as summarized in Table I.

In this paper, we propose SALS and CDTF, distributed
tensor factorization methods scalable with all aspects of data.
SALS updates a subset of the columns of a factor matrix at
a time, and CDTF, a special case of SALS, updates one col-
umn at a time. Our methods have distinct advantages: SALS
converges faster, and CDTF is more memory-efficient. They
can also be applied to any application handling large-scale
and partially observable tensors, including social network
analysis [3] and Web search [11].

The main contributions of our study are as follows:

o Algorithm. We propose two tensor factorization algo-
rithms: SALS and CDTF. Their distributed versions
are the only methods scalable with all the following
factors: the dimension and size of data; the number of
parameters; and the number of machines (Table I and
Table II).

« Optimization. We implement our methods on MAPRE-
DUCE with two novel optimization techniques: local
disk caching and greedy row assignment. They speed
up not only our methods (up to 98.2x) but also their
competitors (up to 5.9x) (Figure 6).

« Experiment. We empirically confirm the superior scal-
ability of our methods and their several orders of
magnitude less memory requirements than their com-
petitors. Only our methods analyze a 5-dimensional
tensor with 1B observable entries, 10M mode length,
and 1K rank, while all others fail (Figure 4(a)).

The binary codes of our methods and several datasets are
available at http://kdm kaist.ac.kr/sals. The rest of this paper

Table II: Summary of distributed tensor factorization algorithms. The performance bottlenecks which prevent each algorithm from handling
web-scale data are colored red. Only our proposed SALS and CDTF have no bottleneck. Communication complexity is measured by the
number of parameters that each machine exchanges with the others. For simplicity, we assume that workload of each algorithm is equally
distributed across machines, that the length of every mode is equal to I, and that T;, of SALS and CDTF is set to one.

Algorithm Computational complexity Communication complexity = Memory requirements Convergence speed
(per iteration) (per iteration)
CDTF O(|QIN2K/M) O(NIK) O(NI) Fast
SALS O(QINK(N + C)/M + NIKC? /M) O(NIK) O(NIC) Fastest
ALS [14] O(IQINK(N + K)/M + NIK?/M) O(NIK) O(NIK) Fastest
PSGD [8] O(IQINK/M) O(NIK) O(NIK) Slow
FLEXIFACT [1] O(|QNK/M) O(MN—2NIK) O(NIK/M) Fast
Table III: Table of symbols. weighted form has been successfully used in many rec-
Symbol Definition ommendation systems [2, 7, 14]. Details about PARAFAC
x input tensor (€ RI1 %12 XIn) decomposition can be found in [6].
N dimension of X Definition 1 (Tensor Factorization):
I, length of the nth mode of X Given an N-dimensional tensor X(€ RI1*f2XIn) with
A nth factor matrix (€ R7n > K) observable entries {x;,. iy|(i1,...,in) € Q}, the rank K
K rank of X . factorization of X is to find factor matrices {A(™) ¢
?n) set of indices of observable entries of X RI”XKH <n< N} which minimize the following loss
Q> subset of {2 whose nth mode’s index is equal to iy, function:

in

mSn set of rows of A (™) assigned to machine m

R residual tensor (€ R11XT2--XIn)

M number of machines (reducers on MAPREDUCE)
Tout number of outer iterations

Tin number of inner iterations

A regularization parameter

C number of parameters updated at a time

10 initial learning rate

is organized as follows. Section II presents preliminaries
for tensor factorization. Section III describes our proposed
SALS and CDTF. Section IV presents the optimization
techniques for them on MAPREDUCE. After providing ex-
perimental results in Section V, we conclude in Section VI.

II. PRELIMINARIES: TENSOR FACTORIZATION

In this section, we describe the preliminaries of tensor
factorization and its distributed algorithms.

A. Tensor and the Notations

A tensor is a multi-dimensional array which generalizes
a vector (1-dimensional tensor) and a matrix (2-dimensional
tensor) to higher dimensions. Like rows and columns in
a matrix, an /N-dimensional tensor has N modes whose
lengths are I; through I, respectively. We denote tensors
with variable dimension N by boldface Euler script letters,
e.g., X. Matrices and vectors are denoted by boldface capi-
tals, e.g., A, and boldface lowercases, e.g., a, respectively.
We denote the entry of a tensor by the symbolic name
of the tensor with its indices in subscript. For example,
the (i1,i2)th entry of A is denoted by a;,;,, and the
(i1,...,in)th entry of X is denoted by z;, ;. Table III
lists the symbols used in this paper.

B. Tensor Factorization

There are several ways to define tensor factorization,
and our definition is based on PARAFAC decomposition,
which is one of the most popular decomposition methods,
and nonzero squared loss with L2 regularization, whose

LAWY, . ANy =

K N 2 N)
> <a:N ->11 am) FA AL
(41, iN)EQ k=1n=1 n=1

Note that the loss function depends only on the observable
entries. Each factor matrix A (") corresponds to the latent
feature vectors of nth mode instances, and 25:1 Hﬁ;l aE:‘,)c

corresponds to the interaction between the features.

C. Distributed Methods for Tensor Factorization

Table II summarizes the performances of several ten-
sor factorization algorithms suitable for distributed envi-
ronments. Detailed explanation, including update rule and
complexity analysis of each method, can be found in [10].

III. PROPOSED METHODS

In this section, we propose subset alternating least square
(SALS) and coordinate descent for tensor factorization
(CDTF). They are scalable algorithms for tensor factoriza-
tion, which is essentially an optimization problem whose
loss function is (1) and parameters are the entries of factor
matrices, A1) through A(Y). Figure 1 depicts the difference
among CDTF, SALS, and ALS. Unlike ALS, which up-
dates each K columns of factor matrices row by row, SALS
updates each C (1 < C < K) columns row by row, and
CDTF updates each column entry by entry. CDTF can be
seen as an extension of CCD++ [12] to higher dimensions.
Since SALS contains CDTF (C' = 1) as well as ALS
(T;, = 1,C = K) as a special case, we focus on SALS
and additionally explain optimization schemes for CDTF.

A. Update Rule and Update Sequence

Algorithm 1 describes the procedure of SALS. R de-
notes the residual tensor where r;, ;, =
ST, al(.:,)c. We initialize the entries of A™) to zeros
and those of all other factor matrices to random values
so that the initial value of R is equal to X (line 1). In

xllzN -

1 C K
[—— —_—
| E= INEEEE
Fixed Fixed
A A AM™
(a) CDTF (b) SALS (c) ALS

Figure 1: Update rules of CDTF, SALS, and ALS. CDTF updates
each column of factor matrices entry by entry, SALS updates each
C (1 £ C < K) columns row by row, and ALS updates each K
columns row by row.

Algorithm 1: Serial version of SALS

Input : X, K, A
Output: A™ for all n

1 initialize R and A™ for all n
2 for outer iter = 1.. Tyt do
3 for split iter = 1.[%] do
choose ki, ..., k¢ (from columns not updated yet)
compute R
for inner iter = 1..T;, do
for n = 1.N do
L for i, = 1..1,, do

L update ai"}cl . aZ(:LC

o NS A

using (2)

10 | update R using (3)

every iteration (line 2), SALS repeats choosing C' columns,
ki through ko, randomly without replacement (line 4)
and updating them while keeping the other columns fixed,
which is equivalent to the rank C factorization of R where
Tiyoine = Tiy.oiin +ZC 1 H” 1 a(") Once R is computed
(line 5), updating C' columns of factor matrices matrix by
matrix (line 7) is repeated T;, times (line 6). For each
factor matrix, since its rows are independent of each other
in minimizing (1) when the other factor matrices are fixed,
the entries are updated row by row (line 8) as follows:

[a,E:Ll, e aEZ}CC}T +— argmin LAW, . AW
@™ g T
1nk1 @ inkc
= (B +Ale) e,)

where the (cy,cz)th entry of BE:)(E RE*CY s

Z ((l) (l))
Zl/%l ZH%Q ’
(i1,ees iN)EQ(.") l#n l#n

the cth entry of cgf)(e RY) is

> (fil...iN HGEELC>)

l#n

and I¢ is a C' by C' identity matrix. Q(™) denotes the subset
of 2 whose nth mode’s index is equal to in. The proof of this
update rule can be found in [10]. Since BZ(-H) is symmetric,
Cholesky decomposition can be used for its inversion. After
this rank C' factorization, the entries of R are updated by

the following rule (line 10):

Slan. o

c=1n=1

Tiy.in S Tipoiny —

In CDTF, instead of computing R before rank one
factorization, containing the computation in (2) and (3)
results in better performance on a disk-based system like
MAPREDUCE by significantly reducing disk I/O operations.
Moreover, updating columns in a fixed order instead of
choosing them randomly converges faster in CDTF in our
experiments.

B. Complexity Analysis

Theorem 1: The computational complexity of A Agorlthm
1is O(Out|Q|NTmK(N +C)+ TouTinKC?* Y, _ I,).

Proof: Computing R (line 5) and updating R (lme 10)
take O(|Q|N C) Updating C' parameters using (2) (line 9)
takes O(|Q |C(C’ + N) + C3), which consists of

(|QZ(-:)|NC’) to calculate [, agfzcl through [T,,,, al(f?cc
for all the entries in |Q\£:), O(|Q§:)|CQ) to build BEZ)’
O(|Q§Z)|C) to build cz(-:), and O(C?) to invert Bz(-:). See
the full proof in [10]. . om

Theorem 2: The memory requirement of Algorithm 1 is
O(C YN 1.

Proof: All the computation including R computation
(line 5), rank C' factorization (lines 7 through 9), and R up-
date (line 10) can be performed by loading only (k1, ..., k¢)
columns of factor matrices into memory and streaming the
entries of R and R from disk. Thus, SALS only needs to
load C' columns of factor matrices, the number of whose
entries is O(C E I,,), into memory by turns depending
on (ki,....,kc) values See the full proof in [10]. [|

C. Parallelization in Distributed Environments

In this section, we describe how to parallelize SALS
in distributed environments such as MAPREDUCE where
machines do not share memory. Algorithm 2 depicts the
distributed version of SALS.

Since update rule (2) for each row (C parameters) of a fac-
tor matrix does not depend on the other rows in the matrix,
rows in a factor matrix can be distributed across machines
and updated simultaneously without affecting the correctness
of SALS. Each machine m updates ,,S, rows of A(")
(line 10), and for this, the ,,Q = J_, (Uinem 5 Q§:>>
entries of X are distributed to machine m 1n the first stage
of the algorithm (line 1). Figure 2 shows an example of work
and data distribution in SALS.

After the update, parameters updated by each machine are
broadcasted to all other machines (line 11). Each machine m
broadcasts C|,,,.S,,| parameters and receives C(I,, — |1 Snl|)
parameters from the other machines after each update. The
total number of parameters each machine exchanges with

the other machines is KT}, Zn 1 In, per outer iteration.

Algorithm 2: Distributed version of SALS

Algorithm 3: Greedy row assignment in SALS

Input : X, K, A\, ,.S, for all m and n
Output: A™ for all n

1 distribute the ,,,€) entries of X to each machine m
2 Parallel (P): initialize the ,,,<2 entries of R

3 P: initialize A™ for all n

4 for outer iter = 1.. T,y do

5 for split iter = 1.[£] do

6 choose ki, ..., k¢ (from columns not updated yet)

7 P: compute ,,,€) entries of R

8 for inner iter = 1..T;,, do

9 for n = 1.N do

10 P: update {a(”) lin €mSn,1 < e <0}
using (2)

1 P: broadcast {aEZ}cc\in € mSn,1<c<C}

12 | P: update the mS) entries of R using (3)

X

AWM [] (T HE B ([T
(a) Machine 1 (b) Machine 2 (c¢) Machine 3 (d) Machine 4

Figure 2: Work and data distribution of SALS in distributed
environments with a 3-dimensional tensor and 4 machines. We
assume that the rows of the factor matrices are assigned to the
machines sequentially. The colored region of A (") (the transpose
of A™) in each sub-figure corresponds to the parameters updated
by each machine, resp., and that of X corresponds to the data
distributed to each machine.

The running time of parallel steps in Algorithm 2 depends
on the longest running time among all machines. Specifi-
cally, the runnmg time of lines 7, 10 and 12 is roportional
to max,, |, Q™| where ,, Q") = Ui e.s, Z" , and that
of line 11 is proportional to max,, |,»Sy,|. Therefore, it
is necessary to assign the rows of the factor matrices to
the machines (i.e., to decide ,,S,) so that |,,Q(™| and
|mSr| are even among all the machines. The greedy assign-
ment algorithm described in Algorithm 3 aims to minimize
max,, \mQ(”)| under the condition that max,, |,,S,| is
minimized (.e., |, Sn| = I,/M for all n where M is
the number of machines). For each factor matrlx A we
sort its rows in the decreasing order of |Q | and assign
the rows one by one to the machine m which satisfies
lmSn| < [I,/M] and has the smallest |,,, 2| currently.
The effects of this greedy row assignment on actual running
times are described in Section V-E.

IV. OPTIMIZATION ON MAPREDUCE

In this section, we describe two optimization techniques
used to implement SALS and CDTF on MAPREDUCE,
which is one of the most widely used distributed platforms.

Input : X, M
Output: ,,S,, for all m and n
1 initialize || to O for all m
2 forn = 1.N do
3 initialize ,, Sy, to @) for all m
initialize |,, Q™| to 0 for all m
calculate |Q§:)| for all 4,
foreach i, (in decreasing order of |Q<") |) do
find m with [,,S,| < [£2] and the smallest |,, ™|
(in case of a tie, choose the mdchme with smaller |, Sh|,

and if still a tie, choose the one with smaller |mQ\)
9 add 7, to . Sh

10 add |20™] to |, Q] and |, Q|

IS I N I N

A. Local Disk Caching

Typical MAPREDUCE implementations (e.g., one de-
scribed in [10]) repeat distributing data from a distributed
file system to machines at every iteration. This repetition is
inefficient for SALS and CDTF due to their highly iterative
nature. SALS and CDTF require R (or fjl) to be distributed
Tout K(T;, N + 2)/C times and T, K (T3 N + 1) times,
respectively. Our implementation reduces this inefficiency
by caching data to local disk once they are distributed. Our
implementation streams the cached data, mQ(”) entries of
R for example, from the local disk instead of distributing
entire R from the distributed file system when updating the
columns of A(™). The effect of this local disk caching on
actual running time is described in Section V-E.

B. Direct Communication

In MAPREDUCE, it is generally assumed that reducers run
independently and do not communicate directly with each
other. However, we adapt the direct communication method
using the distributed file system in [1] to broadcast parame-
ters among reducers efficiently. Our method is described in
detail in [10].

V. EXPERIMENTS
A. Experimental Settings

We run experiments on a 40-node Hadoop cluster. Each
node has an Intel Xeon E5620 2.4GHz CPU. The maximum
heap memory size per reducer is set to 8GB. The real-world
tensors and the synthetic tensors used in our experiments
are summarized in Table IV and Table V. Most of them
are available at http://kdm kaist.ac.kr/sals and explained in
detail in [10]. All methods in Table II are implemented
using Java with Hadoop 1.0.3. Local disk caching, direct
communication, and greedy row assignment are applied to
all the methods if possible. All our implementations use
weighted-\-regularization [14]. For SALS and CDTF, T3,
is set to 1, and C is set to 10, unless otherwise stated. The
learning rate of FLEXIFACT and PSGD at ¢th iteration is set
to 2n0/(1+t), which follows the open-sourced FLEXIFACT

N
S

]
S
[
>
=
(2]

ALS
FlexiFaCT
PSGD

0

15}

®
S

S
S

Running time / iter (min)
@D
3

200 400 600 800 1000
Number of obsevations (million)

Dimension

(a) Dimension (b) Number of observations

@
S

CDTF ——
SALS &
ALS

m
o
S

FlexiFaCT
40 PSGD v

Running time / iter (mi
n w
S &

=)

200 400 600 800 1000
Mode length (million) Rank

(c) Mode length (d) Rank

Figure 3: Scalability on each aspect of data. 0.0.m. : out of memory. Only SALS and CDTF scale with all the aspects.

Table IV: Summary of real-world datasets.

\ Movielensy Netflixs Yahoo-musicy
N 4 3 4
I 715,670 2,649,429 1,000,990
Is 65,133 17,770 624,961
I3 169 74 133
Iy 24 - 24
1 93,012,740 99,072,112 252,800,275
K 20 40 80
A 0.01 0.02 1.0
Mo 0.01 0.01 10~® (FLEXIFACT)

10— (PSGD)

Table V: Scale of synthetic datasets. B: billion, M: million, K:
thousand. The length of every mode is equal to 1.

| S1 S2 (default) S3 S4

N 2 3 4 5
1 300K IM 3M 10M
] | 30M 100M 300M 1B
K 30 100 300 1K

implementation (http://alexbeutel.com/l/flexifact/). The num-
ber of reducers is set to 5 for FLEXIFACT, 20 for PSGD,
and 40 for the others, each of which leads to the best
performance on the machine scalability test in Section V-C,
unless otherwise stated.

B. Data Scalability

1) Scalability on Each Factor (Figure 3): We measure the
scalability of CDTF, SALS, and the competitors with regard
to the dimension, number of observations, mode length, and
rank of an input tensor. When measuring the scalability with
regard to a factor, the factor is scaled up from S1 to S4
while all other factors are fixed at S2 as summarized in
Table V. As seen in Figure 3(a), FLEXIFACT does not scale
with dimension because of its communication cost, which
increases exponentially with dimension. ALS and PSGD
are not scalable with mode length and rank due to their
high memory requirements as Figures 3(c) and 3(d) show.
They require up to 11.2GB, which is 48x of 234MB that
CDTF requires and 10x of 1,147MB that SALS requires.
Moreover, the running time of ALS increases rapidly with
rank owing to its cubically increasing computational cost.
Only SALS and CDTF are scalable with all the factors as
summarized in Table I. Their running times increase linearly
with all the factors except dimension, with which they
increase slightly faster due to the quadratically increasing
computational cost.

6

= 108 4 CDTF ——
£ 10 0.0m 5 SALS &
E X = ALS
g 10? 24| FlexiFaCT —x
= =g g PSGD -
5 =
£ 10 CDTF —o— %3
= o= SALS & B)
£ #0.0.m X ALS 13 4 N
s FlexiFaCT(M=5) @ 4 - e
2 FlexiFaCT(M=40) X
PSGD v 0 %
s2 s3 sS4 0 5 10 15 20 25 30 35 40
Scale Number of reducers

(a) Overall scalability (b) Machine scalability

Figure 4: (a) Overall scalability. 0.0.m. : out of memory, o.o.t. :
out of time (takes more than a week). Only SALS and CDTF scale
up to the largest scale S4. (b) Machine scalability. Computations
of SALS and CDTF are efficiently distributed across machines.

2) Overall Scalability (Figure 4(a)): We measure the
scalability of the methods by scaling up all the factors
together from S1 to S4. The scalability of ALS and PSGD,
and FLEXIFACT with 5 machines is limited owing to
their high memory requirements. ALS and PSGD require
almost 186GB to handle S4, which is 493 x of 387MB that
CDTF requires and 100x of 1,912MB that SALS requires.
FLEXIFACT with 40 machines does not scale over S2 due to
its rapidly increasing communication cost. Only SALS and
CDTF scale up to S4, and there is a trade-off between them:
SALS runs faster, and CDTF is more memory-efficient.

C. Machine Scalability (Figure 4(b))

We measure the speed-ups (T5/Tas where Ty is the
running time with M reducers) of the methods on the S2
scale dataset by increasing the number of reducers. The
speed-ups of CDTF, SALS, and ALS increase linearly at
the beginning and then flatten out slowly owing to their
fixed communication cost which does not depend on the
number of reducers. The speed-up of PSGD flattens out
fast, and PSGD even slightly slows down in 40 reducers
because of increased overhead. FLEXIFACT slows down
as the number of reducers increases because of its rapidly
increasing communication cost.

D. Convergence (Figure 5)

We compare how quickly and accurately each method
factorizes real-world tensors. Accuracies are calculated at
each iteration by root mean square error (RMSE) on a
held-out test set, which is a measure commonly used by
recommendation systems. Table IV describes K, A, and
no values used for each dataset. They are determined by
cross validation. Owing to the non-convexity of (1), each

CDTF(T;=5) —o— ol CDTF(T;=5) ——
SALS - | SALS B
1.1 ALS ALS
w < FF - x wae FF - x
2 v, PSGD -+ 2 PSGD ---v--
£ 1050 T g g |
? Xy VVVVIIVIeev Y| B30 %
L DROOONH i, ©
1 Xt g ORE
0 X % X%
0.95 e e BEEGBDBEBEBDBB\BQBEBB@
0 5 10 15 20 25 30 35 0 20 40 60 80 100 120 140

Elapsed time (min)

(a) Netflixs

Elapsed time (min)
(b) Yahoo-musicy
Figure 5: Convergence speed on real-world datasets. SALS is

comparable with ALS, which converges fastest to the best solution,
and CDTF follows them.

600 (14480 1600 2000

43680 4822

NC+SEQ s

1500

1000

500

Running time / iter (sec)
Running time / iter (sec)

0 CDTF SALS ALS FlexiFaCT PSGD

O “CDTF sALs
(a) Netflixs

ALS FlexiFaCT PSGD
(b) Yahoo-musicy4

Figure 6: Effects of optimization techniques on running times.
NC: no caching, LC: local disk caching, SEQ: sequential row
assignment', RAN: random row assignment, GRE: greedy row

assignment. Our proposed optimization techniques (LC+GRE) sig-
nificantly accelerate CDTF, SALS, and also their competitors.

algorithm may converge to local minima with different
accuracies. In all datasets (results on the Movielens, dataset
are omitted for space reasons), SALS is comparable with
ALS, which converges the fastest to the best solution, and
CDTF follows them. PSGD converges the slowest to the
worst solution due to the non-identifiability of (1) [4]. Extra
experiments regarding the effect of C' and T;,, values on the
convergence of SALS and CDTF are described in [10].

E. Optimization (Figure 6)

We measure how our proposed optimization techniques,
local disk caching and greedy row assignment, affect the
running time of CDTF, SALS, and the competitors on real-
world datasets. The direct communication method explained
in Section IV-B is applied to all the implementations if
necessary. Local disk caching speeds up CDTF up to 65.7x,
SALS up to 15.5%, and the competitors up to 4.8x. The
speed-ups of SALS and CDTF are the most significant
because of the highly iterative nature of SALS and CDTF.
Additionally, greedy row assignment speeds up CDTF up
to 1.5x; SALS up to 1.3x; and the competitors up to 1.2x
compared with the second best one. It is not applicable to
PSGD, which does not distribute parameters row by row.

VI. CONCLUSION

In this paper, we propose SALS and CDTF, distributed
algorithms for high-dimensional and large-scale tensor fac-
torization. They are scalable with all aspects of data (di-
mension, the number of observable entries, mode length, and

VS = {in € N|I2Xlm=D) o < Inxmy

rank) and show a trade-off: SALS has an advantage in terms
of convergence speed, and CDTF has one in terms of mem-
ory usage. Local disk caching and greedy row assignment,
two proposed optimization schemes, significantly accelerate
not only SALS and CDTF but also their competitors.

ACKNOWLEDGMENTS

This work was supported by AFOSR/AOARD under the
Grant No. FA2386-14-1-4036, and by the National Research
Foundation of Korea (NRF) Grant funded by the Korean
Government (MSIP) (No. 2013R1A1A1064409)

REFERENCES

[1] A. Beutel, A. Kumar, E. E. Papalexakis, P. P. Talukdar,
C. Faloutsos, and E. P. Xing. Flexifact: Scalable flexible
factorization of coupled tensors on hadoop. In SDM, 2014.

[2] P-L. Chen, C.-T. Tsai, Y.-N. Chen, K.-C. Chou, C.-L. Li, C.-
H. Tsai, K.-W. Wu, Y.-C. Chou, C.-Y. Li, W.-S. Lin, et al. A
linear ensemble of individual and blended models for music
rating prediction. KDDCup 2011 Workshop, 2011.

[3] D. M. Dunlavy, T. G. Kolda, and E. Acar. Temporal link
prediction using matrix and tensor factorizations. ACM
TKDD, 5(2):10, 2011.

[4] R. Gemulla, E. Nijkamp, P. Haas, and Y. Sismanis. Large-
scale matrix factorization with distributed stochastic gradient
descent. In KDD, 2011.

[5] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver.
Multiverse recommendation: N-dimensional tensor factoriza-
tion for context-aware collaborative filtering. In RecSys, 2010.

[6] T. Kolda and B. Bader. Tensor decompositions and applica-
tions. SIAM review, 51(3), 2009.

[7] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30-
37, 2009.

[8] R. McDonald, K. Hall, and G. Mann. Distributed training
strategies for the structured perceptron. In HLT-NAACL, 2010.

[91 A. Nanopoulos, D. Rafailidis, P. Symeonidis, and
Y. Manolopoulos. Musicbox: Personalized music
recommendation based on cubic analysis of social tags.
IEEE TASLP, 18(2):407-412, 2010.

[10] K. Shin and U. Kang. Distributed methods for high-
dimensional and large-scale tensor factorization. arXiv
preprint arXiv:1410.5209, 2014.

[11] J.-T. Sun, H.-J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: a
novel approach to personalized web search. In WWW, 2005.

[12] C.-J. H. S. S. Yu, Hsiang-Fu and L. S. Dhillon. Parallel matrix
factorization for recommender systems. Knowl. Inf. Syst.,
pages 1-27, 2013.

[13] V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang.
Collaborative filtering meets mobile recommendation: A user-
centered approach. In AAAI, 2010.

[14] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale
parallel collaborative filtering for the netflix prize. In AAIM,
pages 337-348. 2008.

