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ABSTRACT
Given a large graph, how can we calculate the relevance be-
tween nodes fast and accurately? Random walk with restart
(RWR) provides a good measure for this purpose and has
been applied to diverse data mining applications including
ranking, community detection, link prediction, and anomaly
detection. Since calculating RWR from scratch takes long,
various preprocessing methods, most of which are related to
inverting adjacency matrices, have been proposed to speed
up the calculation. However, these methods do not scale to
large graphs because they usually produce large and dense
matrices which do not fit into memory.

In this paper, we propose BEAR, a fast, scalable, and ac-
curate method for computing RWR on large graphs. BEAR
comprises the preprocessing step and the query step. In the
preprocessing step, BEAR reorders the adjacency matrix of
a given graph so that it contains a large and easy-to-invert
submatrix, and precomputes several matrices including the
Schur complement of the submatrix. In the query step,
BEAR computes the RWR scores for a given query node
quickly using a block elimination approach with the matri-
ces computed in the preprocessing step. Through extensive
experiments, we show that BEAR significantly outperforms
other state-of-the-art methods in terms of preprocessing and
query speed, space efficiency, and accuracy.
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Data Mining
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1. INTRODUCTION
Measuring the relevance (proximity) between nodes in a

graph becomes the base for various data mining tasks [3, 6,
19, 21, 29, 39, 41, 40, 43, 46] and has received much inter-
est from the database research community [5, 13, 16, 44].
Among many methods [1, 22, 31, 34] to compute the rele-
vance, random walk with restart (RWR) [34] has been popu-
lar due to its ability to account for the global network struc-
ture [21] and the multi-faceted relationship between nodes
[40]. RWR has been used in many data mining applications
including ranking [42], community detection [3, 19, 43, 46],
link prediction [6], and anomaly detection [39].

However, existing methods for computing RWR are un-
satisfactory in terms of speed, accuracy, functionality, or
scalability. The iterative method, which naturally follows
from the definition of RWR is not fast: it requires repeated
matrix-vector multiplications whose computational cost is
not acceptable in real world applications where RWR scores
for different query nodes need to be computed. Several ap-
proximate methods [3, 18, 39, 42] have also been proposed;
however, their accuracies or speed-ups are unsatisfactory.
Although top-k methods [16, 44] improve efficiency by fo-
cusing on finding the k most relevant nodes and ignoring
irrelevant ones, finding top-k is insufficient for many data
mining applications [3, 6, 18, 21, 39, 41, 43, 46] which require
the relevance scores of all nodes or the least relevant nodes.
Existing preprocessing methods [16, 17], which achieve bet-
ter performance by preprocessing the given graph, are not
scalable due to their high memory requirements.

In this paper, we propose BEAR, a fast, scalable, and ac-
curate method for computing RWR on large graphs. BEAR
comprises two steps: the preprocessing step and the query
step. In the preprocessing step, BEAR reorders the adja-
cency matrix of a given graph so that it contains a large and
easy-to-invert submatrix, and precomputes several matrices
including the Schur complement [10] of the submatrix. In
the query step, BEAR computes the RWR scores for a given
query node quickly using a block elimination approach with
the matrices computed in the preprocessing step. BEAR
has two versions: an exact method BEAR-Exact and an
approximate method BEAR-Approx. The former provides
accuracy assurance; the latter gives faster query speed and
requires less space by allowing small accuracy loss.

Through extensive experiments with various real-world
datasets, we demonstrate the superiority of BEAR over
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Figure 1: Performance of BEAR. (a) and (b) compare exact methods, while (c) compares approximate methods. In (a) and (b), bars
are omitted if and only if the corresponding experiments run out of memory. (a) In the preprocessing phase, BEAR-Exact is the fastest
and the most scalable among all preprocessing methods. (b) BEAR-Exact is the fastest in the query phase except for the smallest
Routing dataset. Due to its up to 300× faster query speed, BEAR-Exact outperforms the iterative method, despite the preprocessing
cost, when RWR scores for different query nodes are required. (c) BEAR-Approx achieves both space efficiency and accuracy. Details
of these experiments are explained in Section 4.

other state-of-the-art methods as seen in Figure 1. We also
discuss how our method can be applied to other random-
walk-based measures such as personalized PageRank [33],
effective importance [9], and RWR with normalized graph
Laplacian [42]. The main characteristics of our method are
the followings:

• Fast. BEAR-Exact is faster up to 8× in the query
phase and up to 12× in the preprocessing phase than
other exact methods (Figures 1(a) and 1(b)); BEAR-
Approx achieves a better time/accuracy trade-off in
the query phase than other approximate methods (Fig-
ure 8(a)).
• Space-efficient. Compared with their respective com-

petitors, BEAR-Exact requires up to 22× less mem-
ory space (Figure 5), and BEAR-Approx provides a
better space/accuracy trade-off (Figure 1(c)).
• Accurate. BEAR-Exact guarantees exactness (The-

orem 1); BEAR-Approx enjoys a better trade-off be-
tween accuracy, time, and space than other approxi-
mate methods (Figure 8).
• Versatile. BEAR can be applied to diverse RWR

variants, including personalized PageRank, effective
importance, and RWR with normalized graph Lapla-
cian (Section 3.4).

The binary code of our method and several datasets are
available at http://kdmlab.org/bear. The rest of the pa-
per is organized as follows. Section 2 presents preliminaries
on RWR. Our proposed BEAR is described in Section 3 fol-
lowed by experimental results in Section 4. After providing
a review on related work in Section 5, we make conclusion
in Section 6.

2. PRELIMINARIES
In this section, we describe the preliminaries on random

walk with restart and its algorithms. Table 1 lists the sym-
bols used in this paper. We denote matrices by boldface
capitals, e.g., A, and vectors by boldface lowercases, e.g., q.

2.1 Random Walk with Restart
Random walk with restart (RWR) [42] measures each node’s

relevance w.r.t. a given seed node s in a given graph. It as-
sumes a random surfer who occasionally gets bored with
following the edges in the graph and restarts at node s. The

Table 1: Table of symbols.

Symbol Definition

G input graph
n number of nodes in G
m number of edges in G
n1 number of spokes in G
n2 number of hubs in G
n1i number of nodes in the ith diagonal block of H11

b number of diagonal blocks in H11

s seed node (=query node)
c restart probability
ξ drop tolerance

Ã (n× n) row-normalized adjacency matrix of G

H (n× n) H = I− (1− c)ÃT

Hij (ni × nj) (i, j)th partition of H
S (n2 × n2) Schur complement of H11

L1,U1 (n1 × n1) LU-decomposed matrices of H11

L2,U2 (n2 × n2) LU-decomposed matrices of S
q (n× 1) starting vector
qi (ni × 1) ith partition of q
r (n× 1) relevance vector
ri (ni × 1) ith partition of r
T number of SlashBurn iterations
k number of hubs removed at a time in SlashBurn
t rank in B LIN and NB LIN
ε threshold to stop iteration in iterative methods
εb threshold to expand nodes in RPPR and BRPPR

surfer starts at node s, and at each current node, either
restarts at node s (with probability c) or moves to a neigh-
boring node along an edge (with probability 1−c). The prob-
ability that each edge is chosen is proportional to its weight
in the adjacency matrix. Ã denotes the row-normalized ad-
jacency matrix, whose (u, v)th entry is the probability that
a surfer at node u chooses the edge to node v among all
edges from node u. The stationary probability of being at
each node corresponds to its RWR score w.r.t. node s, and
is denoted by r, whose uth entry corresponds to node u’s
RWR score. The vector r satisfies the following equation:

r = (1− c)ÃTr + cq (1)

where q is the starting vector with the index of the seed
node s is set to 1 and others to 0. It can be obtained by
solving the following linear equation:

(I− (1− c)ÃT)r = cq

⇔ Hr = cq. (2)



Inversion: QR decomposition: LU decomposition:
(Exact, #nz=527, 299, 369) (Exact, #nz=427, 905, 676) (Exact, #nz=10, 202, 094)

(a) H−1 (b) QT(= Q−1) (c) R−1 (d) L−1 (e) U−1

B LIN: NB LIN: BEAR-Exact:
(Approx, #nz=8,203,604) (Approx, #nz=2,756,342) (Exact, #nz=430, 388)

(f) A−1
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Figure 2: Sparsity patterns of the matrices resulted from different preprocessing methods on the Routing dataset (see Section 4.1 for
the details of the dataset). Exact: exact method, Approx: approximate method, #nz: number of non-zero elements in the precomputed
matrices. For B LIN and NB LIN, rank t is set to 500 and drop tolerance ξ is set to 0. Precomputed matrices are loaded into memory to
speed up the query phase; for the reason, the number of non-zero entries in them determines the memory usage of each method and thus
its scalability. Our exact method BEAR-Exact produces the smallest number of non-zero entries than all other methods including the
approximate methods (1200× than Inversion and 6× than the second best method). Our approximate method BEAR-Approx further
decreases the number of non-zero entries, depending on drop tolerance ξ.

Personalized PageRank. Personalized PageRank (PPR)
[33] is an extension of RWR. PPR calculates the relevance of
nodes according to the preference of each user, and is widely
used for personalized search. A random surfer in PPR ei-
ther jumps to a random node according to the probability
distribution (user preference distribution) given by q (with
probability c) or moves to a neighboring node (with proba-
bility 1− c). PPR can be viewed as a generalized version of
RWR with multiple seed nodes. Equations (1) and (2) can
be directly applied to PPR with the modified q.

2.2 Algorithms for RWR
We review two basic methods for RWR computation and

four recent methods for addressing the limitations of the
basic methods. We also point out a need for improvement
which we will address in the following section. Since most
applications require RWR scores for different seed nodes,
whether at once or on demand, we separate the preprocess-
ing phase, which occurs once, from the query phase, which
occurs for each seed node.

Iterative method. The iterative method repeats updat-
ing r until convergence (|r(i) − r(i−1)| < ε) by the following
update rule:

r(i) ← (1− c)ÃTr(i−1) + cq (3)

where the superscript i denotes the iteration number. If
0 < c < 1 , r(i) is guaranteed to converge to a unique solution
[27]. This method does not require preprocessing (one-time
cost) but has expensive query cost which incurs a repeated
matrix-vector multiplication. Thus, it is inefficient when
RWR scores for many query nodes are required.

RPPR / BRPPR. Gleich et al. [18] propose restricted
personalized PageRank (RPPR), which speeds up the iter-

ative method by accessing only a part of a graph. This al-
gorithm uses Equation 3 only for a subgraph and the nodes
contained in it. The subgraph is initialized to a given seed
node and grows as iteration proceeds. A node contained in
the subgraph is on the boundary if its outgoing edges (in
the original graph) are not contained in the subgraph, and
the outgoing edges and outgoing neighbors of the node are
added to the subgraph if the RWR score of the node (in the
current iteration) is greater than a threshold εb. The algo-
rithm repeats iterations until RWR scores converge. The
RWR scores of nodes outside the subgraph are set to zero.
Boundary-restricted personalized PageRank (BRPPR) [18]
is a variant of the RPPR. It expands nodes on the bound-
ary in decreasing order of their RWR scores (in the current
iteration) until the sum of the RWR scores of nodes on the
boundary becomes less than a threshold εb. Although these
methods reduce the query cost of the iterative method sig-
nificantly, they do not guarantee exactness.

Inversion. An algebraic method directly calculates r
from Equation (2) as follows:

r = c(I− (1− c)ÃT)−1q = cH−1q. (4)

The matrix H is known to be invertible when 0 < c < 1
[27]. Once H−1 is computed in the preprocessing phase,
r can be obtained efficiently in the query phase. However,
this is again impractical for large graphs because calculating
H−1 is computationally expensive and H−1 is usually too
dense to fit into memory as seen in Figure 2(a).

QR decomposition. To avoid the problem regarding
H−1, Fujiwara et al. [17] decompose H using QR decompo-
sition, and then use QT(= Q−1) and R−1 instead of H−1

as follows:

r = cH−1q = cR−1(QTq)



where H = QR. They also propose a reordering rule for H
which makes QT and R−1 sparser. However, on the most
datasets used in our experiments, QR decomposition results
in dense matrices as shown in Figures 2(b) and 2(c); thus, its
scalability is limited. This fact agrees with the claim made
by Boyd et al. [10] that it is difficult to exploit sparsity in
QR decomposition.

LU decomposition. To replace H−1, Fujiwara et al.
[16] also exploit LU decomposition using the following rule:

r = cH−1q = cU−1(L−1q)

where H = LU. Prior to the decomposition, H is reordered
based on nodes’ degrees and community structure. This
makes matrices L−1 and U−1 sparser as seen in Figures
2(d) and 2(e). We incorporate their idea into our method
to replace inverse terms, which will be explained in detail in
Section 3.

B LIN / NB LIN. Tong et al. [42] partition a given

graph and divide ÃT into A1 (inner-partition edges) and
A2 (cross-partition edges). Then, they use a heuristic de-
composition method with given rank t to approximate A2

with low-rank matrix UΣV where U, Σ, and V are n × t,
t × t, and t × n matrices, respectively. In the query phase,
they apply Sherman-Morrison lemma [35] to efficiently cal-
culate r as follows:

r = c(I− (1− c)ÃT)−1q

≈ c(I− (1− c)A1 − (1− c)UΣV)−1q

= c(A−1
1 q + (1− c)A−1

1 UΛ̃VA−1
1 q)

where Λ̃ = (Σ−1 − cVA−1
1 U)−1. To sparsify the precom-

puted matrices, near-zero entries whose absolute value is
smaller than ξ are dropped. This method is called B LIN,
and its variant NB LIN directly approximates ÃT without
partitioning it. Both methods do not guarantee exactness.

As summarized in Figure 2, previous preprocessing meth-
ods require too much space for preprocessed data or do not
guarantee accuracy. Our proposed BEAR, explained in the
following section, achieves both space efficiency and accu-
racy as seen in Figures 2(i) through 2(k).

3. PROPOSED METHOD
In this section, we describe BEAR, our proposed method

for fast, scalable, and accurate RWR computation. BEAR
has two versions: BEAR-Exact for exact RWR, and BEAR-
Approx for approximate RWR. BEAR-Exact guarantees
accuracy, while BEAR-Approx improves speed and space
efficiency by sacrificing little accuracy. A pictorial descrip-
tion of BEAR is provided in Figure 3. BEAR exploits the
following ideas:

• The adjacency matrix of real-world graphs can be re-
ordered so that it has a large but easy-to-invert sub-
matrix, such as a block-diagonal matrix as shown in
the upper left part of Figure 4(b).
• A linear equation like Equation (2) is easily solved by

block elimination using Schur complement if the ma-
trix contains a large and easy-to-invert submatrix such
as a block-diagonal one.
• Compared with directly inverting an adjacency matrix,

inverting its LU-decomposed matrices is more efficient
in terms of time and space.
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Figure 3: A pictorial description of BEAR. The output ma-
trices of the preprocessing phase are red-bordered. (1) Reorder
nodes so that the adjacency matrix has a large block-diagonal
submatrix (the blue-bordered one). (2) Partition H into four
blocks so that H11 corresponds to the submatrix. (3) Compute
the Schur complement S of H11. (4) Since S−1 and the diagonal

blocks of H−1
11 are likely to be dense, store the inverse of the LU

decomposed matrices of S and H11 instead to save space. Notice
that these can be computed efficiently in terms of time and space
because S and the diagonal blocks of H11 are relatively small
compared with H. (5) Compute the RWR score vector r for a
query vector q (the concatenation of q1 and q2) fast by utilizing
the precomputed matrices.

Algorithms 1 and 2 represent the procedure of BEAR.
Since RWR scores are requested for different seed nodes in
real world applications, we separate the preprocessing phase
(Algorithm 1), which is run once, from the query phase
(Algorithm 2), which is run for each seed node. The ex-
act method BEAR-Exact and the approximate method
BEAR-Approx differ only at line 9 of Algorithm 1; the
detail is in Section 3.1.4. To exploit their sparsity, all ma-
trices considered are saved in a sparse matrix format, such
as the compressed sparse column format [36], which stores
only non-zero entries.

3.1 Preprocessing Phase
The overall preprocessing phase of BEAR is shown in

Algorithm 1 and the details in the following subsections.

3.1.1 Node Reordering (lines 2 through 4)
In this part, we reorder H(= I − (1 − c)ÃT) and par-

tition it. Our objective is to reorder H so that it has a
large but easy-to-invert submatrix such as a block-diagonal
one. Any node reordering method (e.g., spectral cluster-
ing [32], cross association [11], shingle [14], etc.) can be
used for this purpose; in this paper, we use a method which
improves on SlashBurn [23] since it is the state-of-the-art
method in concentrating the nonzeros of adjacency matrices



Algorithm 1: Preprocessing phase in BEAR

Input: graph: G, restart probability: c, drop tolerance: ξ

Output: precomputed matrices: L−1
1 , U−1

1 , L−1
2 , U−1

2 , H12,
and H21

1: compute Ã, and H = I− (1− c)ÃT

2: find hubs using SlashBurn [23], and divide spokes into
disconnected components by removing the hubs

3: reorder nodes and H so that the disconnected components
form a block-diagonal submatrix H11 where each block is
ordered in the ascending order of degrees within the
component

4: partition H into H11,H12,H21,H22

5: decompose H11 into L1 and U1 using LU decomposition

and compute L−1
1 and U−1

1
6: compute the Schur complement of H11,

S = H22 −H21(U−1
1 (L−1

1 (H12)))
7: reorder the hubs in the ascending order of their degrees in S

and reorder S, H21 and H12 according to it
8: decompose S into L2 and U2 using LU decomposition and

compute L−1
2 and U−1

2
9: (BEAR-Approx only) drop entries whose absolute value is

smaller than ξ in L−1
1 , U−1

1 , L−1
2 , U−1

2 , H12, and H21

10: return L−1
1 , U−1

1 , L−1
2 , U−1

2 , H12, and H21

Algorithm 2: Query phase in BEAR

Input: seed node: s, precomputed matrices: L−1
1 , U−1

1 , L−1
2 ,

U−1
2 , H12, and H21

Output: relevance scores: r

1: create q whose sth entry is 1 and the others are 0
2: partition q into q1 and q2

3: compute r2 = c(U−1
2 (L−1

2 (q2 −H21(U−1
1 (L−1

1 q1)))))

4: compute r1 = U−1
1 (L−1

1 (cq1 −H12r2))
5: create r by concatenating r1 and r2

6: return r

of graphs (more details in Appendix A). We first run Slash-
Burn on a given graph, to decompose the graph into hubs
(high-degree nodes), and spokes (low-degree nodes which
get disconnected from the giant connected component if the
hubs are removed). Within each connected component con-
taining spokes, we reorder nodes in the ascending order of
degrees within the component. As a result, we get an adja-
cency matrix whose upper-left area (e.g., H11 in Figure 4(a))
is a large and sparse block diagonal matrix which is easily in-
verted, while the lower-right area (e.g., H22 in Figure 4(a))
is a small but dense matrix. Let n1 denote the number of
spokes and n2 denote the number of hubs. After the reorder-
ing, we partition the matrix H into four pieces: H11 (n1×n1

matrix), H12 (n1 × n2 matrix), H21 (n2 × n1 matrix), and
H22 (n2 × n2 matrix), which correspond to the adjacency
matrix representation of edges between spokes, from spokes
to hubs, from hubs to spokes, and between hubs, respec-
tively.

3.1.2 Schur Complement (lines 5 through 6)
In this part, we compute the Schur complement of H11,

whose inverse is required in the query phase.

Definition 1 (Schur Complement [10]). Suppose a
square matrix A is partitioned into A11, A12, A21, and
A22, which are p× p, p× q, q× p, and q× q matrices, resp.,
and A11 is invertible. The Schur complement S of the block
A11 of the matrix A is defined by

S = A22 −A21A−1
11 A12.

(a) Node reordering
method

(b) Result on the
Routing datset

Figure 4: The node reordering method of BEAR and its re-
sult on the Routing dataset. BEAR reorders nodes so that edges
between spokes form a large but sparse block-diagonal submatrix
(H11). Diagonal blocks correspond to the connected components
detached from the giant connected component when hubs are re-
moved. Nodes in each block are sorted in the ascending order of
their degrees within the component.

According to the definition, computing the Schur comple-
ment S (n2 × n2 matrix) of H11 requires H−1

11 . Instead of
directly inverting H11, we LU decompose it into L1 and U1,
then compute L−1

1 and U−1
1 instead (the reason will be ex-

plained in Section 3.1.3). Consequently, S is computed by
the following rule:

S = H22 −H21(U−1
1 (L−1

1 H12)). (5)

3.1.3 LU Decomposition (lines 7 through 8)
The block elimination method, which will be explained in

Section 3.2, requires H−1
11 and S−1 to solve Equation (2). Di-

rectly inverting H11 and S, however, is inefficient since S−1

as well as each diagonal block of H−1
11 is likely to be dense.

We avoid this problem by replacing H−1
11 with U−1

1 L−1
1 as

in Equation (5) and replacing S−1 with U−1
2 L−1

2 where L2

and U2 denote the LU-decomposed matrices of S. To com-
pute L−1

1 , U−1
1 , L−1

2 , and U−1
2 efficiently and make them

sparser, we exploit the following observation [16] and lemma.

Observation 1. Reordering nodes in the ascending order
of their degrees speeds up the LU decomposition of an adja-
cency matrix and makes the inverse of the LU-decomposed
matrices sparser.

Lemma 1. Suppose A is a non-singular block-diagonal ma-
trix that consists of diagonal blocks, A1 through Ab. Let L
and U denote the LU-decomposed matrices of A, and let Li

and Ui denote those of Ai for all i (1 ≤ i ≤ b). Then, L−1

and U−1 are the block-diagonal matrices that consist of L−1
1

through L−1
b and U−1

1 through U−1
b , respectively.

Proof. See Appendix B.

These observation and lemma suggest for H−1
11 the re-

ordering method we already used in Section 3.1.1. Since we
computed L−1

1 and U−1
1 in Section 3.1.2, we only need to

process S. We first rearrange the hubs in the ascending or-
der of their degrees within S, which reorders H12, H21, and
H22 as well as S. Note that computing S after reordering
the hubs, and reordering the hubs after computing S pro-
duce the same result. After decomposing S into L2 and U2,
we compute L−1

2 and U−1
2 .

3.1.4 Dropping Near-zero Entries (line 9, BEAR-Approx
only)



The running time and the memory usage in the query
phase of our method largely depend on the number of non-
zero entries in L−1

1 , U−1
1 , L−1

2 , U−1
2 , H12, and H21. Thus,

dropping near-zero entries in them saves time and memory
space in the query phase although it sacrifices little accuracy
of r. BEAR-Approx drops entries whose absolute value is
smaller than the drop tolerance ξ. The effects of different
ξ values on accuracy, query time, and memory usage are
empirically analyzed in Section 4. Note that, contrary to
BEAR-Approx, BEAR-Exact guarantees the exactness of
r, which will be proved in Section 3.2, and still outperforms
other exact methods in terms of time and space, which will
be shown in Section 4.

3.2 Query Phase
In the query phase, BEAR computes the RWR score vec-

tor r w.r.t. a given seed node s by exploiting the results of
the preprocessing phase. Algorithm 2 describes the overall
procedure of the query phase.

The vector q =

[
q1

q2

]
denotes the length-n starting vector

whose entry at the index of the seed node s is 1 and oth-
erwise 0. It is partitioned into the length-n1 vector q1 and
the length-n2 vector q2. The exact RWR score vector r is
computed by the following equation:

r =

[
r1
r2

]
=

[
U−1

1 (L−1
1 (cq1 −H12r2))

c(U−1
2 (L−1

2 (q2 −H21(U−1
1 (L−1

1 q1)))))

]
.

(6)
To prove the correctness of the above equation, we use the

block elimination method.

Lemma 2 (Block elimination [10]). Suppose a linear
equation Ax = b is partitioned as[

A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]
where A11 and A22 are square matrices. If the submatrix
A11 is invertible, and S is the Schur complement of the
submatrix A11 in A,

x =

[
x1

x2

]
=

[
A−1

11 (b1 −A12x2)
S−1(b2 −A21A−1

11 b1)

]
. (7)

Theorem 1 (The correctness of BEAR-Exact).
The r in Equation (6) is equal to the r in Equation (2).

Proof. H11 is invertible because its transpose is a strictly
diagonally dominant matrix for 0 < c < 1 [8]. Thus, by
Lemma 2, the following holds for Equation (2):

r =

[
r1
r2

]
=

[
H−1

11 (cq1 −H12r2)
S−1(cq2 −H21H−1

11 (cq1))

]
.

Equation (6) only replaces H−1
11 with U−1

1 L−1
1 and S−1 with

U−1
2 L−1

2 where H11 = L1U1 and S = L2U2.

3.3 Complexity Analysis
In this section, we analyze the time and space complexity

of BEAR. We assume that all the matrices considered are
saved in a sparse format, such as the compressed sparse col-
umn format [36], which stores only non-zero entries, and that
all the matrix operations exploit such sparsity by only con-
sidering non-zero entries. We also assume that the number of

Table 2: Maximum number of non-zero entries in the precom-
puted matrices.

Matrix Max nonzeros

H12 & H21 O(min(n1n2,m))

L−1
1 & U−1

1 O(
∑b

i=1 n
2
1i)

L−1
2 & U−1

2 O(n2
2)

edges is greater than that of nodes (i.e., m > n) for simplic-
ity. The maximum number of non-zero entries in each pre-
computed matrix is summarized in Table 2 where b denotes
the number of diagonal blocks in H11, and n1i denotes the
number of nodes in the ith diagonal block. The maximum
numbers of non-zero entries in L−1

1 and U−1
1 depend on the

size of diagonal blocks because the LU-decomposed matri-
ces and inverse of a block-diagonal matrix are also block-
diagonal matrices with the same block sizes (see Lemma 1).

3.3.1 Time Complexity
The time complexity of each step of BEAR is summarized

in Table 3. In this section, we provide proofs for nontrivial
analysis results starting from the following lemma:

Lemma 3 (Sparse matrix multiplication). Suppose
A and B are p×q and q×r matrices, respectively, and A has
|A| (> p, q) non-zero entries. Calculating C = AB using
sparse matrix multiplication takes O(|A|r).

Proof. Each non-zero entries in A is multiplied and then
added up to r times.

Lemma 4. It takes O(
∑b

i=1 n
3
1i) to compute L−1

1 and U−1
1 .

Proof. By Lemma 1, each block of H11 is processed sep-
arately. Since the LU decomposition of p × p matrix takes
O(p3) [10], it takes O(

∑b
i=1 n

3
1i) to LU decompose the diag-

onal blocks of H11. Since the inversion of p×p matrix takes
O(p3) [10], it takes O(

∑b
i=1 n

3
1i) to invert the decomposed

blocks.

Lemma 5. It takes O(n2

∑b
i=1 n

2
1i + min(n1n

2
2, n2m)) to

compute S = H22 −H21(U−1
1 (L−1

1 H12)).

Proof. By Lemma 3 and Table 2, it takes O(n2

∑b
i=1 n

2
1i)

to compute R1 = L−1
1 H12, O(n2

∑b
i=1 n

2
1i) to compute R2 =

U−1
1 R1, O(min(n1n

2
2, n2m)) to compute R3 = H21R2, and

O(n2
2) to compute S = H22 −R3.

Theorem 2. Preprocessing phase in BEAR takes O(T (m+

n logn) +
∑b

i=1 n
3
1i + n2

∑b
i=1 n

2
1i + n3

2 + min(n2
2n1, n2m))

Proof. See Lemma 4, Lemma 5, and Table 3.

Theorem 3. Query phase in BEAR takes O(
∑b

i=1 n
2
1i +

n2
2 + min(n1n2,m))

Proof. Apply Lemma 3 and the results in Table 2 to each
steps in r2 = c(U−1

2 (L−1
2 (q2 − H21(U−1

1 (L−1
1 q1))))) and

r1 = U−1
1 (L−1

1 (cq1 −H12r2)) as in Lemma 5.

In real-world graphs,
∑b

i=1 n
2
1i in the above results can be

replaced by m since the number of non-zero entries in L−1
1

and U−1
1 is closer to O(m) than O(

∑b
i=1 n

2
1i) as seen in

Table 4.



Table 3: Time complexity of each step of BEAR.

Line Task Time complexity

Preprocessing phase (Algorithm 1)

2 run SlashBurn O(T (m+ n logn)) [23]

3 reorder H O(m+ n+
∑b

i=1 n1i logn1i)

5 compute L−1
1 and U−1

1 O(
∑b

i=1 n
3
1i)

6 compute S O(n2
∑b

i=1 n
2
1i + min(n1n2

2, n2m))

8 compute L−1
2 and U−1

2 O(n3
2)

9 drop near-zero entries O(
∑b

i=1 n
2
1i + n2

2 +min(n1n2,m))

Total O(T (m+ n logn) +
∑b

i=1 n
3
1i + n2

∑b
i=1 n

2
1i + n3

2 + min(n2
2n1, n2m))

Query phase (Algorithm 2)

3 compute r2 O(
∑b

i=1 n
2
1i + n2

2 + min(n1n2,m))

4 compute r1 O(
∑b

i=1 n
2
1i + min(n1n2,m))

Total O(
∑b

i=1 n
2
1i + n2

2 + min(n1n2,m))

3.3.2 Space Complexity

Theorem 4. BEAR requires O(
∑b

i=1 n
2
1i+min(n1n2,m)+

n2
2) memory space for precomputed matrices: H12, H21,

L−1
1 , U−1

1 , L−1
2 , and U−1

2 .

Proof. See Table 2.

For the same reason, as in the time complexity,
∑b

i=1 n
2
1i in

the above result can be replaced by m in real-world graphs.
Theorems 2, 3, and 4 imply that BEAR works efficiently

when the given graph is divided into small pieces (small∑b
i=1 n

2
1i and

∑b
i=1 n

3
1i) by removing a small number of hubs

(small n2), which is true in many real world graphs [2, 23].

3.4 Application to RWR Variants
Our BEAR method is easily applicable to various RWR

variants since BEAR does not assume any unique property
of RWR contrary to other methods [16, 44]. In this section,
we show how BEAR can be applied to three of such variants.

Personalized PageRank. As explained in Section 2.1,
personalized PageRank (PPR) selects a restart node accord-
ing to given probability distribution. PPR can be computed
by replacing q in Algorithm 2 with the probability distribu-
tion.

Effective importance. Effective importance (EI) [9] is
the degree-normalized version of RWR. It captures the local
community structure and adjusts RWR’s preference towards
high-degree nodes. We can compute EI by dividing each
entry of r in Algorithm 2 by the degree of the corresponding
node.

RWR with normalized graph Laplacian. Instead of
row-normalized adjacency matrix, Tong et al. [42] use the
normalized graph Laplacian. It outputs symmetric relevance
scores for undirected graphs, which are desirable for some
applications. This score can be computed by replacing Ã
in Algorithm 1 with D−1/2AD−1/2 where A is an unnor-
malized adjacency matrix and D is a diagonal matrix whose
(i, i)th entry is the degree of ith node.

4. EXPERIMENTS
To evaluate the effectiveness of our exact method BEAR-

Exact, we design and conduct experiments which answer
the following questions:

• Q1. Preprocessing cost (Section 4.2). How much
memory space do BEAR-Exact and its competitors

require for their precomputed results? How long does
this preprocessing phase take?
• Q2. Query cost (Section 4.3). How quickly does

BEAR-Exact answer an RWR query compared with
other methods?
• Q3. Effects of network structure (Section 4.4).

How does network structure affect the preprocessing
time, query time, and space requirements of BEAR-
Exact?

For our approximate method BEAR-Approx, our exper-
iments answer the following questions:

• Q4. Effects of drop tolerance (Section 4.5). How
does drop tolerance ξ affect the accuracy, query time,
and space requirements of BEAR-Approx?
• Q5. Comparison with approximate methods

(Section 4.6). Does BEAR-Approx provide a better
trade-off between accuracy, time, and space compared
with its competitors?

4.1 Experimental Settings
Machine. All the experiments are conducted on a PC

with a 4-core Intel i5-4570 3.2GHz CPU and 16GB memory.
Data. The graph data used in our experiments are sum-

marized in Table 4. A brief description of each real-world
dataset is presented in Appendix C. For synthetic graphs,
we use R-MAT [12] with different pul, the probability of an
edge falling into the upper-left partition. The probabilities
for the other partitions are set to (1− pul)/3, respectively.

Implementation. We compare our methods with the
iterative method, RPPR [18], BRPPR [18], inversion, LU
decomposition [16], QR decomposition [17], B LIN [42], and
NB LIN [42], all of which are explained in Section 2.2. Meth-
ods only applicable to undirected graphs [3] or top-k search
[20, 44] are excluded. All the methods including BEAR-
Exact and BEAR-Approx are implemented using MAT-
LAB, which provides a state-of-the-art linear algebra pack-
age. In particular, our implementation of NB LIN and that
of RPPR optimize their open-sourced implementations1,2 in
terms of preprocessing speed and query speed, respectively.
The binary code of our method and several datasets are
available at http://kdmlab.org/bear.

1http://www.cs.cmu.edu/˜htong/pdfs/FastRWR 20080319.tgz
2http://www.mathworks.co.kr/matlabcentral/fileexchange/
11613-pagerank



Table 4: Summary of real-world and synthetic datasets. |M| denotes the number of non-zero entries in the matrix M. A brief description
of each real-world dataset is presented in Appendix C.

dataset n m n2
∑b

i=1 n
2
1i |H| |H12|+ |H21| |L−1

1 |+ |U
−1
1 | |L−1

2 |+ |U
−1
2 |

Routing 22, 963 48, 436 572 678, 097 119, 835 72, 168 86, 972 271, 248
Co-author 31, 163 120, 029 4, 464 1, 364, 443 271, 221 118, 012 202, 482 18, 526, 862
Trust 131, 828 841, 372 10, 087 3, 493, 773 972, 627 317, 874 318, 461 81, 039, 727
Email 265, 214 420, 045 1, 590 566, 435 684, 170 358, 458 554, 681 1, 149, 462
Web-Stan 281, 903 2, 312, 497 16, 017 420, 658, 754 2, 594, 400 1, 423, 993 26, 191, 040 55, 450, 105
Web-Notre 325, 729 1, 497, 134 12, 350 77, 441, 937 1, 795, 408 611, 408 5, 912, 673 12, 105, 579
Web-BS 685, 230 7, 600, 595 50, 005 717, 727, 201 8, 285, 825 4, 725, 657 25, 990, 336 547, 936, 698
Talk 2, 394, 385 5, 021, 410 19, 152 3, 272, 265 7, 415, 795 3, 996, 546 4, 841, 878 246, 235, 838
Citation 3, 774, 768 16, 518, 948 1, 143, 522 71, 206, 030 20, 293, 715 9, 738, 225 6, 709, 469 408, 178, 662

R-MAT (0.5) 99, 982 500, 000 17, 721 1, 513, 855 599, 982 184, 812 204, 585 260, 247, 890
R-MAT (0.6) 99, 956 500, 000 11, 088 1, 258, 518 599, 956 145, 281 205, 837 104, 153, 333
R-MAT (0.7) 99, 707 500, 000 7, 029 705, 042 599, 707 116, 382 202, 922 43, 250, 097
R-MAT (0.8) 99, 267 500, 000 4, 653 313, 848 599, 267 104, 415 199, 576 19, 300, 458
R-MAT (0.9) 98, 438 500, 000 3, 038 244, 204 598, 438 107, 770 196, 873 8, 633, 841
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Figure 5: Space for preprocessed data. BEAR-Exact re-
quires the least amount of space for preprocessed data on all the
datasets. Due to its space efficiency, only BEAR-Exact suc-
cessfully scales to the largest Citation dataset (with 3.8M nodes)
without running out of memory.

Parameters. We set the restart probability c to 0.05 as
in the previous work [42]3. We set k of SlashBurn to 0.001n
(see Appendix A for the meaning of k), which achieves a
good trade-off between running time and reordering quality.
The convergence threshold ε of the iterative method is set to
10−8, which gives accurate results. For B LIN and NB LIN,
we use the heuristic decomposition method proposed in their
paper, which is much faster with little difference in accu-
racy compared with SVD in our experiments. The number
of partitions in B LIN, the rank in B LIN and NB LIN, and
the convergence threshold of RPPR and BRPPR are tuned
for each dataset, which are summarized in Table 5 in Ap-
pendix D.

4.2 Preprocessing Cost
We compare the preprocessing cost of BEAR-Exact with

that of other exact methods. Figures 1(a) and 5 present the
preprocessing time and space requirements of the methods
except the iterative method, which does not require prepro-
cessing. Only BEAR-Exact successfully preprocesses all
the datasets, while others fail due to their high memory re-
quirements.

Preprocessing time is measured in wall-clock time and in-
cludes time for SlashBurn (in BEAR-Exact) and commu-
nity detection (in LU decomposition). BEAR-Exact re-
quires the least amount of time, which is less than an hour,
for all the datasets as seen in Figure 1(a). Especially, in
the graphs with distinct hub-and-spoke structure, BEAR-
Exact is up to 12× faster than the second best one. This

3In this work, c denotes (1 - restart probability)

fast preprocessing of BEAR-Exact implies that it is better
at handling frequently changing graphs.

To compare space efficiency, we measure the amount of
memory required for precomputed matrices of each method.
The precomputed matrices are saved in the compressed sparse
column format [36], which requires memory space propor-
tional to the number of non-zero entries. As seen in Fig-
ure 5, BEAR-Exact requires up to 22× less memory space
than its competitors in all the datasets, which results in
the superior scalability of BEAR-Exact compared with the
competitors.

4.3 Query Cost
We compare BEAR-Exact with other exact methods in

terms of query time, which means time taken to compute r
for a given seed node. Although time taken for a single query
is small compared with preprocessing time, reducing query
time is important because many applications require RWR
scores for different query nodes (e.g., all nodes) or require
the real-time computation of RWR scores for a query node.

Figure 1(b) shows the result where y axis represents aver-
age query time for 1000 random seed nodes. Only BEAR-
Exact and the iterative method run successfully on all the
graphs, while the others fail on large graphs due to their high
space requirements. BEAR-Exact outperforms its com-
petitors in all the datasets except the smallest one, which
is the only dataset that the inversion method can scale to.
BEAR-Exact is up to 8× faster than LU decomposition,
the second best one, and in the Talk dataset, it is almost
300× faster than the iterative method, which is the only
competitor. Although BEAR-Exact requires a preprocess-
ing step which is not needed by the iterative method, for
real world applications where RWR scores for many query
nodes are required, BEAR-Exact outperforms the iterative
method in terms of total running time.

Furthermore, BEAR-Exact also provides the best per-
formance in personalized PageRank, where the number of
seeds is greater than one. See Figure 11 of Appendix E.1 for
the query time of BEAR-Exact with different number of
seeds, and see Figure 10 of Appendix E.1 for the comparison
of the query time of BEAR-Exact with that of others in
personalized PageRank.

4.4 Effects of Network Structure
The complexity analysis in Section 3.3 indicates that the

performance of BEAR-Exact depends on the structure of
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Figure 6: Effects of drop tolerance on the performance of BEAR-Approx. Drop tolerance changes from 0 to n−1/4. As drop tolerance
increases, space requirements and query time are significantly improved, while accuracy, measured by cosine similarity and L2-norm of
error, remains high.
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Figure 7: Effects of network structure. BEAR-Exact becomes
fast and space-efficient on a graph with distinct hub-and-spoke
structure (a graph with high pul).

a given graph. Specifically, the analysis implies that BEAR-
Exact is fast and space-efficient on a graph with strong hub-
and-spoke structure where the graph is divided into small
pieces by removing a small number of hubs. In this exper-
iment, we empirically support this claim using graphs with
similar sizes but different structures.

Table 4 summarizes four synthetic graphs generated us-
ing R-MAT [12] with different pul, the probability of an edge
falling into the upper-left partition. As pul increases, hub-
and-spoke structure becomes stronger as seen from the num-
ber of hubs (n2) and the size of partitions (

∑b
i=1 n

2
1i) of each

graph. Figure 7 shows the performance of BEAR-Exact on
theses graphs. Preprocessing time, query time, and space re-
quired for preprocessed data decline rapidly with regard to
pul, which is coherent with what the complexity analysis
implies.

4.5 Effects of Drop Tolerance
As explained in Section 3.1.4, BEAR-Approx improves

the speed and space efficiency of BEAR-Exact by drop-
ping near-zero entries in the precomputed matrices although
it loses the guarantee of accuracy. In this experiment, we
measure the effects of different drop tolerance values on the
query time, space requirements, and accuracy of BEAR-
Approx. We change the drop tolerance, ξ, from 0 to n−1/4

and measure the accuracy using cosine similarity4 and L2-
norm of error5 between r computed by BEAR-Exact and r̂
computed by BEAR-Approx with the given drop tolerance.

Figure 6 summarizes the results. We observe that both the
space required for preprocessed data and the query time of
BEAR-Approx significantly decrease compared with those

4(r·r̂)/(||r|| ||̂r||), ranging from −1 (dissimilar) to 1 (similar)
5||̂r− r||, ranging from 0 (no error) to ||̂r||+ ||r|| (max error
bound)

of BEAR-Exact, while the accuracy remains high. When ξ
is set to n−1, BEAR-Approx requires up to 16× less space
and 7× less query time than BEAR-Exact, while cosine
similarity remains higher than 0.999 and L2-norm remains
less than 10−4. Similarly, when ξ is set to n−1/4, BEAR-
Approx requires up to 117× less space and 90× less query
time than BEAR-Exact, while cosine similarity remains
higher than 0.96 and L2-norm remains less than 0.03.

4.6 Comparison with Approximate Methods
We conduct performance comparison among BEAR-Approx

and other state-of-the-art approximate methods. Dropping
near-zero entries of precomputed matrices is commonly ap-
plied to BEAR-Approx, B LIN, and NB LIN, and provides
a trade-off between accuracy, query time, and storage cost.
We analyze this trade-off by changing drop tolerance from 0
to n−1/4. Likewise, we analyze the trade-off between accu-
racy and time provided by RPPR and BRPPR by changing
the threshold to expand nodes, θb, from 10−4 to 0.5. RPPR
and BRPPR do not require space for preprocessed data. Ac-
curacy is measured using cosine similarity4 and L2-norm of
error5 as in Section 4.5.

Figure 8 summarizes the result on two datasets. In Fig-
ure 8(a), the points corresponding to BEAR-Approx lie
in the upper-left zone, indicating that it provides a better
trade-off between accuracy and time. BEAR-Approx with
ξ = n−1/4 achieves 254× speedup in query time compared
with other methods with the similar accuracy. It also pre-
serves accuracy (> 0.97), while other methods with similar
query time produce almost meaningless results.

BEAR-Approx also provides the best trade-off between
accuracy and space requirements among preprocessing meth-
ods as seen in Figure 8(b). BEAR-Approx with ξ = n−1/4

saves 50× on storage compared with B LIN with ξ = 0 while
providing higher accuracy (> 0.97). NB LIN with ξ = 0 re-
quires 7× more space compared with BEAR-Approx with
ξ = n−1/4 despite its lower accuracy (< 0.71).

Experiments using L2-norm (Figures 8(c) and 8(d)) show
similar tendencies. BEAR-Approx lies in the lower-left
zone, which indicates that it provides the best trade-off.
The results on other datasets are given in Figure 13 of Ap-
pendix E.3. The preprocessing times of the approximate
methods are also compared in Figure 12 of Appendix E.2.

5. RELATED WORK
In this section, we review related work, which can be cate-

gorized into four parts: (1) relevance measures and applica-
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Figure 8: Trade-off between time, space, and accuracy provided by approximate methods. The above four subfigures show the results
on the Routing dataset, and the below ones show the results on the Web-Stan dataset. The colors distinguish the methods, and the
shapes distinguish the drop tolerance (for BEAR-Approx, B LIN, and NB LIN) or the threshold to expand nodes (for RPPR and
BRPPR). RPPR and BRPPR do not appear in the subfigures in the second and fourth columns because they do not require space for
preprocessed data. In the left four subfigures, upper-left region indicates better performance, while in the right ones, lower-left region
indicates better performance. Notice that BEAR-Approx provides 1) the best trade-off between accuracy and query speed, and 2) the
best trade-off between accuracy and space requirements, among preprocessing methods.

tions, (2) approximate methods for RWR, (3) top-k search
for RWR, and (4) preprocessing methods for RWR.

Relevance measures and applications. There are var-
ious relevance (proximity) measures based on random walk,
e.g., penalized hitting probability (PHP) [45], effective im-
portance (EI) [9], discounted hitting time (DHT) [38], trun-
cated hitting time (THT) [37], random walk with restart
(RWR) [34], effective conductance (EC) [15], ObjectRank
[7], SimRank [22], and personalized PageRank (PPR) [33].
Among these measures, RWR has received much interests
and has been applied to many applications including com-
munity detection [3, 19, 43, 46], ranking [42], link predic-
tion [6], graph matching [41, 25], knowledge discovery [26],
anomaly detection [39], content based image retrieval [21],
and cross modal correlation discovery [34]. Andersen et al.
[3] proposed a local community detection algorithm which
utilizes RWR to find a cut with small conductance near a
seed node. This algorithm was used to explore the prop-
erties of communities in large graphs since it is fast and
returns tight communities [28]. Considerable improvements
of the algorithm have been made regarding seed finding [19,
43] and inner connectivity [46]. Backstrom et al. [6] pro-
posed a link prediction algorithm called supervised random
walk, which is a variant of RWR. In the algorithm, transition
probabilities are determined as a function of the attributes
of nodes and edges, and the function is adjusted through su-
pervised learning. Tong et al. [41] proposed G-Ray, which

finds best-effort subgraph matches for a given query graph
in a large and attributed graph. They formulated a good-
ness function using RWR to estimate the proximity between
a node and a subgraph. Kasneci et al. [26] exploited RWR
as a measure of node-based informativeness to extract an
informative subgraph for given query nodes. Sun et al. [39]
utilized RWR for neighborhood formulation and abnormal
node detection in bipartite graphs. He et al. [21] employed
RWR to rank retrieved images in their manifold ranking al-
gorithm. Pan et al. [34] proposed a method adopting RWR
to compute the correlations between a query image node and
caption nodes.

Approximate methods for RWR. The iterative method,
which comes from the definition of RWR, is not fast enough
in real world applications where RWR scores for different
query nodes need to be computed. To overcome this ob-
stacle, approximate approaches have been proposed. Sun
et al. [39] observed that the relevance scores for a seed
node are highly skewed, and many real-world graphs have
a block-wise structure. Based on these observations, they
performed random walks only on the partition containing
the seed node and assigned the proximities of zero to the
other nodes outside the partition. Instead of using a pre-
computed partition, Gleich et al. [18] proposed methods
which adaptively determine the part of a graph used for
RWR computation in the query phase as explained in Sec-
tion 2.2. Andersen et al. [3] also proposed an approximate



method based on local information. This method, however,
is only applicable to undirected graphs. Tong et al. [42] pro-
posed approximate approaches called B LIN and NB LIN.
They achieved higher accuracy than previous methods by
applying a low-rank approximation to cross-partition edges
instead of ignoring them. However, our proposed BEAR-
Approx outperforms them by providing a better trade-off
between accuracy, time, and space.

Top-k search for RWR. Several recent works focus on
finding the k most relevant nodes of a seed node instead of
calculating the RWR scores of every node. Gupta et al. [20]
proposed the basic push algorithm (BPA), which finds top-k
nodes for personalized PageRank (PPR) in an efficient way.
BPA precomputes relevance score vectors w.r.t. hub nodes
and uses them to obtain the upper bounds of PPR scores.
Fujiwara et al. [16] proposed K-dash, which computes the
RWR scores of top-k nodes exactly. It computes the RWR
scores efficiently by exploiting precomputed sparse matrices
and pruning unnecessary computations while searching for
the top-k nodes. Wu et al. [44] showed that many ran-
dom walk based measures have the no-local-minimum (or
no-local-maximum) property, which means that each node
except for a given query node has at least one neighbor-
ing node having lower (or higher) proximity. Based on this
property, they developed a unified local search method called
Fast Local Search (FLoS), which exactly finds top-k relevant
nodes in terms of measures satisfying the no-local-optimum
property. Furthermore, Wu et al. showed that FLoS can be
applied to RWR, which does not have the no-local-optimum
property, by utilizing its relationship with other measures.
However, top-k RWR computation is insufficient for many
data mining applications [3, 6, 19, 21, 39, 41, 43, 46]; on the
other hand, BEAR computes the RWR scores of all nodes.

Preprocessing methods for RWR. As seen from Sec-
tion 2.2, the computational cost of RWR can be significantly
reduced by precomputing H−1. However, matrix inversion
does not scale up. That is, for a large graph, it often re-
sults in a dense matrix that cannot fit to memory. For this
reason, alternative methods have been proposed. NB LIN,
proposed by Tong et al. [41], decomposes the adjacency
matrix using low-rank approximation in the preprocessing
phase and approximates H−1 from these decomposed ma-
trices in the query phase using Sherman-Morrison Lemma
[35]. Its variant B LIN uses this technique only for cross-
partition edges. These methods require less space but do
not guarantee accuracy. Fujiwara et al. inverted the re-
sults of LU decomposition [16] or QR decomposition [17] of
H after carefully reordering nodes. Their methods produce
sparser matrices that can be used in place of H−1 in the
query phase but still have limited scalability. Contrary to
the earlier methods, our proposed BEAR-Exact offers both
accuracy and space efficiency.

In addition to the approaches described above, distributed
computing is another promising approach. Andersen et al.
[4] proposed a distributed platform to solve linear systems
including RWR. In order to reduce communication cost, they
partitioned a graph into overlapping clusters and assigned
each cluster to a distinct processor.

6. CONCLUSION
In this paper, we propose BEAR, a novel algorithm for

fast, scalable, and accurate random walk with restart com-
putation on large graphs. BEAR preprocesses the given

graph by reordering and partitioning the adjacency matrix
and uses block elimination to compute RWR from the pre-
processed results. We discuss the two versions of BEAR:
BEAR-Exact and BEAR-Approx. The former guarantees
accuracy, while the latter is faster and more space-efficient
with little loss of accuracy. We experimentally show that
the preprocessing phase of the exact method BEAR-Exact
takes up to 12× less time and requires up to 22× less mem-
ory space than that of other preprocessing methods guaran-
teeing accuracy, which makes BEAR-Exact enjoy the su-
perior scalability. BEAR-Exact also outperforms the com-
petitors in the query phase: it is up to 8× faster than other
preprocessing methods, and in large graphs where other pre-
processing methods run out of memory, is almost 300× faster
than its only competitor, the iterative method. The approx-
imate method BEAR-Approx consistently provides a bet-
ter trade-off between accuracy, time, and storage cost com-
pared with other approximate methods. Future research
directions include extending BEAR to support frequently
changing graphs [24].
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APPENDIX
A. DETAILS OF SLASHBURN

SlashBurn [23, 30] is a node reordering method for a graph
so that the nonzeros of the resulting adjacency matrix are
concentrated. For the purpose, SlashBurn first removes k
hub nodes (high-degree nodes) from the graph so that the
graph is divided into the giant connected component (GCC)
and the remaining disconnected components. Then, Slash-
Burn reorders nodes such that the hub nodes get the highest
node ids, the nodes in the disconnected components get the
lowest node ids, and the nodes in the GCC get the ids in
the middle. The above procedure repeats on the GCC until
the size of GCC becomes smaller than k. When SlashBurn
finishes, the adjacency matrix of the graph contains a large



(a) Step 1 (b) Step 2 (c) Step 3

Figure 9: Hub selection in SlashBurn when k = 1. Hub nodes
are colored red, nodes in the giant connected component are col-
ored yellow, and nodes in disconnected components are colored
white.

and sparse block diagonal matrix in the upper left area, as
shown in Figure 4(b). Figure 9 illustrates this process when
k = 1.

B. THE PROOF OF LEMMA 1
Proof. Let L′ and U′ be the block-diagonal matrices

that consist of L1 through Lb and U1 through Ub, respec-
tively. Then, L = L′ and U = U′ because: (1) L′ is a unit
lower triangular matrix; (2) U′ is an upper triangular ma-
trix; (3) L′U′ is the block-diagonal matrix that consists of
L1U1 through LbUb which is equal to A; and (4) L′ and
U′ satisfying (1)∼(3) are the unique LU decomposition of
A [8]. The multiplication of L and L−1 defined in Lemma 1
results in the block-diagonal matrix that consist of L1L−1

1

through LbL−1
b which is an identical matrix. Likewise, the

multiplication of U and U−1 defined in Lemma 1 results in
an identical matrix.

C. EXPERIMENTAL DATASETS
Below, we provide a short description of the real-world

datasets used in Section 4.

• Routing6. The structure of the Internet at the level
of autonomous systems. This data was reconstructed
from BGP tables collected by the University of Oregon
Route Views Project7.
• Co-author8. The co-authorship network of scientists

who posted preprints on the Condensed Matter E-Print
Archive9. This data include all preprints posted be-
tween Jan. 1, 1995 and June. 30, 2003.
• Trust10. A who-trust-whom online social network taken

from Epinions.com11, a general consumer review site.
Members of the site decide whether to trust each other,
and this affects which reviews are shown to them.
• Email12. An email network taken from a large Euro-

pean research institution. This data include all incom-
ing and outgoing emails of the research institution from
October 2003 to May 2005.
• Web-Notre13. The hyperlink network of web pages

from University of Notre Dame in 1999.
6http://www-personal.umich.edu/˜mejn/netdata/as-
22july06.zip
7http://www.routeviews.org/
8http://www-personal.umich.edu/˜mejn/netdata/cond-
mat-2003.zip
9http://arxiv.org/archive/cond-mat

10http://snap.stanford.edu/data/soc-sign-epinions.html
11http://www.epinions.com/
12http://snap.stanford.edu/data/email-EuAll.html
13http://snap.stanford.edu/data/web-NotreDame.html

• Web-Stan14. The hyperlink network of web pages
from Stanford University in 2002.
• Web-BS15. The hyperlink network of web pages from

University of California, Berkeley and Stanford Univer-
sity in 2002.
• Talk16. A who-talks to-whom network taken from Wiki-

pedia17, a free encyclopedia written collaboratively by
volunteers around the world. This data include all
the users and discussion (talk) from the inception of
Wikipedia to January 2008.
• Citation18. The citation network of utility patents

granted in U.S. between 1975 and 1999.

D. PARAMETER SETTINGS FOR B_LIN,
NB_LIN, RPPR, AND BRPPR

Table 5: Parameter values of B LIN, NB LIN, RPPR, and
BRPPR used for each dataset. #p denotes the number of parti-
tions, t denotes the rank, and ε denotes the convergence threshold.

dataset
B LIN NB LIN RPPR BRPPR

#p t t ε ε

Routing 200 200 100 10−4 10−4

Co-author 200 500 1, 000 10−4 10−4

Trust 100 200 1, 000 10−4 10−5

Email 1, 000 100 200 10−3 10−5

Web-Stan 1, 000 100 100 10−3 10−4

Web-Notre 500 100 200 10−4 10−5

Web-BS 2, 000 100 100 10−3 10−5

Talk - - 200 10−3 10−6

Citation - - 100 10−4 10−5

For each dataset, we determine the number of partitions
(#p) and the rank (t) of B LIN among {100, 200, 500, 1000,
2000} and {100, 200, 500, 1000}, resp., so that their pair
provides the best trade-off between query time, space for
preprocessed data, and accuracy. Likewise, the rank (t) of
NB LIN is determined among {100, 200, 500, 1000}, and the
convergence threshold (ε) of RPPR and BRPPR is deter-
mined among {10−7, 10−6, 10−5, 10−4, 10−3, 10−2}. The pa-
rameter values used for each dataset are summarized in Ta-
ble 5. B LIN runs out of memory on the Talk dataset and
the Citation dataset regardless of parameter values used.

E. ADDITIONAL EXPERIMENTS

E.1 Query Time in Personalized PageRank
We measure the query time of exact methods when the

number of seeds is greater than one, which corresponds to
personalized PageRank. We change the number of seeds
(non-zero entries in q) from 1 to 1000. As seen in Fig-
ure 10, BEAR-Exact is the fastest method regardless of
the number of seeds in all the datasets except the small-
est Routing dataset The query time of the inverse method
increases rapidly as the number of seeds increases. It in-
creases by 210× on the Routing dataset, while the query
time of BEAR-Exact increases by 3×. Figure 11 summa-
rizes the effect of the number of seeds on the query time of

14http://snap.stanford.edu/data/web-Stanford.html
15http://snap.stanford.edu/data/web-BerkStan.html
16http://snap.stanford.edu/data/wiki-Talk.html
17http://www.wikipedia.org/
18http://snap.stanford.edu/data/cit-Patents.html
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Figure 10: Query time of exact methods with different number of seeds. If a method cannot scale to a dataset, the corresponding bar
is omitted in the graphs. BEAR-Exact is the fastest method regardless of the number of seeds in all the datasets except the smallest
Routing dataset.
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Figure 11: Effect of the number of seeds on the query time
of BEAR-Exact. Query time increases as the number of seeds
increases, but the rate of increase slows down.

BEAR-Exact. In most datasets, the effect of the number
of seeds diminishes as the number of seeds increases. The
query time increases by up to 16× depending on the number
of seeds.

E.2 Preprocessing Time of Approximate Meth-
ods

Figure 12 presents the preprocessing time of approximate
methods. Preprocessing time is measured in wall-clock time
and includes time for SlashBurn (in BEAR-Approx) and
community detection (in B LIN). B LIN cannot scale to the
Talk dataset and the Citation dataset because it runs out
of memory while inverting the block diagonal matrices. The
relative performances among the methods depend on the
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Figure 12: Preprocessing time of approximate methods. The
relative performances among the methods depend on the charac-
teristics of data.

structure of graphs, as summarized in Table 4. BEAR-
Approx tends to be faster than the competitors on graphs
with a small number of hubs (such as the Routing and Email
datasets) and slower on those with a large number of hubs
(such as the Web-BS and Citation datasets).

E.3 Comparison with Approximate Methods
Figure 13 shows the result of the experiments described

in Section 4.6 on other datasets. In most of the datasets,
BEAR-Approx gives the best trade-off between accuracy
and time. It also provides the best trade-off between accu-
racy and storage among all preprocessing methods.
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(a) Query time vs.
Cosine similarity
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(b) Space for preprocessed
data vs. Cosine similarity
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(c) Query time vs.
L2-norm of error
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(d) Space for preprocessed
data vs. L2-norm of error
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Figure 13: Trade-off between time, space, and accuracy provided by approximate methods. The subfigures in each row show the results
on the corresponding dataset. The colors distinguish the methods, and the shapes distinguish the drop tolerance (for BEAR-Approx,
B LIN, and NB LIN) or the threshold to expand nodes (for RPPR and BRPPR). RPPR and BRPPR do not appear in the subfigures in
the second and fourth columns because they do not require space for preprocessed data. In the subfigures in the left two columns, upper-
left region indicates better performance, while in the subfigures in the right two columns, lower-left region indicates better performance.
BEAR-Approx is located more closely to those regions than the competitors in most of the datasets.


