

DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams

Kijung Shin ¹, Bryan Hooi ², Jisu Kim ², and Christos Faloutsos ¹

Carnegie Mellon University

¹{kijungs, christos}@cs.cmu.edu, ²{bhooi, jisuk1}@andrew.cmu.edu

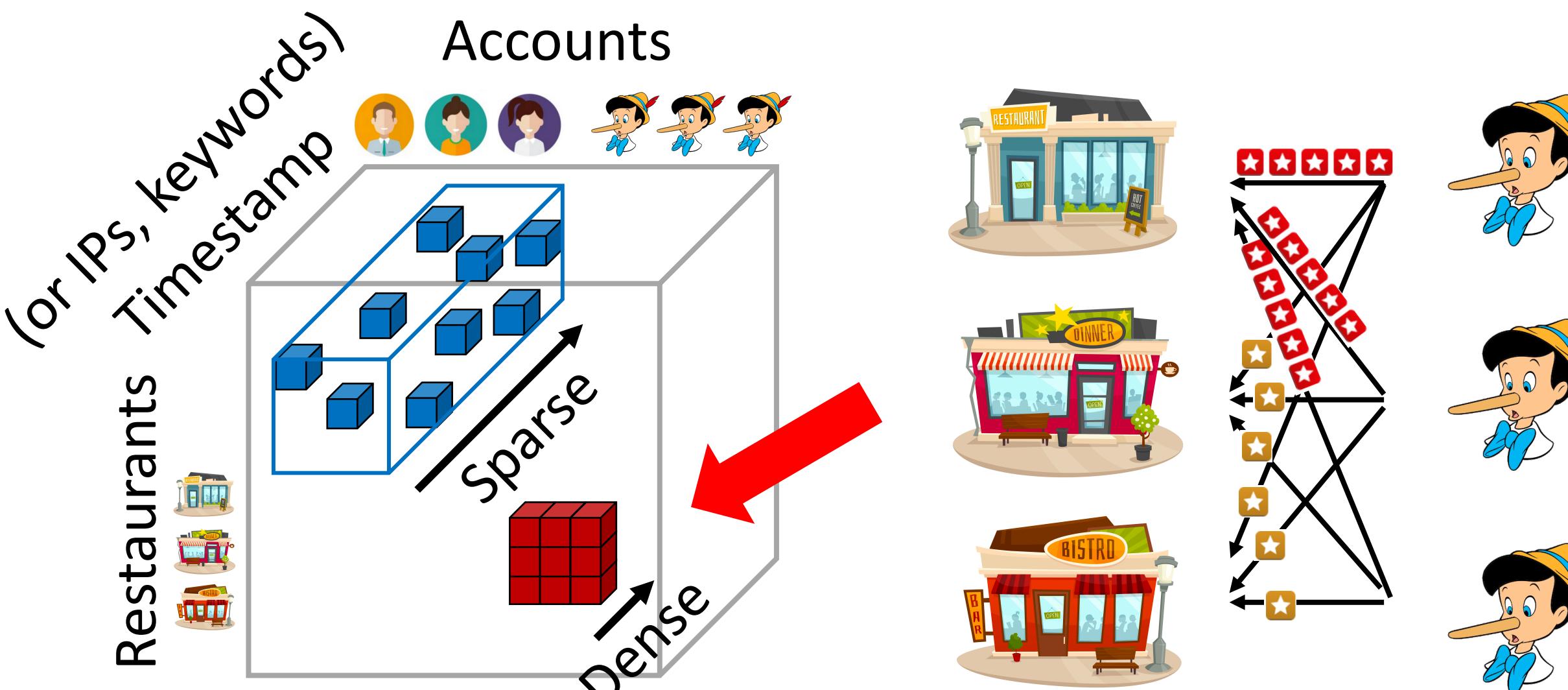
Code and Data: <https://github.com/kijungs/densealert>

Summary

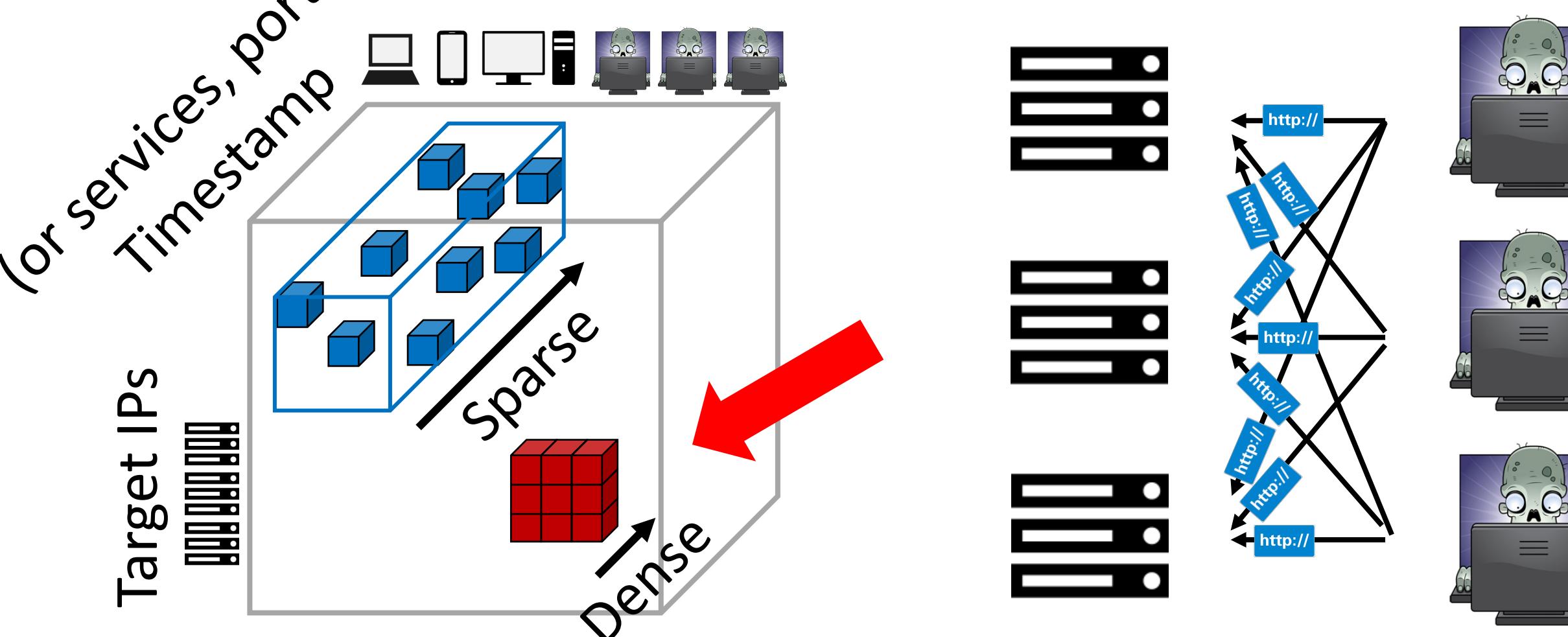
- Goal: to detect and update dense subtensors in a dynamic tensor
- Previous Work:
 - showed that dense subtensors in real-world tensors signal *anomalies* or *fraud*
 - proposed *batch algorithms* for fast and accurate dense-subtensor detection
- Proposed Incremental Algorithms:
 - DenseStream**: incremental algorithm for detecting the *densest* subtensor
 - DenseAlert**: incremental algorithm detecting *suddenly appearing dense* subtensors
- Result:
 - Fast: updates by our algorithms are up to 1,000,000X faster than batch algorithms
 - Provably Accurate: our algorithms provide *theoretical accuracy guarantees*
 - Effective: our algorithms successfully detect anomalies in real-world tensors, including *network attacks*, *bot activities*, and *rating manipulations*

Motivations

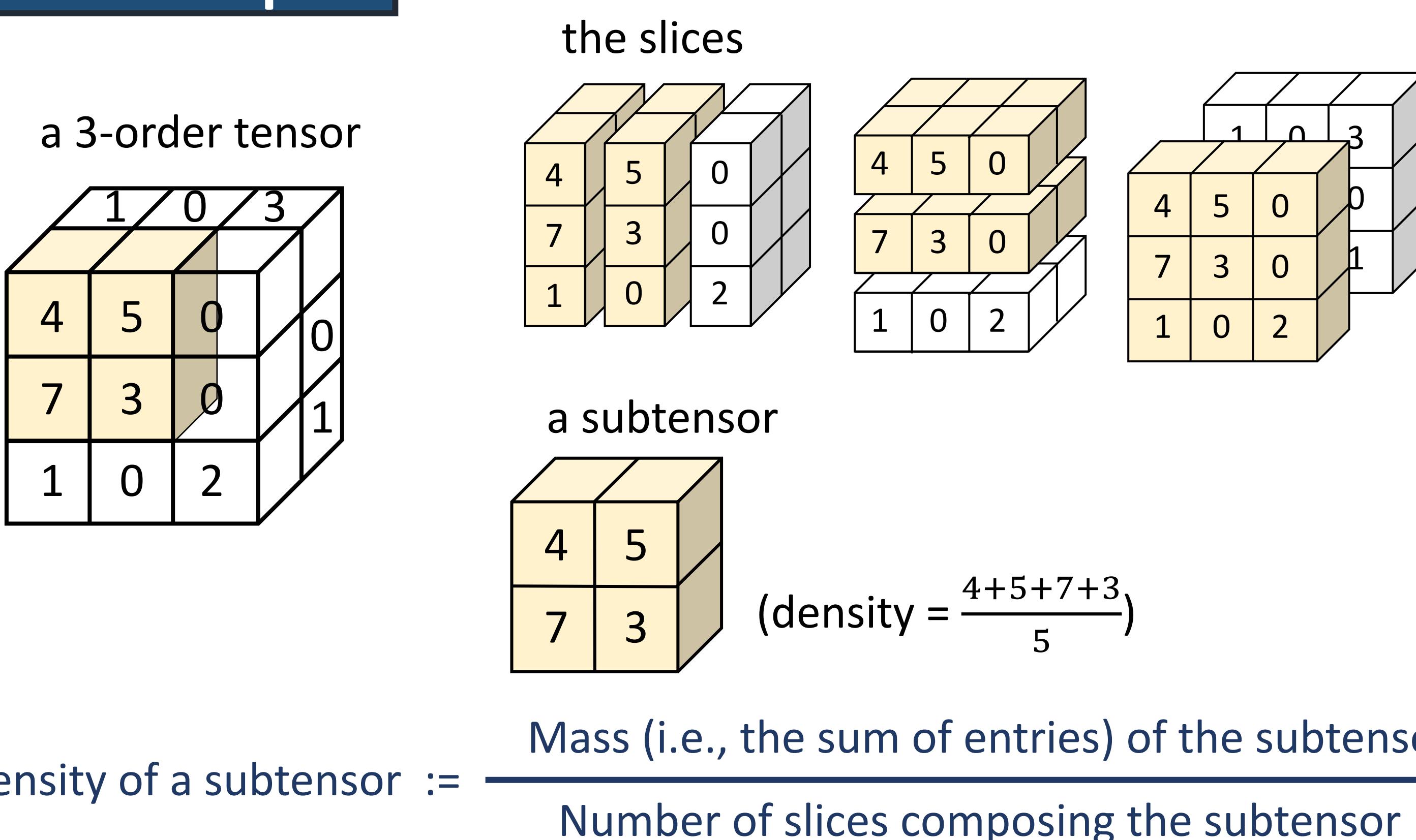
- Rating Data: Rating manipulation results in dense subtensors



- TCP Dumps: Network attacks result in dense subtensors

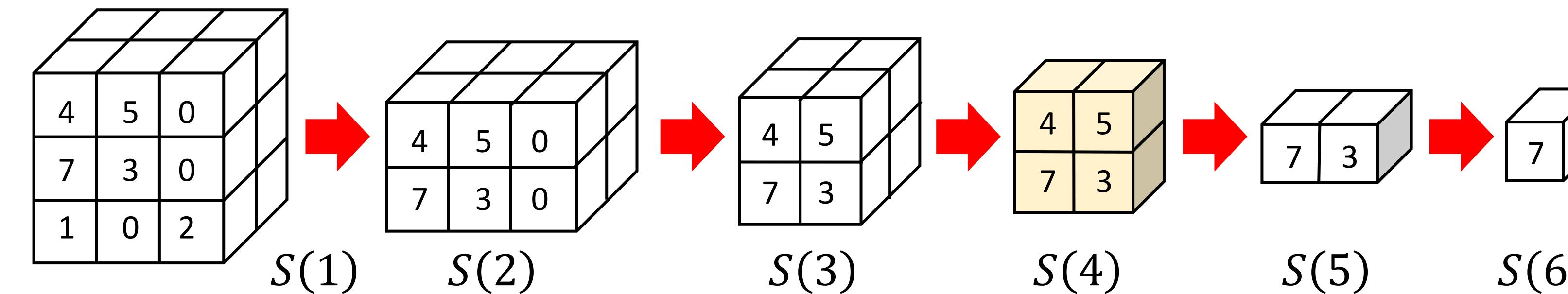


Basic Concepts

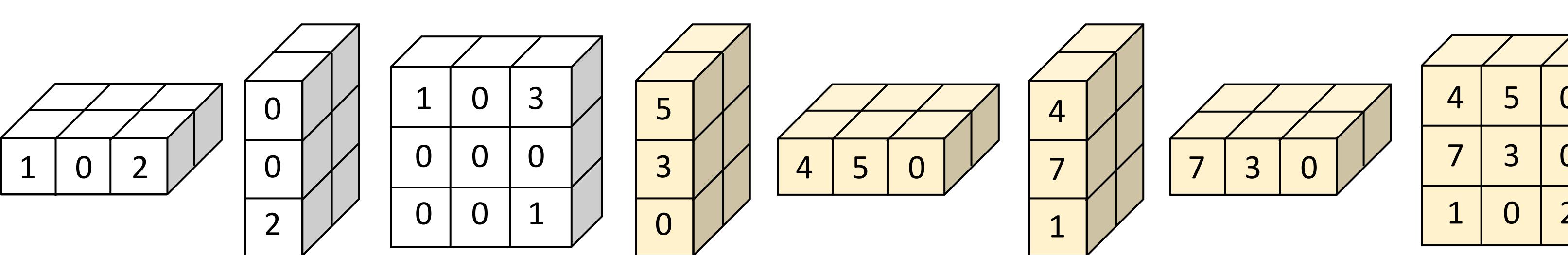


D-ordering

- Greedy Shaving**: repeatedly removing a slice with the minimum mass in the remaining tensor



- D-ordering**: the order by which Greedy Shaving removes the slices



- **Accuracy guarantee**: Let i^* be the index i maximizing the density of $S(i)$. Then,

$$\text{Density of } S(i^*) \geq \frac{\text{Density of the densest subtensor}}{\text{Order of the input tensor}}$$

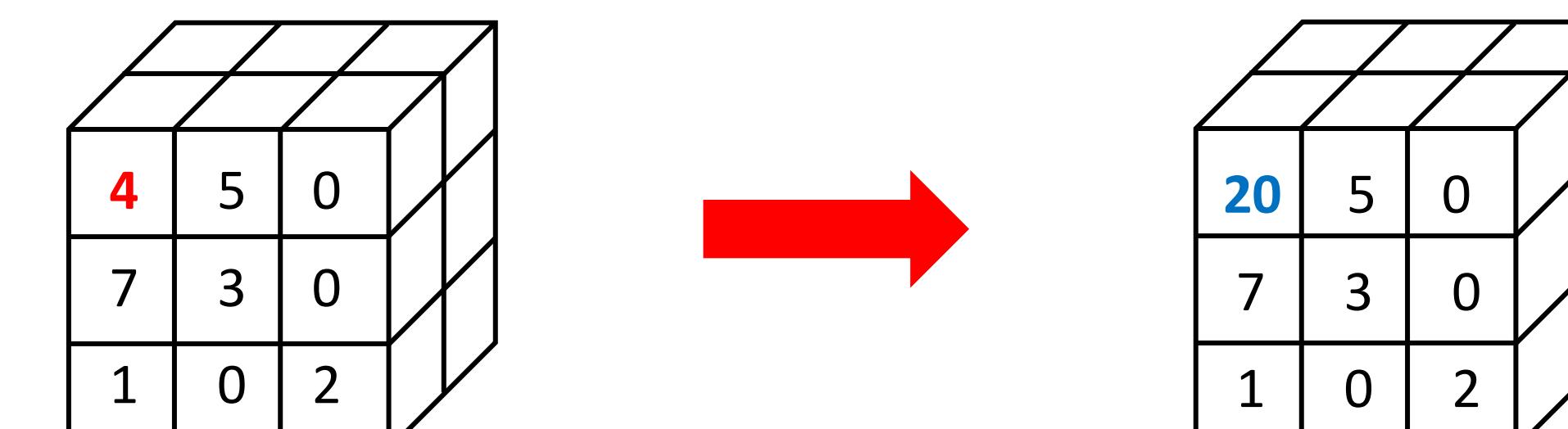
- **Speed guarantee of D-ordering**: Given a D-ordering and the mass when each slice is removed, finding such i^* and the density of $S(i^*)$ takes $O(\# \text{ slices})$

Proposed Algorithm 1: DenseStream

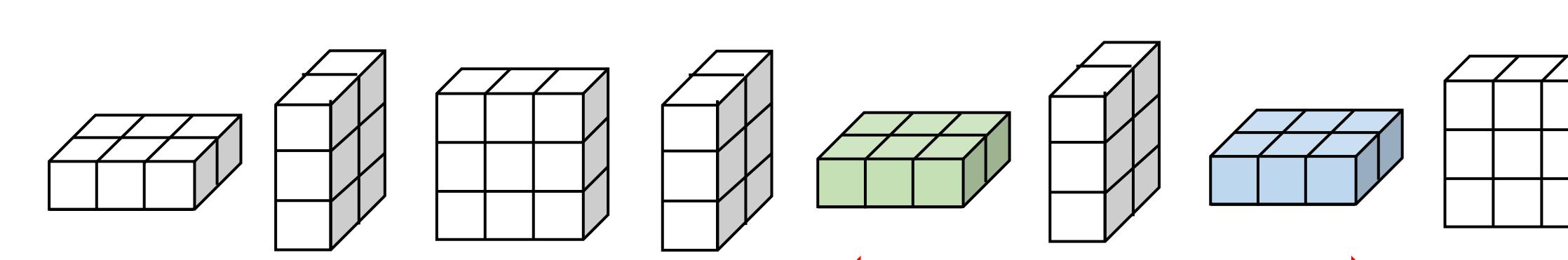
- Goal: to maintain a dense subtensor (by maintaining a D-ordering) while the input tensor changes

Procedure of DenseStream:

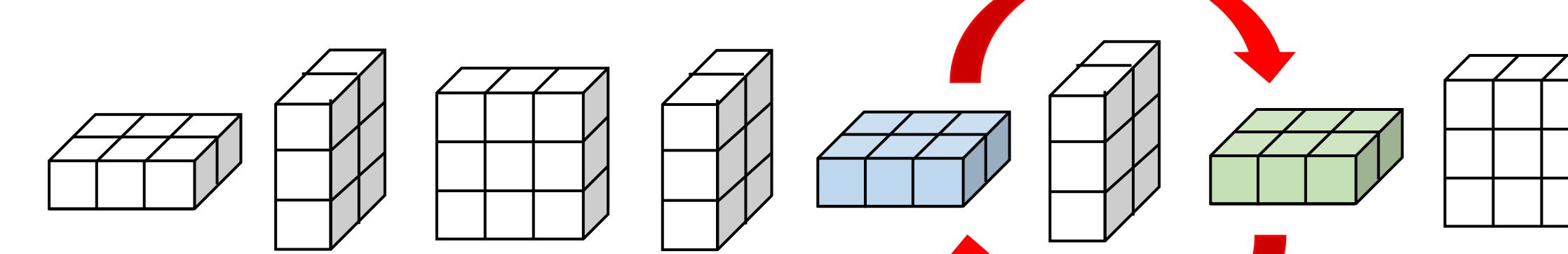
Given a change (increment or decrement) in the input dynamic tensor,



- (1) Find a minimum range of D-ordering that needs to be reordered



- (2) Reorder the range found in (1)



- (3) Update a dense subtensor from the reordered D-ordering if needed

Accuracy guarantee of DenseStream:

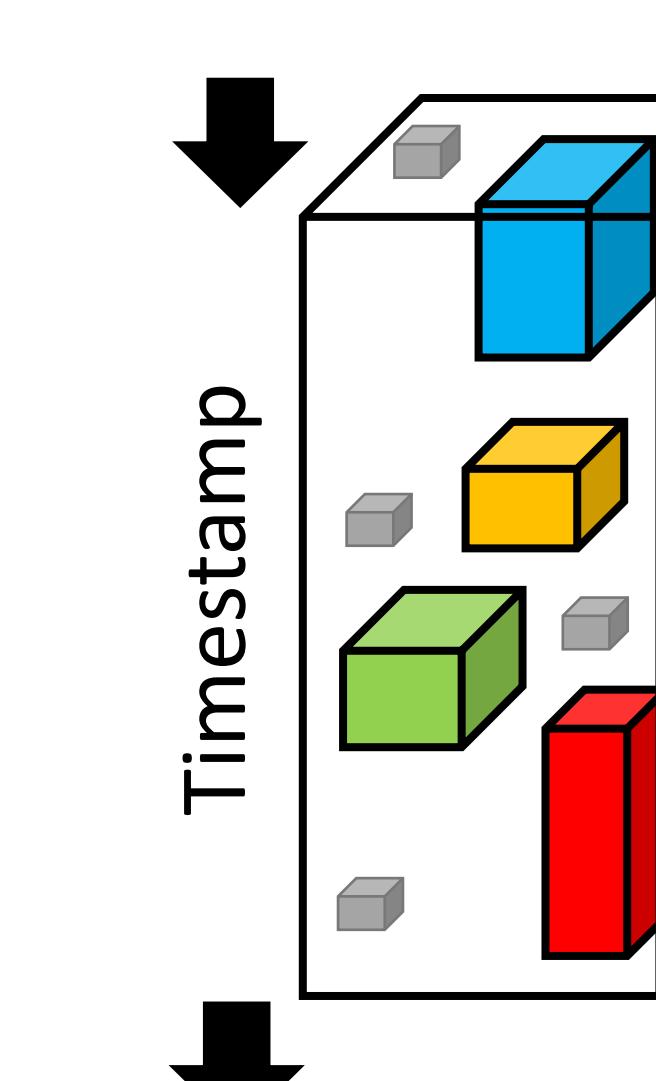
$$\frac{\text{Density of the subtensor maintained by DenseStream}}{\text{Order of the input tensor}} \geq \frac{\text{Density of the densest subtensor}}{\text{Order of the input tensor}}$$

- Speed of DenseStream**: Reordering by DenseStream is several orders of magnitude faster than computing a D-ordering from scratch

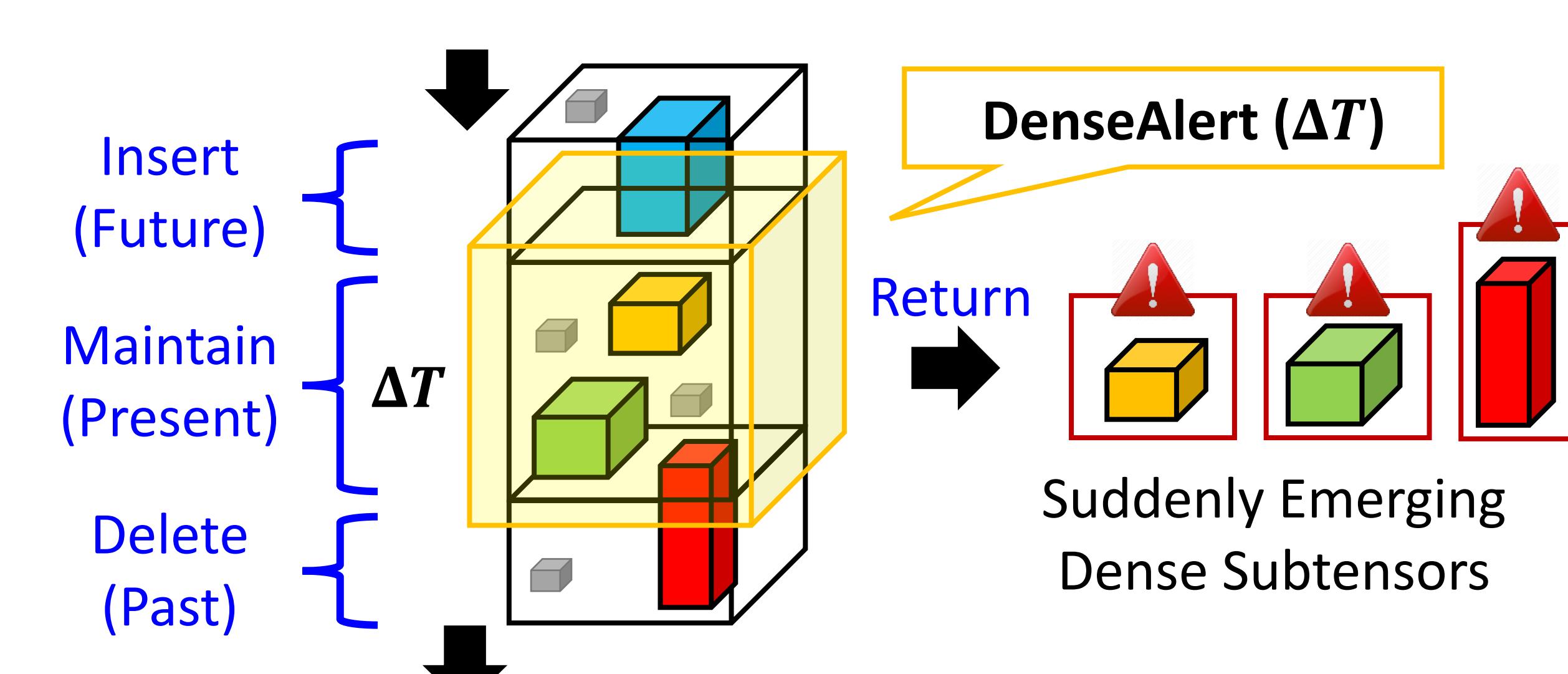
Proposed Algorithm 2: DenseAlert

- Goal: to detect *suddenly appearing dense* subtensors by maintaining a dense subtensor created within the latest ΔT time units in a timed tensor

(a) timed tensor



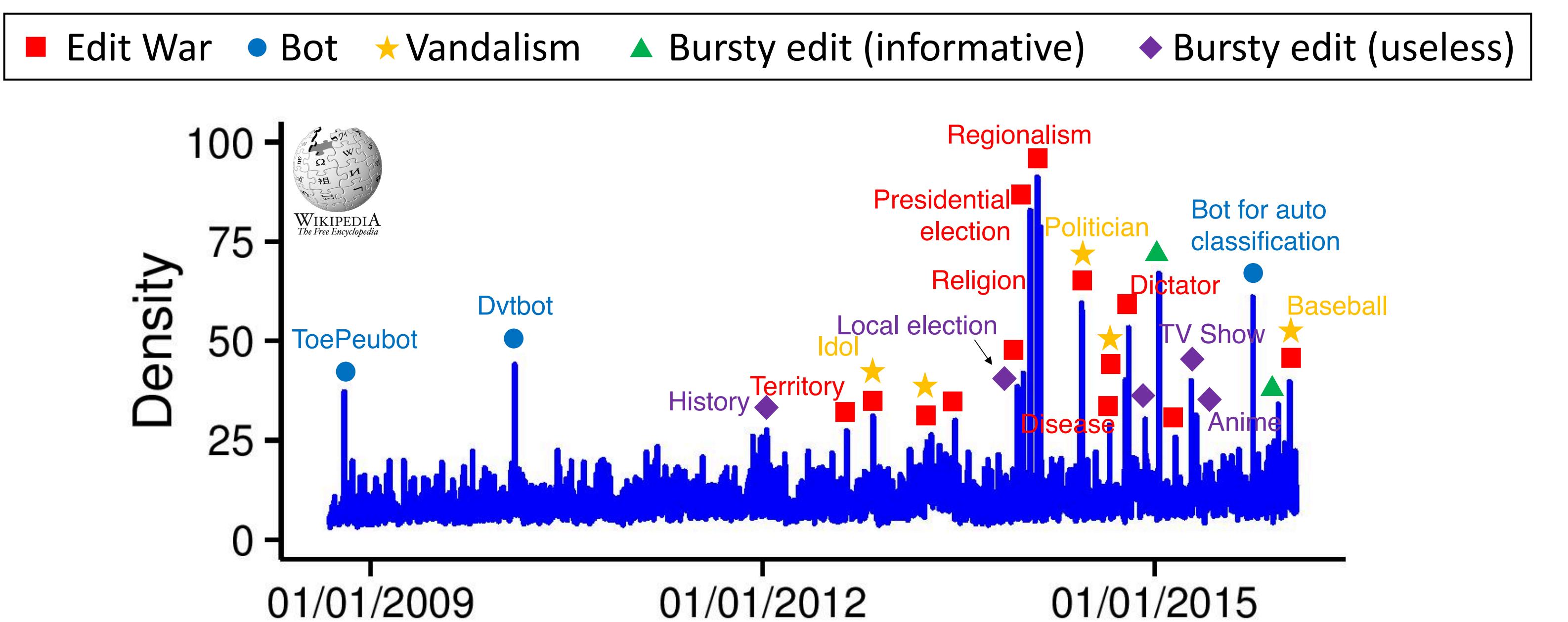
(b) DenseAlert



Experimental Results

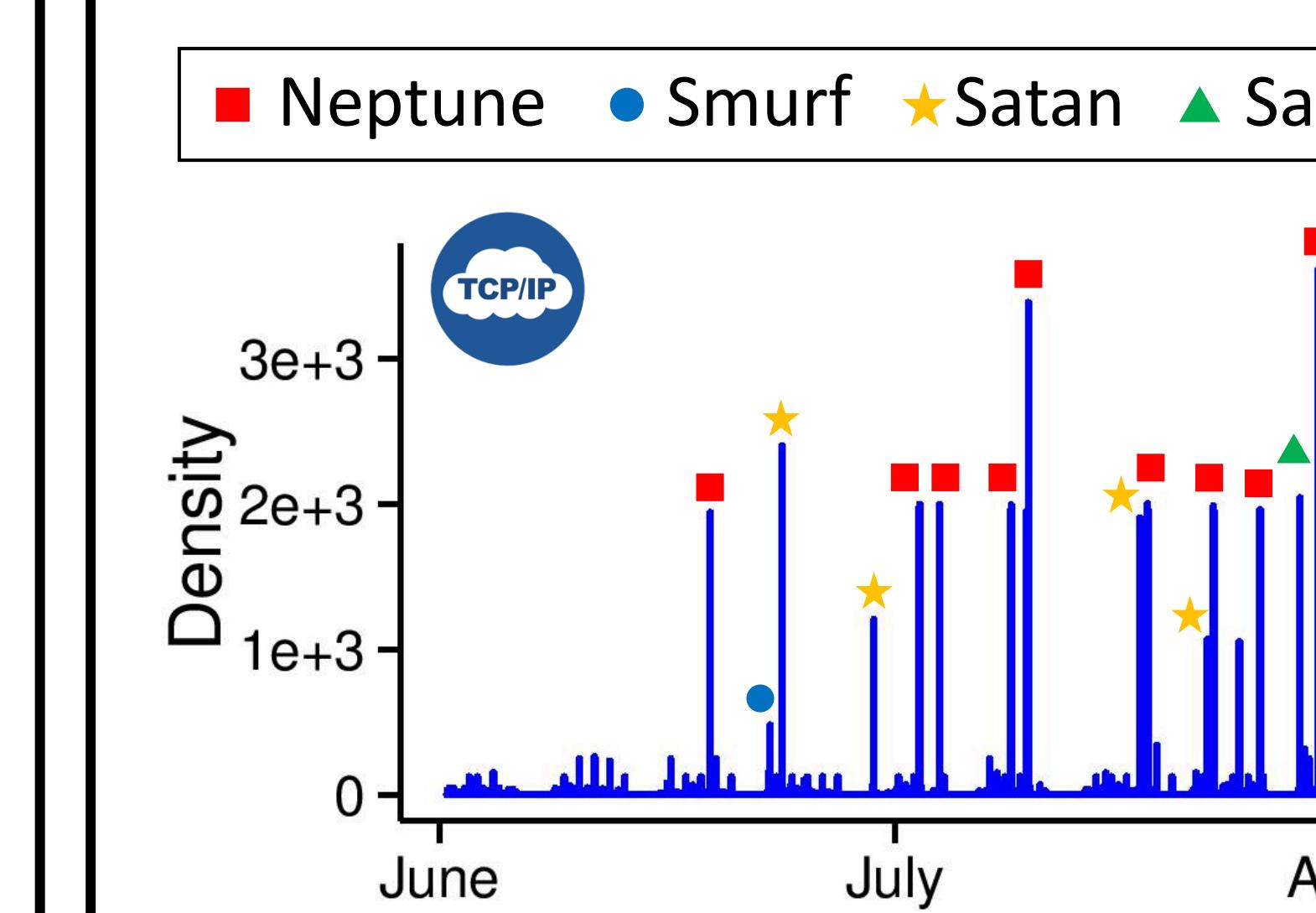
- Q1 Effectiveness**: what does DenseAlert detect in real-world tensors?

(1) Wikipedia revision history (users X pages X timestamps)



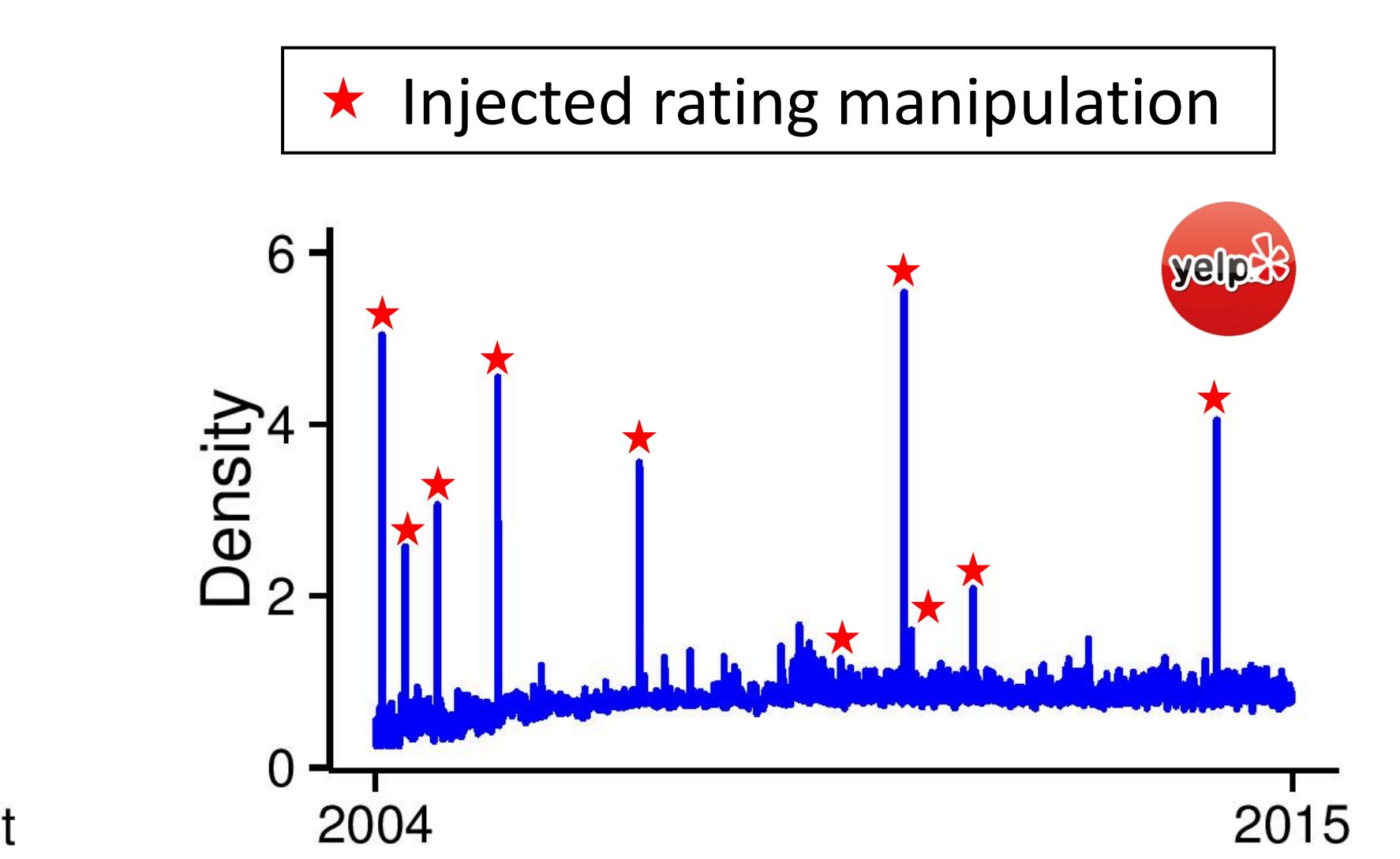
(2) TCP Dump

(source IPs X target IPs X timestamps)



(3) Rating Data

(users X businesses X ratings X timestamps)



- Q2 Speed**: How fast are updates by DenseStream compared to batch algorithms?
- Q3 Accuracy**: How accurately does DenseStream maintain a dense subtensor?

DenseStream (decrement) (increment)
M-Zoom (green) CPD (yellow) MAF (purple) CrossSpot (black)

DenseStream (red) M-Zoom (blue) CPD (green) MAF (orange) CrossSpot (purple)

