# Mining Large Dynamic Graphs and Tensors

Kijung Shin

Ph.D. Candidate

Carnegie Mellon University

(kijungs@cs.cmu.edu)

#### **Thesis Committee**

- Prof. Christos Faloutsos (Chair)
- Prof. Tom M. Mitchell
- Prof. Leman Akoglu
- Prof. Philip S. Yu









# What Do Real Graphs Look Like?

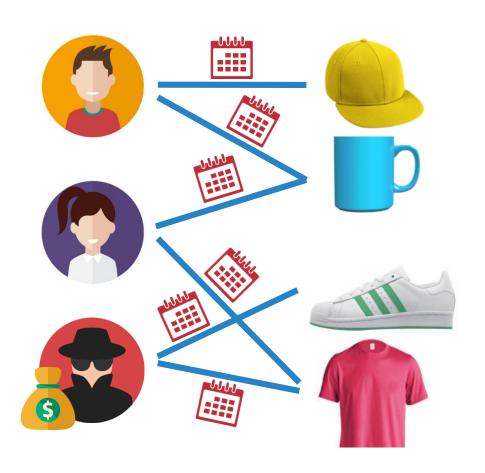
 Part 1 (Chapters 3 - 8) facebook **WhatsApp** Linked in

#### **How to Spot Anomalies?**

 Part 2 (Chapters 9 - 13) facebook **WhatsApp** Linked in

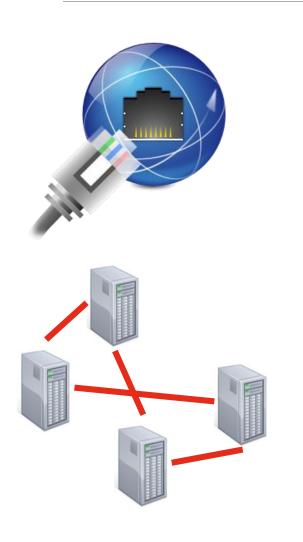
#### **How to Model Behavior?**

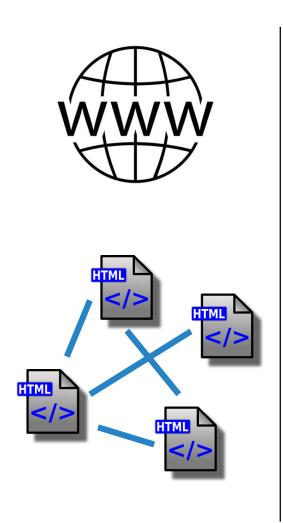
Part 3 (Chapters 14 - 15)

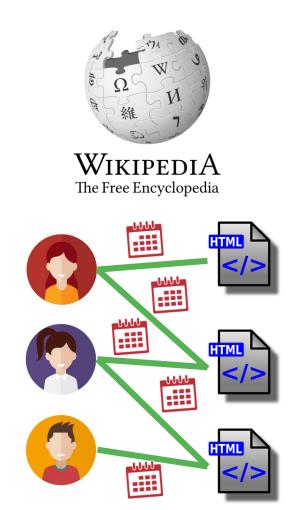




# **Graphs are Everywhere!**







# **Graphs are Large and Dynamic**

• Large: many nodes, more edges



40B+ web pages



2B+ active users



500M+ products



5M+ articles

Dynamic: additions/deletions of nodes and edges

**Follow** 

**Unfollow** 

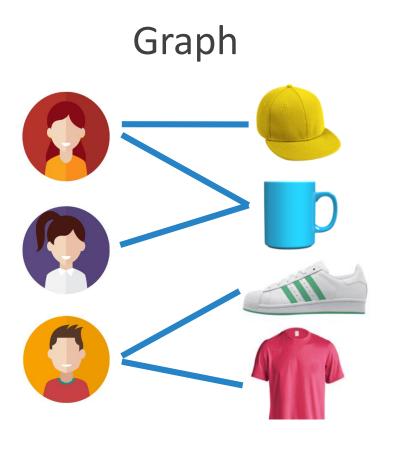


#### .. and with Rich Side Information

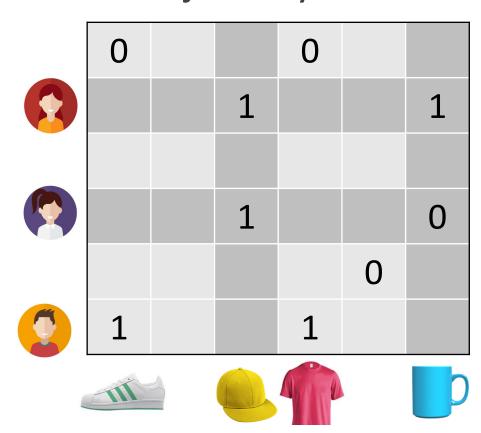
Rich: timestamps, scores, text, etc.



# Simple Graphs are Matrices

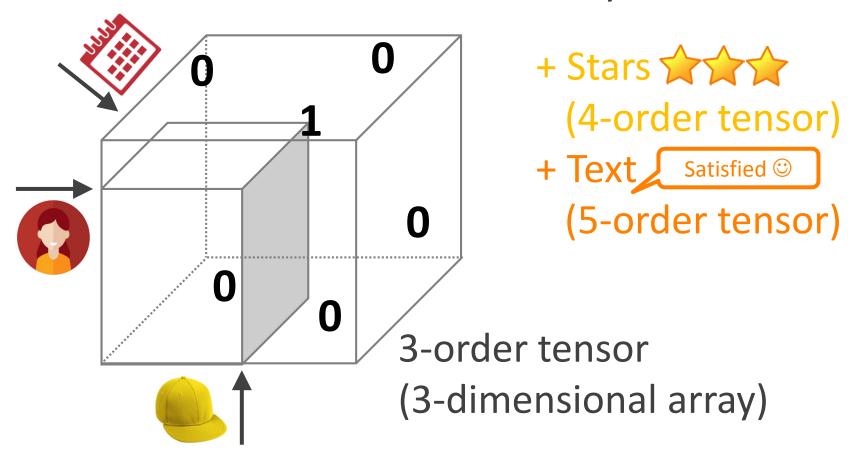


#### **Adjacency Matrix**



#### Rich Graphs are Tensors

• Tensors: multi-dimensional array



#### **Thesis Goal and Focus**

• Goal:

To Fully Understand and Utilize
Large Dynamic *Graphs* and *Tensors*on *User Behavior* 

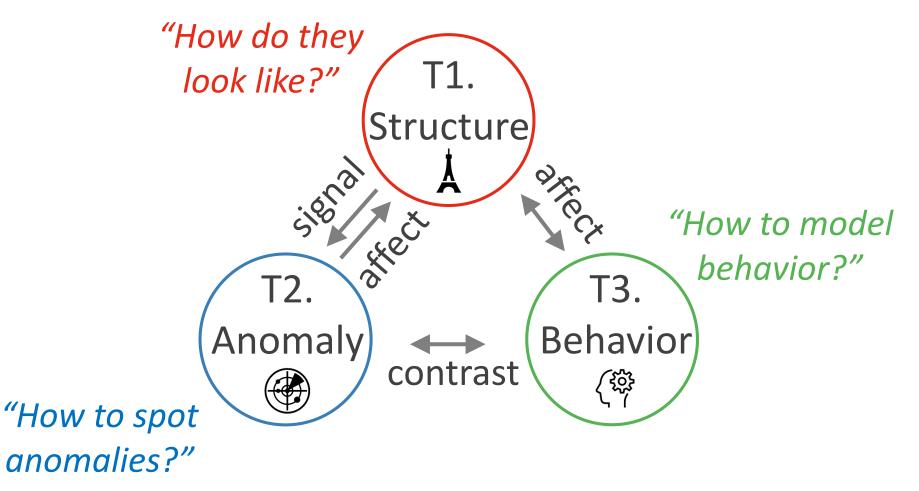
- Our Focus: To Develop Scalable Algorithms for
  - T1. Structure Analysis (Part 1)
  - T2. Anomaly Detection (Part 2)
  - T3. Behavior Modeling (Part 3)





#### **Tasks and Their Relation**

Given large dynamic graphs or tensors,



# **Our Tools for Scalability**



We design (sub) linear algorithms

Approx. Sampling Streaming Out-of-core Parallel











Running on big data platforms





- Exploiting empirical patterns in data
  - locality, power-laws, etc.

## **Organization of the Thesis**

|         | Part1. Structure Analysis         | Part2. Anomaly Detection                  | Part3. Behavior Modeling |  |  |
|---------|-----------------------------------|-------------------------------------------|--------------------------|--|--|
| Graphs  | Triangle Count<br>(§§ 3-6)        | Anomalous<br>Subgraph                     | Purchase<br>Behavior     |  |  |
|         | Summarization (§7)                | (§ 9)                                     | (§ 14)                   |  |  |
| Tensors | Chapter<br>Summarization<br>(§ 8) | Dense Subtensors<br>§§ 10-13)<br>Chapters | Progression<br>(§ 15)    |  |  |

#### **Focuses of This Presentation**

|         | Part1. Structure Analysis | Part2. Anomaly Detection | Part3. Behavior Modeling |  |
|---------|---------------------------|--------------------------|--------------------------|--|
| Graphs  | Triangle Count            | Anomalous                | Purchase                 |  |
|         | (§§ 3-6)                  | Subgraph                 | Behavior                 |  |
|         | Summarization (§ 7)       | (§ 9)                    | (§ 14)                   |  |
| Tensors | Summarization             | Dense Subtensors         | Progression              |  |
|         | (§ 8)                     | (§§ 10-13)               | (§ 15)                   |  |

#### Roadmap



T1. Structure Analysis (Part 1) <<</li>



T2. Anomaly Detection (Part 2)



ि • T3. Behavior Modeling (Part 3)

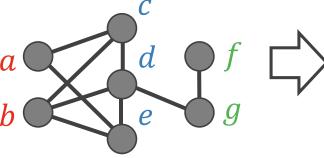
- Future Directions
- Conclusion



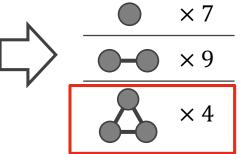
# T1. Structure Analysis (Part 1)

"Given a large graph (or tensor), how can we analyze its structure?

#### Input graph



#### **Basic statistics**



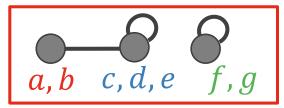
#### **Structure measures**

- density
- clustering coefficients
- transitivity ratio
- triangle connectivity



**T1-1.** Triangle Counting

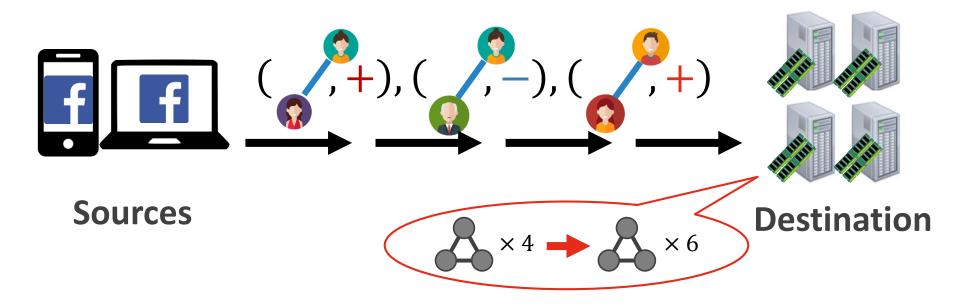
Summary graph



T1-2. Summarization

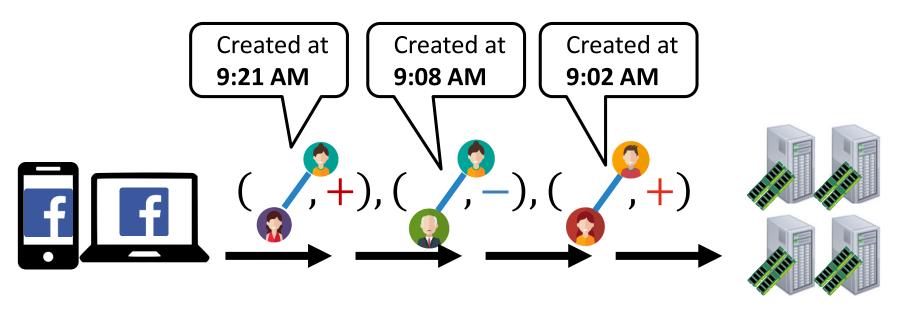
# T1-1. Triangle Counting (§§ 4-6)

"Given a large dynamic graph, how can we track the count of triangles accurately with sub-linear memory?"



# T1-1. Triangle Counting (§§ 4-6)

How can we exploit temporal patterns? (§4)



**Sources** 

**Destination** 

How can we handle removed edges? (§6)



How can we make good use of multiple machines? (§5)

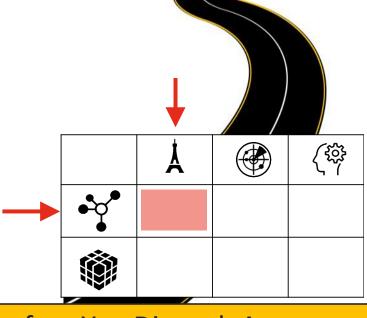
#### Roadmap



- T1. Structure Analysis (Part 1)
  - T1.1 Triangle Counting
    - Handling Deletions (§6) <<</p>



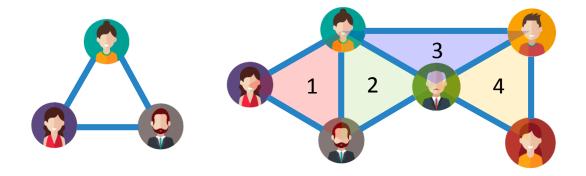
- T2. Anomaly Detection (Part 2)
- र्भि T3. Behavior Modeling (Part 3)
  - Future Directions
  - Conclusions



K. Shin, J. Kim B. Hooi, C. Faloutsos, "Think before You Discard: Accurate Triangle Counting in Graph Streams with Deletions", ECML/PKDD 2018

#### **Triangles in a Graph**

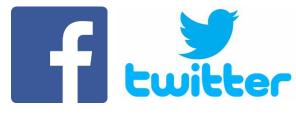
- A triangle is 3 nodes connected to each other
- The count of triangles is an important primitive
  - Applications:
    - community detection, spam detection, link prediction
  - Structure measures:
    - transitivity ratio, clustering coefficients, trussness





# **Remaining Challenge**

- Counting triangles in real-world graphs
  - Large: not fitting in main memory
  - Fully dynamic: both growing and shrinking



Online social networks









#### **Previous Work**



- Given: a large and fully-dynamic graph
- To estimate: the count of triangles accurately

|                      | Large       | Fully dyna | Accurato  |             |
|----------------------|-------------|------------|-----------|-------------|
|                      | Graph       | Growing    | Shrinking | Accurate    |
| MASCOT [LJK18]       | <b>&gt;</b> | <b>/</b>   |           | <b>/</b>    |
| Triest-IMPR [DERU17] | >           | <b>/</b>   |           | <b>&lt;</b> |
| WRS [Shi17]          | >           | <b>/</b>   |           | <b>&lt;</b> |
| ESD [HS17]           |             | <b>/</b>   | <b>/</b>  |             |
| Triest-FD [DERU17]   | <b>&gt;</b> | <b>/</b>   | <b>/</b>  |             |
| ThinkD (Proposed)    | <b>/</b>    | <b>/</b>   | <b>✓</b>  | <b>/</b>    |



#### **Our Contribution: ThinkD**

We develop ThinkD (Think before You Discard):

Fast & Accurate: outperforming competitors

Scalable: linear data scalability

\_\_\_\_ Theoretically Sound: unbiased estimates

#### Roadmap



- T1. Structure Analysis (Part 1)
  - T1.1 Triangle Counting
    - Handling Deletions (§6)
      - Problem Definition <<</li>
      - Proposed Method: ThinkD
      - Experiments

•

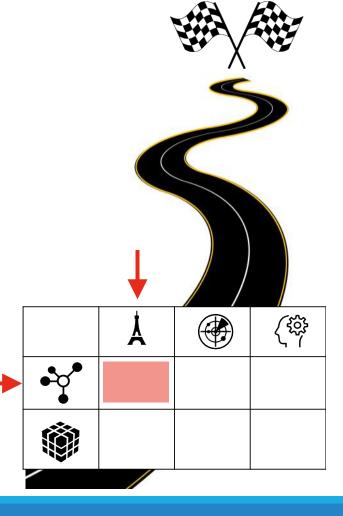


T2. Anomaly Detection (Part 2)



T3. Behavior Modeling (Part 3)





- Our model for a large and fully-dynamic graph
- Discrete time t, starting from 1 and ever increasing
- At each time t, a change in the input graph arrives
  - change: either an insertion or deletion of an edge

| Time t                         | 1      |  |  |  |
|--------------------------------|--------|--|--|--|
| Change<br>(given)              | +(a,b) |  |  |  |
| Graph<br>(unmate<br>-rialized) | a b    |  |  |  |



- Our model for a large and fully-dynamic graph
- Discrete time t, starting from 1 and ever increasing
- At each time t, a change in the input graph arrives
  - change: either an insertion or deletion of an edge

| Time t                   | 1      | 2      |  |  |
|--------------------------|--------|--------|--|--|
| <b>Change</b> (given)    | +(a,b) | +(a,c) |  |  |
| Graph (unmate -rialized) | a b    | a b    |  |  |



- Our model for a large and fully-dynamic graph
- Discrete time t, starting from 1 and ever increasing
- At each time t, a change in the input graph arrives
  - change: either an insertion or deletion of an edge

| Time t                   | 1      | 2      | 3      |  |  |
|--------------------------|--------|--------|--------|--|--|
| <b>Change</b> (given)    | +(a,b) | +(a,c) | +(b,c) |  |  |
| Graph (unmate -rialized) | a b    | a b    | a b    |  |  |



- Our model for a large and fully-dynamic graph
- Discrete time t, starting from 1 and ever increasing
- At each time t, a change in the input graph arrives
  - change: either an insertion or deletion of an edge

| Time t                   | 1      | 2      | 3      | 4                 |  |
|--------------------------|--------|--------|--------|-------------------|--|
| <b>Change</b> (given)    | +(a,b) | +(a,c) | +(b,c) | -(a,b)            |  |
| Graph (unmate -rialized) | a b    | a b    | a b    | $a \rightarrow b$ |  |



- Our model for a large and fully-dynamic graph
- Discrete time t, starting from 1 and ever increasing
- At each time t, a change in the input graph arrives
  - change: either an insertion or deletion of an edge

| Time t                         | 1      | 2      | 3      | 4                 | 5                                              | ••• |
|--------------------------------|--------|--------|--------|-------------------|------------------------------------------------|-----|
| Change<br>(given)              | +(a,b) | +(a,c) | +(b,c) | -(a,b)            | +(b, d)                                        | ••• |
| Graph<br>(unmate<br>-rialized) | a b    | a b    | a b    | $a \rightarrow b$ | $\begin{bmatrix} c & d \\ a & b \end{bmatrix}$ | ••• |



- Our model for a large and fully-dynamic graph
- Discrete time t, starting from 1 and ever increasing
- At each time t, a change in the input graph arrives
  - change: either an insertion or deletion of an edge

| Time t                          | 1      | 2                                                                        | 3         | 4      | 5       | ••• |
|---------------------------------|--------|--------------------------------------------------------------------------|-----------|--------|---------|-----|
| <b>Change</b> (given)           | +(a,b) | +(a,c)                                                                   | +(b,c)    | -(a,b) | +(b, d) | ••• |
| <b>Graph</b> (unmate -rialized) | a b    | $ \begin{array}{c c} c & \\ Not M \\ \tilde{a} & \tilde{b} \end{array} $ | aterializ | zed b  | a $b$   |     |



#### **Problem Definition**

- Given:
  - a fully-dynamic graph stream (possibly infinite)
  - memory space (finite)
- Estimate: the count of triangles
- To Minimize: estimation error

| Time t      | 1      | 2      | 3      | 4      | 5       | • • • | Civon             |
|-------------|--------|--------|--------|--------|---------|-------|-------------------|
| Changes     | +(a,b) | +(a,c) | +(b,c) | -(a,b) | +(b, d) | •••   | Given (input)     |
| # Triangles | ****** | *(3)*  | ****** | ****** | *****   | •••   | Estimate (output) |



#### Roadmap



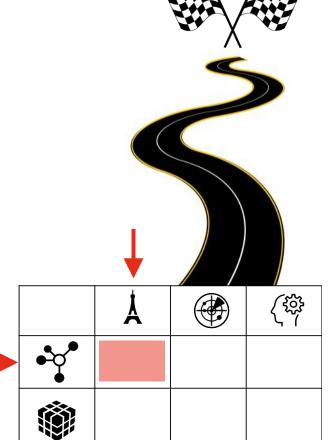
- T1. Structure Analysis (Part 1)
  - T1.1 Triangle Counting
    - Handling Deletions (§6)
      - Problem Definition
      - Proposed Method: ThinkD <<</li>
      - Experiments



T2. Anomaly Detection (Part 2)



- 〈鈴•T3. Behavior Modeling (Part 3)
  - Future Directions
  - Conclusions

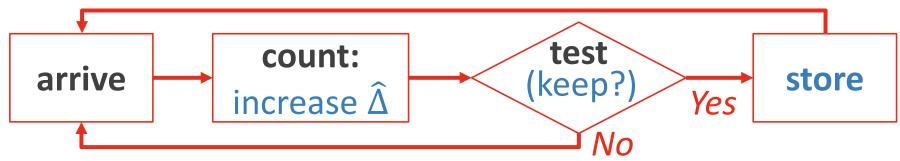






#### **Overview of ThinkD**

- Maintains and updates  $\widehat{\Delta}$ 
  - Number of (non-deleted) triangles that it has observed
- How it processes an insertion:

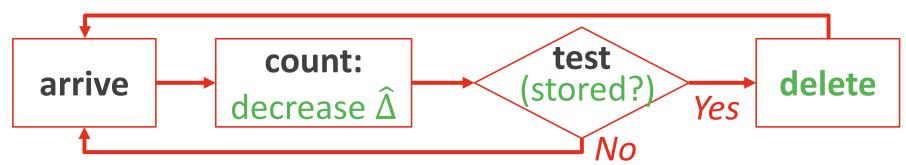


- arrive: an insertion of an edge arrives
- count: count new triangles and increase  $\hat{\Delta}$
- test: toss a coin
- store: store the edge in memory



#### Overview of ThinkD (cont.)

- Maintains and updates  $\widehat{\Delta}$ 
  - Number of (non-deleted) triangles that it has observed
- How it processes an deletion:

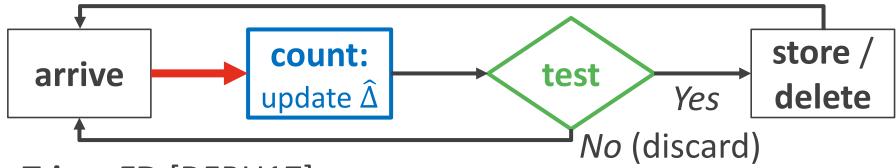


- arrive: a deletion of an edge arrives
- count: count deleted triangles and decrease  $\widehat{\Delta}$
- test: test whether the edge is stored in memory
- delete: delete the edge in memory

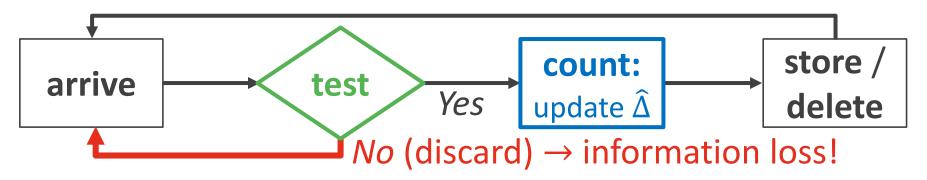


#### Why is ThinkD Accurate?

- ThinkD (Think before You Discard):
  - **every** arrived change is used to update  $\widehat{\Delta}$



- Triest-FD [DERU17]:
  - $^{\circ}$  **some** changes are discarded without being used to update  $\widehat{\Delta}$



#### Two Versions of ThinkD



Q1: How to **test** in the test step

Q2: How to **estimate** the count of all triangles from  $\hat{\Delta}$ 



- ThinkD-FAST: simple and fast
  - $\circ$  independent Bernoulli trials with probability p



- ThinkD-ACC: accurate and parameter-free
  - random pairing [GLH08]

# **Unbiasedness of ThinkD-FAST**

- $\frac{\hat{\Delta}}{p^2}$ : estimated count of *all triangles*
- $\Delta$ : true count of *all triangles*

[ Theorem 1 ] At any time t,

$$\mathbb{E}\left[\left|\frac{\widehat{\Delta}}{p^2}\right|\right] = \Delta$$

Unbiased estimate of **4** 

• Proof and a variance of  $\hat{\Delta}/p^2$ : see the thesis



#### **ThinkD-ACC: More Accurate**

- Disadvantage of ThinkD-FAST:
  - setting the parameter p is not trivial
    - •small  $p \rightarrow$  underutilize memory
      - → *inaccurate* estimation
    - •large  $p \rightarrow out$ -of-memory error





- ThinkD-ACC uses Random Pairing [RLH08]
  - always utilizes memory as fully as possible
  - gives more accurate estimation

- Let k be the size of memory
- For processing t changes in the input stream,

[ Theorem 2 ] The time complexity of ThinkD-ACC is

$$O(k \cdot t)$$
 linear in data size

[ Theorem 3 ] If 
$$p = O\left(\frac{k}{t}\right)$$
,

the time complexity ThinkD-FAST is

$$O(k \cdot t)$$





# **Advantages of ThinkD**

- Fast & Accurate: outperforming competitors
- Scalable: linear data scalability (Theorems 2 & 3)
- Theoretically Sound: unbiased estimates (Theorem 1)

## Roadmap



- T1. Structure Analysis (Part 1)
  - T1.1 Triangle Counting
    - Handling Deletions (§6)
      - Problem Definition
      - Proposed Method: ThinkD
      - Experiments <<</li>

•

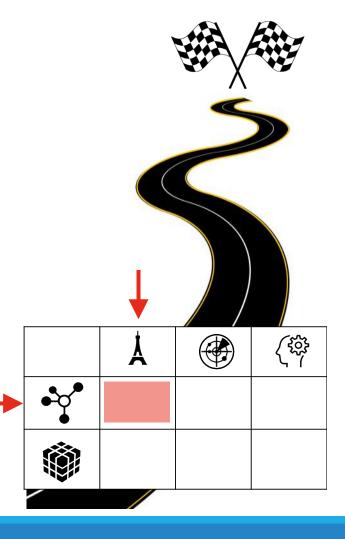


T2. Anomaly Detection (Part 2)



• T3. Behavior Modeling (Part 3)





### **Experimental Settings**

- Competitors: Triest-FD [DERU17] & ESD [HS17]
  - triangle counting in fully-dynamic graph streams
- Implementations:



- Datasets:
  - insertions (edges in graphs) + deletions (random 20%)















Synthetic (100B edges)



Social Networks (1.8B+ edges, ...)

Citation (16M+)

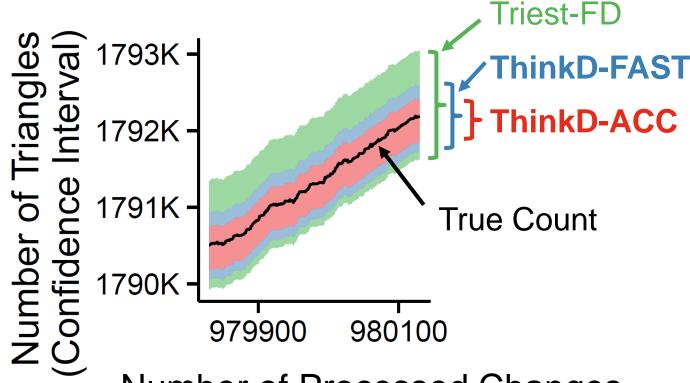
Web (6M+)

Trust (0.7M+)



## **EXP1. Variance Analysis**

ThinkD is accurate with small variance



**Number of Processed Changes** 

- dataset:

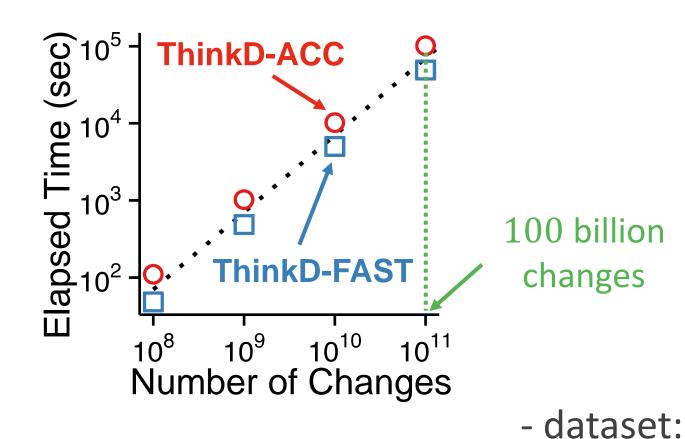






## EXP2. Scalability [THM 2 & 3]

ThinkD is scalable

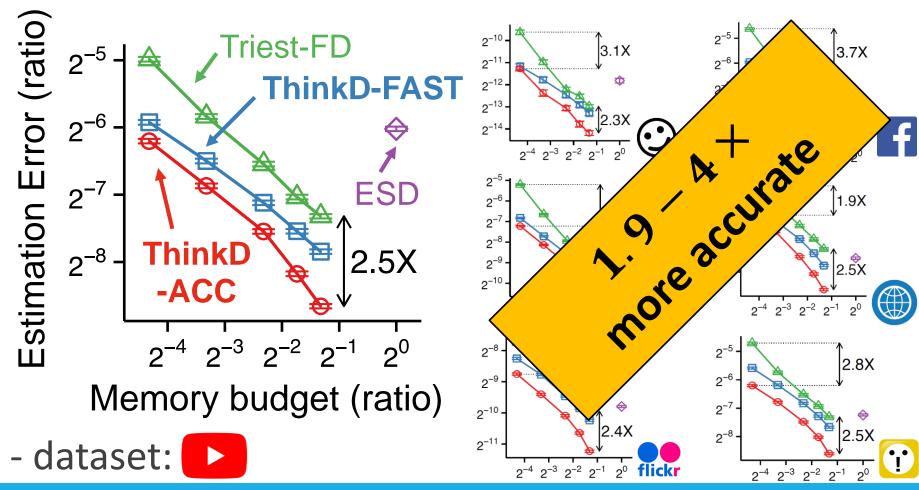






#### **EXP3. Space & Accuracy**

ThinkD outperforms its best competitors

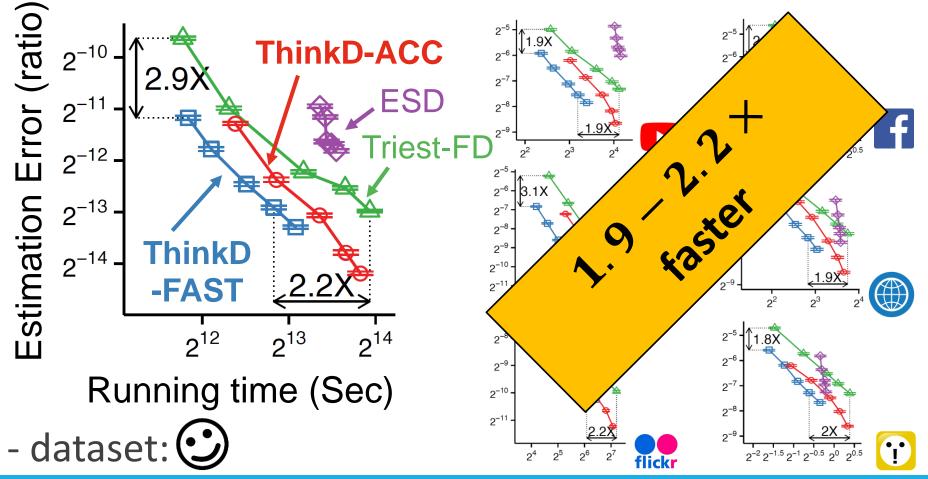






## **EXP4. Speed & Accuracy**

ThinkD outperforms its best competitors







# **Advantages of ThinkD**

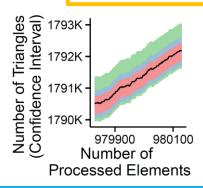


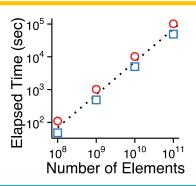
Scalable: linear data scalability

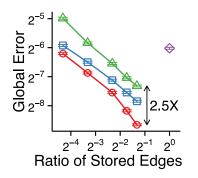
Theoretically Sound: unbiased estimates

# **Summary of §6**

- We propose ThinkD (Think Before you Discard)
  - for accurate triangle counting
  - in *large* and *fully-dynamic* graphs
- Fast & Accurate: outperforming competitors
- Scalable: linear data scalability
- Theoretically Sound: unbiased estimates









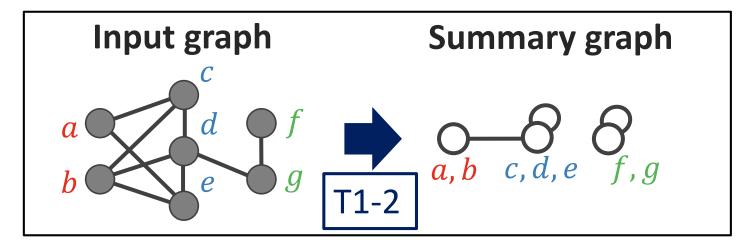
Download ThinkD

# Organization of the Thesis (Recall)

|         | Part1. Structure Analysis                 | Part2. Anomaly Detection       | Part3. Behavior Modeling       |
|---------|-------------------------------------------|--------------------------------|--------------------------------|
| Graphs  | Triangle Court<br>(§§ 3-6)  Summarization | Anomalous<br>Subgraph<br>(§ 9) | Purchase<br>Behavior<br>(§ 14) |
| Tensors | (§ 7) Summarization (§ 8)                 | Dense Subtensors<br>(§§ 10-13) | Progression<br>(§ 15)          |

#### **T1.2 Summarization**

"Given a web-scale graph or tensor, how can we succinctly represent it?"



• §7: Summarizing **Graphs** 



- §8: Summarizing Tensors (via Tucker Decomposition)
  - External-memory algorithm with 1,000× improved scalability

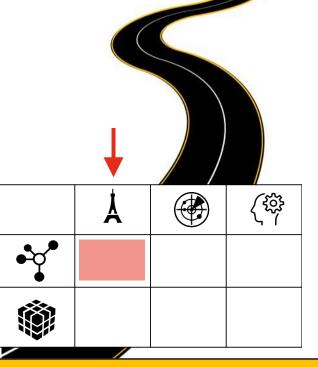
# Roadmap



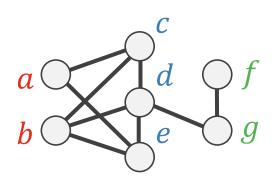
- T1. Structure Analysis (Part 1)
  - 0
  - T1-2. Summarization (§§ 7-8)
    - Summarizing Graphs (§ 7)
      - Problem Definition <<</li>
      - Proposed Method: SWeG
      - Experiments
    - • •

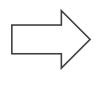


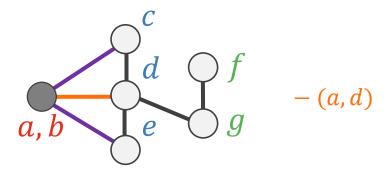
- T2. Anomaly Detection (Part 2)
- ि T3. Behavior Modeling (Part 3)
  - •



# **Graph Summarization: Example**





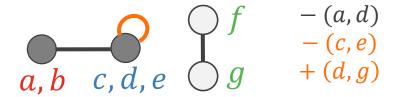


Input Graph (w/ 9 edges)



$$-(a,d)$$
 $-(c,e)$ 
 $a,b$ 
 $c,d,e$ 
 $f,g$ 
 $+(d,g)$ 

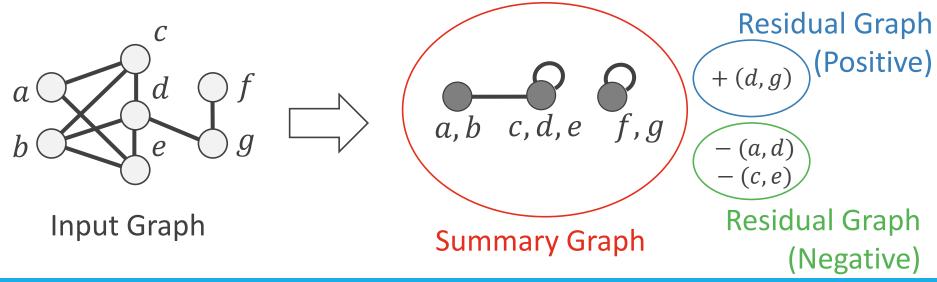




Output (w/ 6 edges)

# **Graph Summarization [NRS08]**

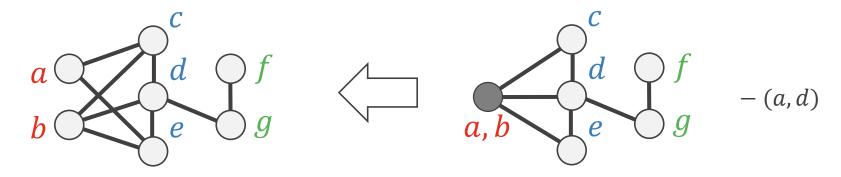
- Given: an input graph
- Find:
  - a summary graph
  - positive and negative residual graphs
- To Minimize: the edge count (≈ description length)



#### **Restoration: Example**

Summarized Graph (w/ 6 edges)





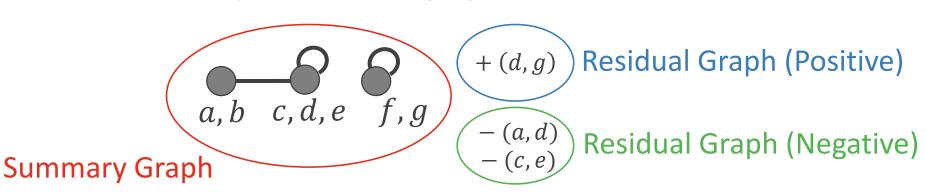
Restored Graph (w/ 9 edges)

# Why Graph Summarization?

- Summarization:
  - the summary graph is easy to visualize and interpret
- Compression:
  - support efficient neighbor queries
  - applicable to lossy compression

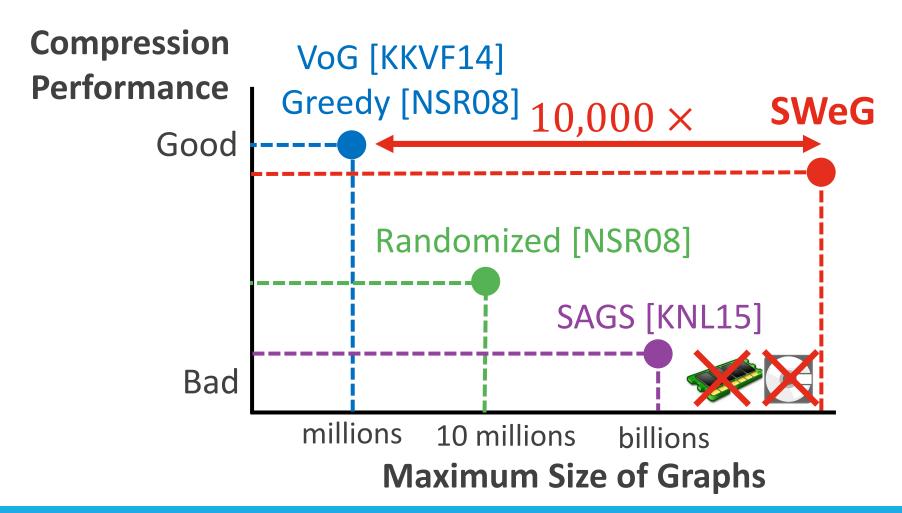
discussed in the thesis

- combinable with other graph compression techniques
  - the outputs are also graphs





# **Challenge: Scalability!**



#### **Our Contribution: SWeG**

We develop SWeG (Summarizing Web-scale Graphs):

Fast with Concise Outputs

Memory Efficient

Scalable

# Roadmap



- T1. Structure Analysis (Part 1)

  - T1-2. Summarization (§§ 7-8)
    - Summarizing Graphs (§ 7)
      - Problem Definition
      - Proposed Method: SWeG <<</li>
      - Experiments

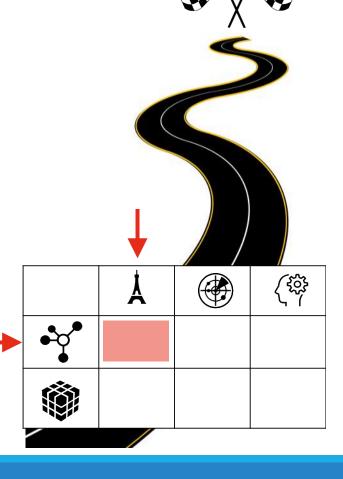


T2. Anomaly Detection (Part 2)



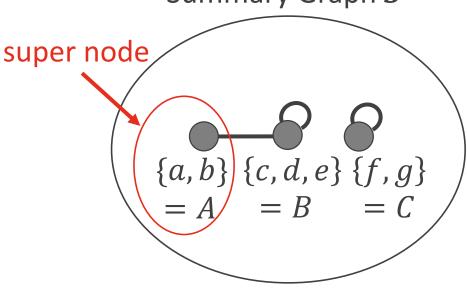
〈약·T3. Behavior Modeling (Part 3)



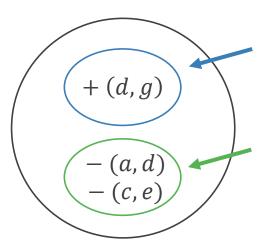


## **Terminologies**

Summary Graph S



Residual Graph R



Positive Residual Graph  $R^+$ 

Negative Residual Graph *R*<sup>-</sup>

Encoding cost when *A* and *B* are **merged** 

 $Saving(A, B) := 1 - \frac{Cost(A \cup B)}{Cost(A) + Cost(B)}$ 

Encoding cost of A

Encoding cost of B



#### Overview of SWeG

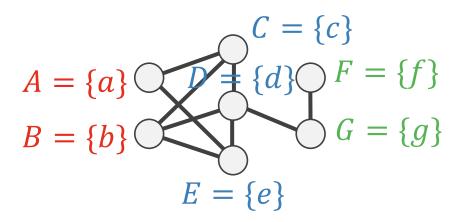
- Inputs: input graph G
  - number of iterations T
- Outputs: summary graph S
  - residual graph R (or  $R^+$  and  $R^-$ )
- Procedure:
  - S0: Initializing Step
  - repeat T times
    - S1-1: Dividing Step
    - S1-2: Merging Step
  - S2: Compressing Step (optional)



# **Overview: Initializing Step**

Summary Graph S = G

Residual Graph  $R = \emptyset$ 



- S0: Initializing Step <<</li>
- repeat T times
  - S1-1: Dividing Step
  - S1-2: Merging Step
- S2: Compressing Step (optional)



# **Overview: Dividing Step**

- Divides super nodes into groups
  - MinHashing (used), EigenSpoke, Min-Cut, etc.

$$C = \{c\} \bigcirc$$

$$A = \{a\} \bigcirc$$

$$B = \{b\} \bigcirc$$

$$D = \{d\}$$

$$E = \{e\}$$

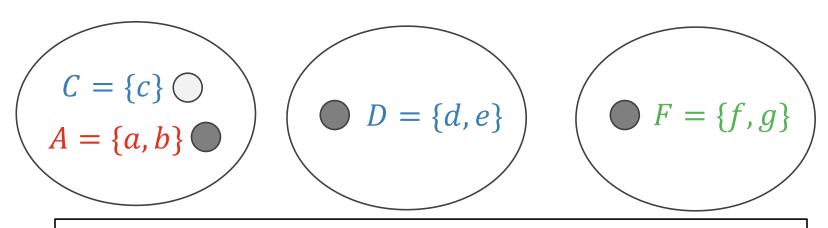
$$G = \{g\}$$

- S0: Initializing Step
- repeat T times
  - S1-1: Dividing Step <<</li>
  - S1-2: Merging Step
- S2: Compressing Step (optional)



# **Overview: Merging Step**

• Merge some supernodes within each group if  $Saving > \theta^{(t)}$ 



- S0: Initializing Step
- repeat T times
  - S1-1: Dividing Step
  - S1-2: Merging Step <<</li>
- S2: Compressing Step (optional)



# Overview: Merging Step (cont.)

Summary Graph S

Residual Graph R

$$A = \{a, b\}$$

$$F = \{f, g\}$$

$$D = \{d, e\}$$

$$+ (d, g)$$

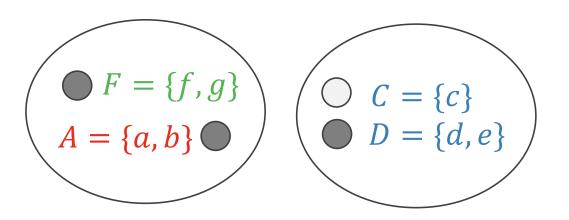
$$- (a, d)$$

- S0: Initializing Step
- repeat T times
  - S1-1: Dividing Step
  - S1-2: Merging Step
- S2: Compressing Step (optional)



# **Overview: Dividing Step**

Divides super nodes into groups

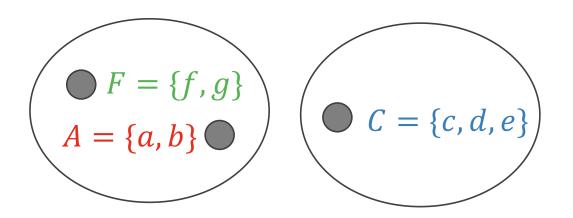


- S0: Initializing Step
- repeat T times
  - S1-1: Dividing Step <<</li>
  - S1-2: Merging Step
- S2: Compressing Step (optional)



# **Overview: Merging Step**

• Merge some supernodes within each group if  $Saving > \theta^{(t)}$ 



- S0: Initializing Step
- repeat T times
  - S1-1: Dividing Step
  - S1-2: Merging Step <<</li>
- S2: Compressing Step (optional)



# Overview: Merging Step (cont.)

Summary Graph S

Residual Graph R

$$A = \{a, b\}$$
  $+ (d, g)$   $B = \{f, g\}$   $- (a, d)$   $- (c, e)$ 

- S0: Initializing Step
- repeat T times
  - S1-1: Dividing Step
  - S1-2: Merging Step
- S2: Compressing Step (optional)



# Overview: Merging Step (cont.)

- Merge some supernodes within each group if  $Saving > \theta^{(t)}$
- Decreasing  $\theta^{(t)} = (1+t)^{-1}$ 
  - *exploration* of other groups



exploitation within each group





- S0: Initializing Step
- repeat T times
  - S1-1: Dividing Step
  - S1-2: Merging Step <<</li>
- S2: Compressing Step (optional)



# **Overview: Compressing Step**

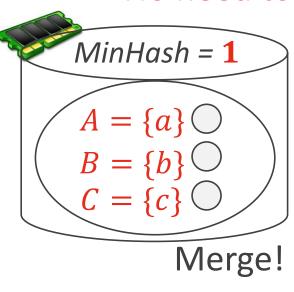
- Compress each output graph (S,  $R^+$  and  $R^-$ )
- Use any off-the-shelf graph-compression algorithm
  - Boldi-Vigna [BV04]
  - VNMiner [BC08]
  - Graph Bisection [DKKO+16]
  - S0: Initializing Step
  - repeat T times
    - S1-1: Dividing Step
    - S1-2: Merging Step
  - S2: Compressing Step (optional) <<</li>

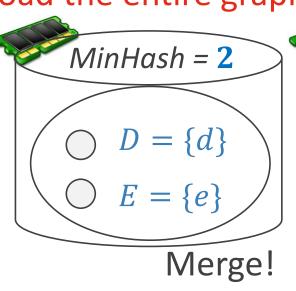


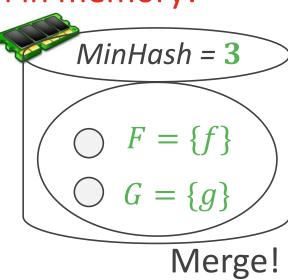
# Parallel & Distributed Processing

- Map stage: compute min hashes in parallel
- Shuffle stage: divide super nodes using min hashes
- Reduce stage: process groups independently in parallel

No need to load the entire graph in memory!







# Roadmap



- T1. Structure Analysis (Part 1)

  - T1-2. Summarization (§§ 7-8)
    - Summarizing Graphs (§ 7)
      - Problem Definition
      - Proposed Method: SWeG
      - Experiments <<</li>

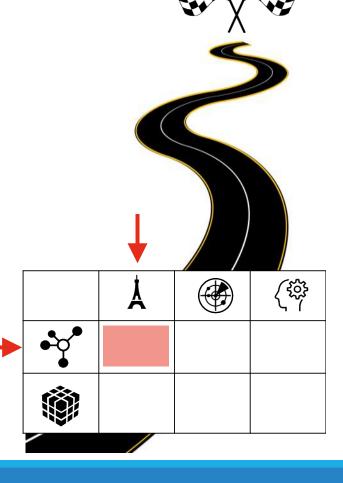


T2. Anomaly Detection (Part 2)



〈약·T3. Behavior Modeling (Part 3)





### **Experimental Settings**

• 13 real-world graphs (10K - 20B edges)

Social























- Graph summarization algorithms:
  - Greedy [NRS08], Randomized [NSR08], SAGS [KNL15]

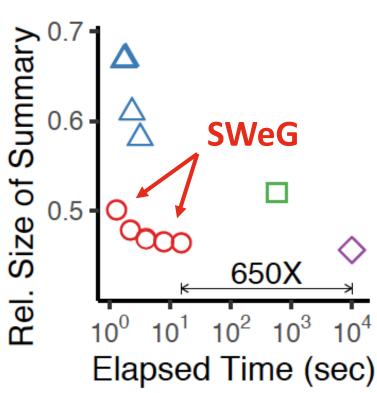




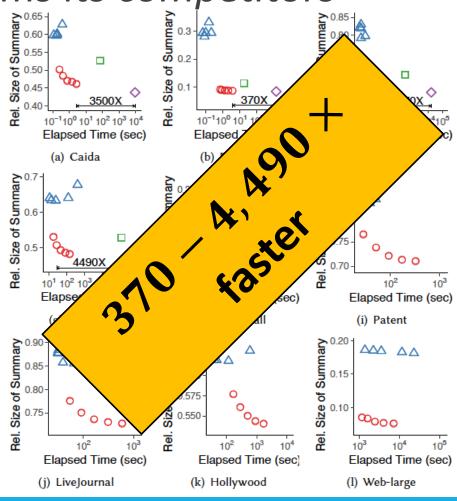


## **EXP1. Speed and Compression**

SWeG outperforms its competitors









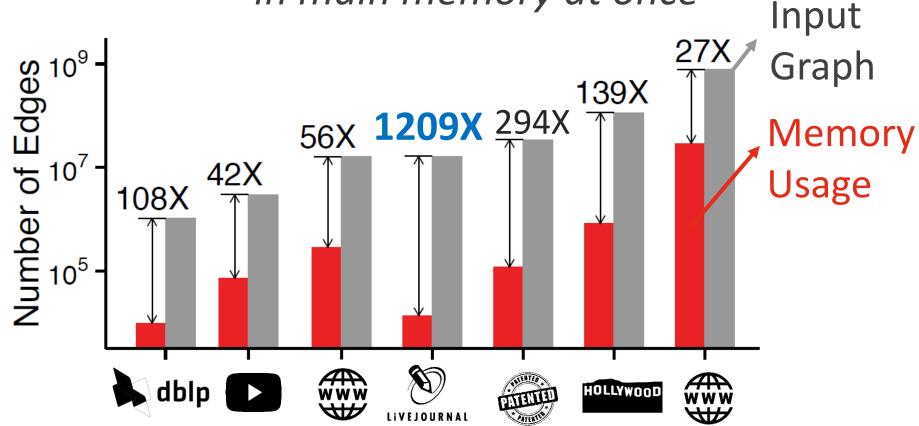


# Advantages of SWeG (Recall)

| Fast with Concise Outputs |
|---------------------------|
| Memory Efficient          |
| ☐ Scalable                |

#### **EXP2. Memory Efficiency**

SWeG loads ≤0.1-4% of edges in main memory at once





# Advantages of SWeG (Recall)



**Fast with Concise Outputs** 



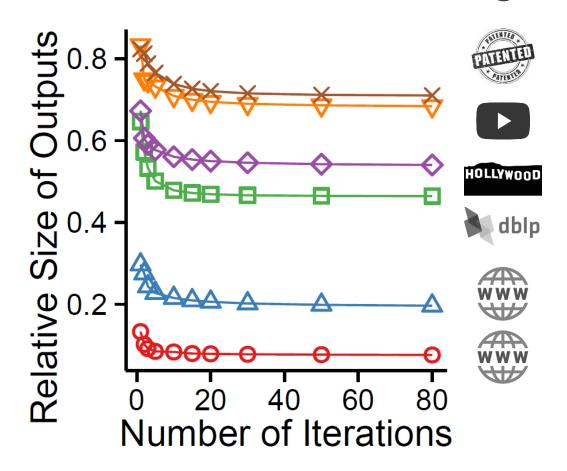
**Memory Efficient** 



Scalable

#### **EXP3. Effect of Iterations**

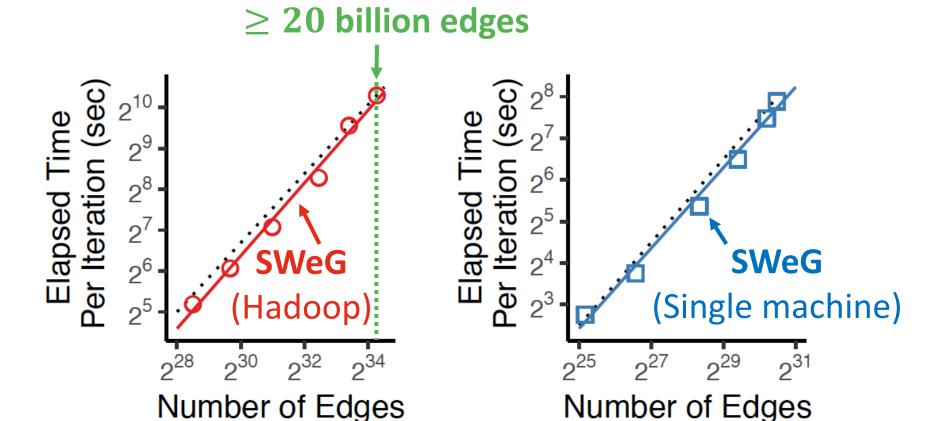
About 20 iterations are enough





### **EXP4.** Data Scalability

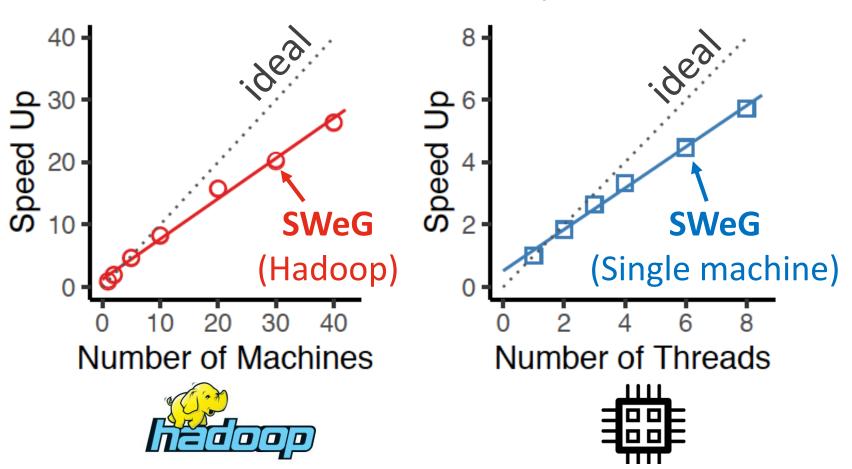
SWeG is linear in the number of edges





### **EXP5.** Machine Scalability

SWeG scales up



# Advantages of SWeG (Recall)



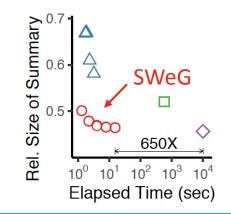


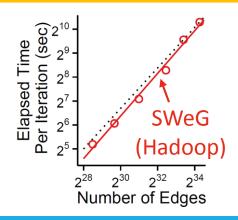


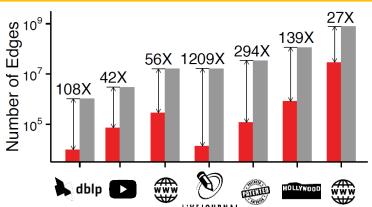


### **Summary of §7**

- We propose SWeG (Summarizing Web Graphs)
  - for summarizing large-scale graphs
- Fast with Concise Outputs
- **Memory Efficient**
- **Scalable**







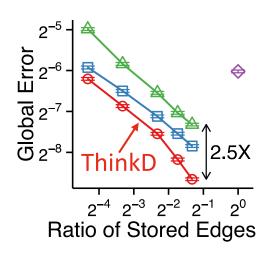
# **Contributions and Impact (Part 1)**

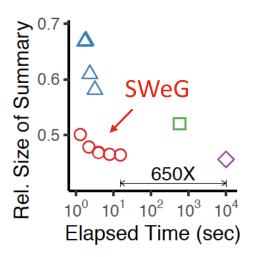
Triangle counting algorithms [ICDM17, PKDD18, PAKDD18]

Summarization algorithms [WSDM17, WWW19]

Patent on SWeG: filed by LinkedIn Inc.

Open-source software: downloaded 82 times









# Organization of the Thesis (Recall)

Part1.
Structure
Analysis Å

Part2.

Anomaly Detection

Part3.

Behavior Modeling



Graphs



Triangle Court (§§ 3-6)

Summarization (§ 7)

Anomalous Subgraph (§ 9)

Purchase Behavior (§ 14)

Tensors



Summarization (§ 8)

Dense Subtensors (§§ 10-13)

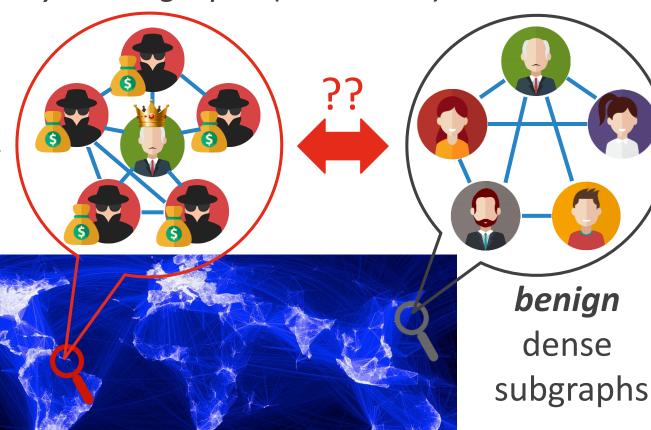
Progression (§ 15)

# T2. Anomaly Detection (Part 2)



"How can we detect anomalies or fraudsters in large dynamic graphs (or tensors)?"

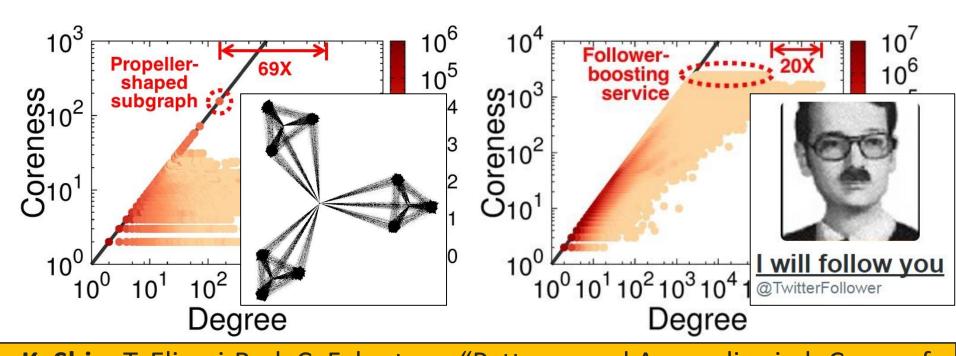
**Hint**: *fraudsters* tend to form dense subgraphs



### **T2-1.** Utilizing Patterns

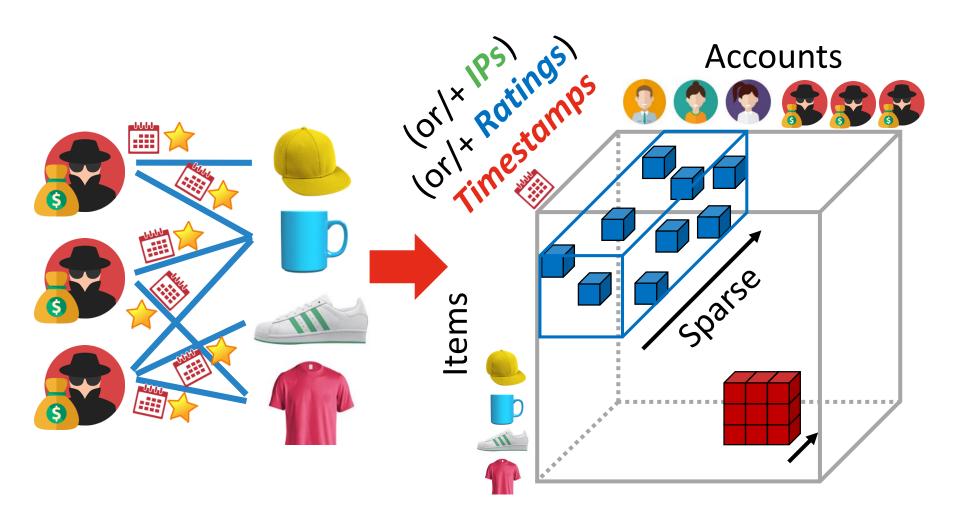
• T2-1. Patterns and Anomalies in **Dense Subgraphs** (§ 9)

"What are **patterns** in dense subgraphs?"
"What are **anomalies** deviating from the patterns?"



**K. Shin**, T. Eliassi-Rad, C. Faloutsos, "Patterns and Anomalies in k-Cores of Real-world Graphs with Applications", **KAIS 2018** (formerly, **ICDM 2016**)

# **T2-2.** Utilizing Side Information



# **T2-2.** Utilizing Side Information

"How can we detect dense subtensors in large dynamic data?"

- T2-2. Detecting **Dense Subtensors** (§§ 11-13)
  - In-memory Algorithm (§ 11)
  - Distribute Algorithm for Web-scale Tensors (§ 12)
  - Incremental Algorithms for Dynamic Tensors (§ 13)





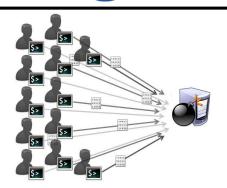














# **Contributions and Impact (Part 2)**



Patterns in dense subgraphs [ICDM16]

Award: best paper candidate at ICDM 2016



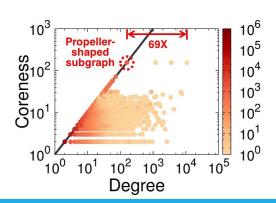


Algorithms for dense subtensors [PKDD16, WSDM17, KDD17]

Real-world usage: **NAVER** 



Open-source software: downloaded 257 times









# Organization of the Thesis (Recall)

Part1. Part2. Part3. Anomaly **Behavior Structure** Modeling Analysis A Detection Triangle Co **Graphs Anomalous** Purchase **Behavior** Subgraph Summarizat (§ 14)Summarization **Tensors Dense Subtensors** Progression (§§ 10-13) (§ 15)

# T3. Behavior Modeling (Part 3) 〈學



"How can we **model** the **behavior** of **individuals** in graph and tensor data?"







**Behavior Log on Social Media** 



- T3-1. Modeling Purchase Behavior in a Social Network (§14)
- T3-2. Modeling Progression of Users of Social Media (§15) "How do users evolve over time on social media?"

### Roadmap



▲ •T1. Structure Analysis (Part 1)



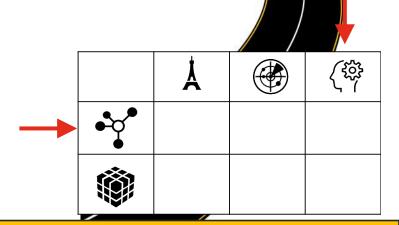
T2. Anomaly Detection (Part 2)



{६०० • T3. Behavior Modeling (Part 3)

T3-1. Modeling Purchases (§14) <<</li>

- Future Directions
- Conclusions



#### **Sharable Goods: Question**







**IKEA** toolkit



**DVDs** 



"What do they have in common?"

### **Sharable Goods: Properties**







- Used occasionally
- Share with friends
- Do not share with strangers



### **Motivation: Social Inefficiency**



**Popular** 



Lonely

| <b>Efficiency</b> of Purchase | High<br>(share with many)               | <b>Low</b> (share with few)           | 1 |
|-------------------------------|-----------------------------------------|---------------------------------------|---|
| <b>Likelihood</b> of Purchase | can be <b>Low</b><br>(likely to borrow) | can be <b>High</b><br>(likely to buy) | - |



Q1 "How large can social inefficiency be?"

Q2 "How to **nudge** people towards efficiency?"



## Roadmap



• T1. Structure Analysis (Part 1)

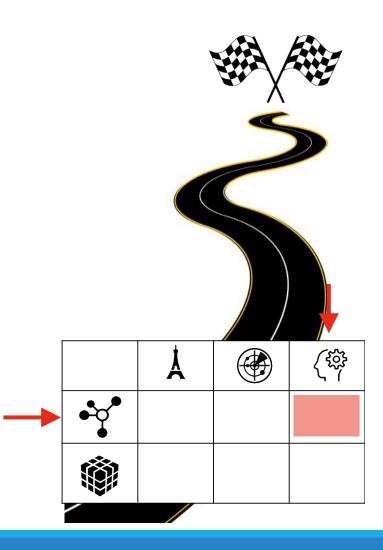


T2. Anomaly Detection (Part 2)



• T3. Behavior Modeling (Part 3)

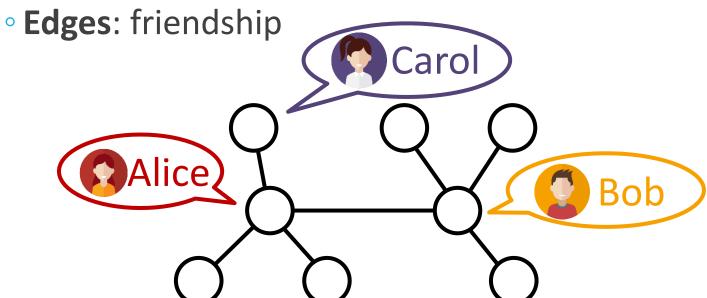
- T3-1. Modeling Purchases (§14)
  - Toy Example <<</p>
  - Game-theoretic Model
  - Best Rental-fee Search
- 0
- Future Directions
- Conclusions



#### **Social Network**

Consider a social network, which is a graph

Nodes: people



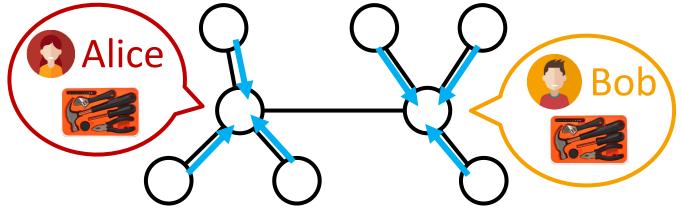


"How many people should buy an IKEA toolkit for everyone to use it?"



### **Socially Optimal Decision**

- The answer is at least 2
- Socially optimal:
  - everyone uses a toolkit
  - with minimum purchases (or with minimum cost)





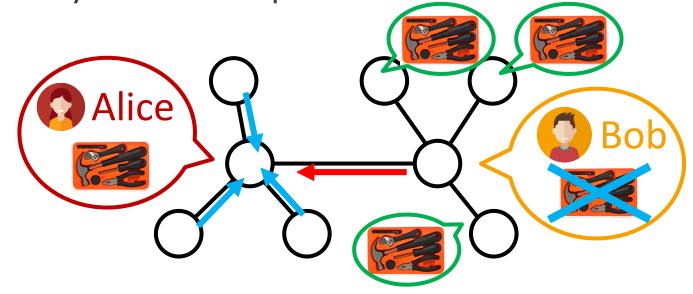
"Does everyone want to stick to their current decisions?"



## **Individually Optimal Decision**

- The answer is No
- Individually optimal:

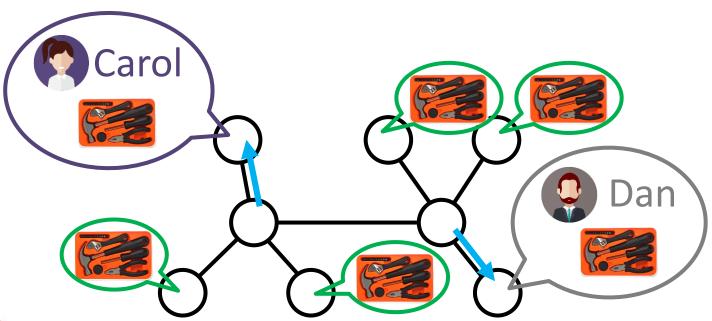
everyone best responses to others' decisions



- Socially inefficient (suboptimal):
  - 4 purchases happen when 2 are optimal

# **Social Inefficiency**

Individually optimal outcome with 6 purchases

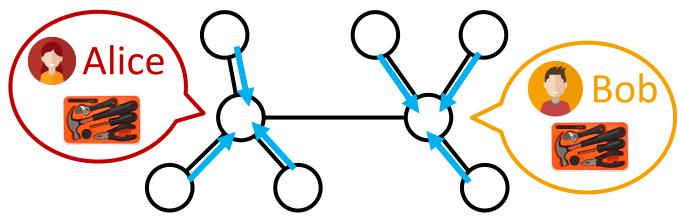




"How can we prevent this social inefficiency?"

### **Moving toward Social Optimum**

Recall the socially optimal outcome



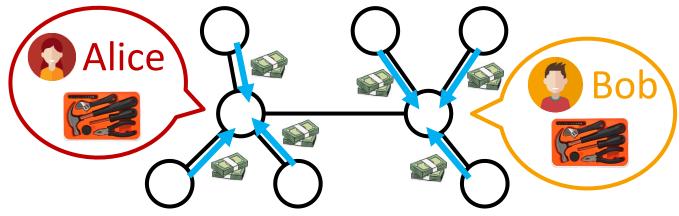


"How can we make people stick with this socially optimal outcome?"



#### **Imposing Rental Fee**

- Renters pay rental fee for getting permanent access
- Rental fee is half the price of a toolkit



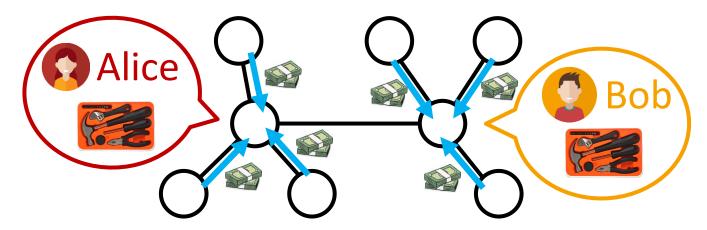


"Does everyone want to stick to their current decisions?"



# **Socially & Individually Optimal**

- The answer is Yes
  - Alice & Bob: are paid more than the price
  - The others: renting is cheaper than buying

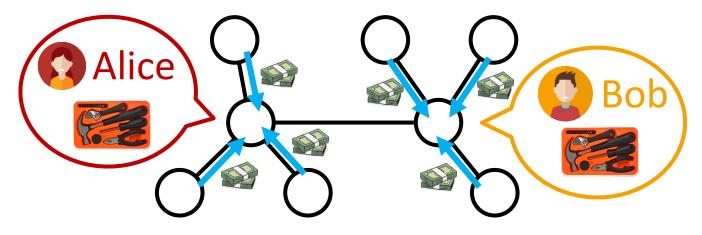


- Individually optimal
- Socially optimal with minimum (2) purchases



# Socially & Individually Optimal

- The answer is Yes
  - Alice & Bob: are paid more than the price
  - The others: renting is cheaper than buying





Q1 "How do rental fees affect social inefficiency?" Q2 "What are the 'socially optimal' rental fees?"



## Roadmap



• T1. Structure Analysis (Part 1)

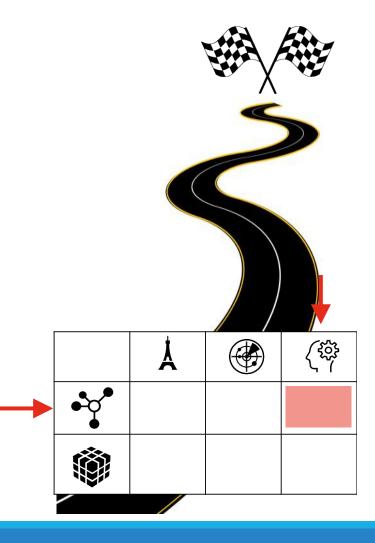


T2. Anomaly Detection (Part 2)



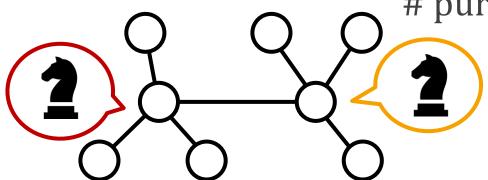
T3. Behavior Modeling (Part 3)

- T3-1. Modeling Purchases (§14)
  - Toy Example
  - Game-theoretic Model <<</p>
  - Best Rental-fee Algorithm
- • •
- Future Directions
- Conclusions



#### Formal Game-theoretic Model

- Players: nodes in a social network
- Strategies:
  - buy a good / rent a good from a friend with a good
- Nash Equilibrium (NE): individually optimal outcome
- Social Optimum: socially optimal outcome
- Inefficiency of an NE: # purchases in the NE
  - # purchases in a social optimum

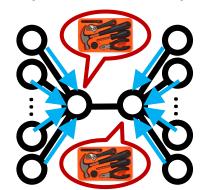


# **Inefficiency without Rental Fee**

- [THM 1] Existence of NEs
  - In every social network, there exists an NE.
- [THM 2] Inefficiency without Rental Fee
  - There exists a social network with n nodes
  - $\circ$  where **all** NEs have  $\Theta(n)$  inefficiency.

Input graph

Social optimum (2 owners)



Best NE (n/2 owners)



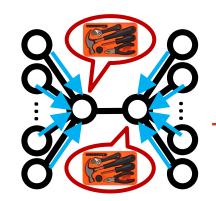
Part 3 (



# Inefficiency with Rental Fee

- [THM 3] Inefficiency with Rental Fee
  - In every social network,
  - if  $\frac{price}{3}$  < rental fee < price,
  - then, there exists a socially optimal NE,
  - otherwise ...

Input graph  $\frac{n-1}{2} \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right.$ 



Social optimum (2 owners)

→ **NE** with proper rental fee



# Roadmap



• T1. Structure Analysis (Part 1)

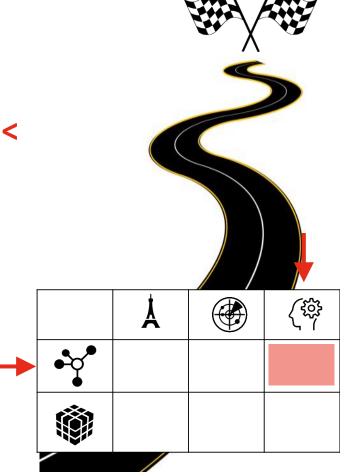


T2. Anomaly Detection (Part 2)



T3. Behavior Modeling (Part 3)

- T3-1. Modeling Purchases (§14) <</li>
  - Toy Example
  - Game-theoretic Model
  - Best Rental-fee Search <<</p>
- •••
- Future Directions
- Conclusions



# **Finding Best Rental Fee**

- Given:
  - a social network
  - a sharable good with price p
- Find: a range of rental fees
- To Minimize: inefficiencies of NEs





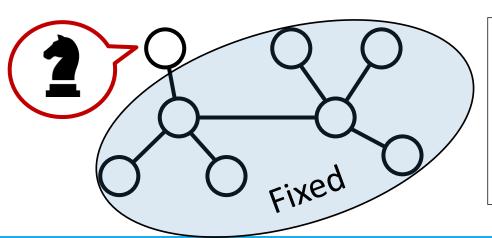
# Searching NEs (SGG-Nash)

Linear-time algorithm for searching NEs

randomly initialize strategies

repeat until an NE is reached

- for each node
  - optimize its strategy while fixing the others'
- Gives different NEs depending on initial strategies



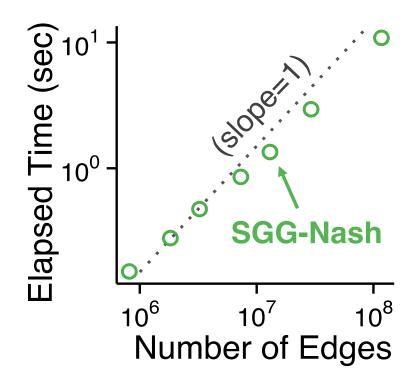
#### [THM 4] Convergence

In *every* social network, an NE is reached within 3 *iterations*.



# Scalability of SGG-Nash

SGG-Nash is linear in the number of edges



- Dataset: OfkUt

# **Best Rental Fee in Real Graphs**

Datasets:



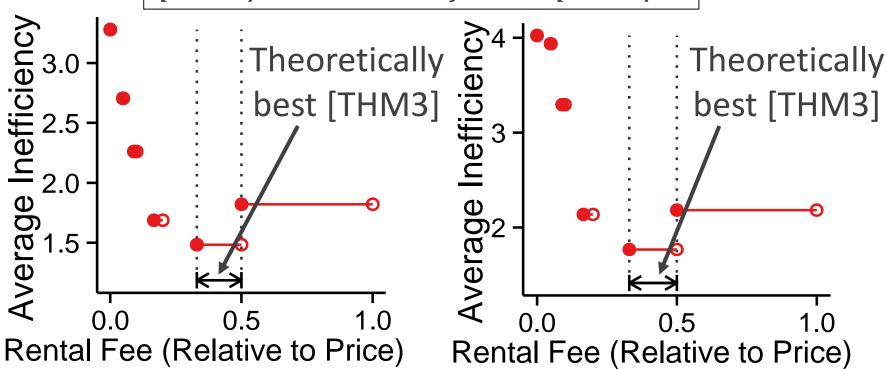






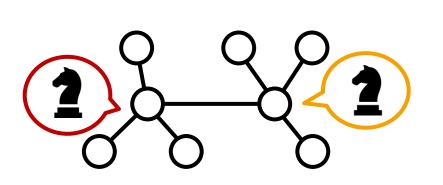
Inefficiency is minimized consistently when

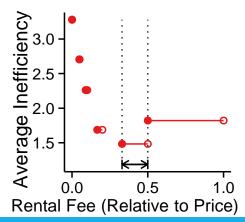
 $price/3 < rental\ fee < price/2$ 

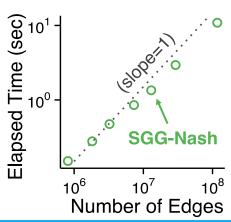


### **Summary of §14**

- Game-theoretic Model: Sharable good game
- Theoretical Analysis:
  - Existence of NEs
  - Inefficiency of NEs
- Algorithm: for linear-time NE search
- Suggestion: "socially optimal" rental fees







# **Contributions and Impact (Part 3)**



### रिक्षे Tools for **purchase modeling** [IJCAI17]

- Suggest 'socially optimal' rental fees
- Media: NewScientist

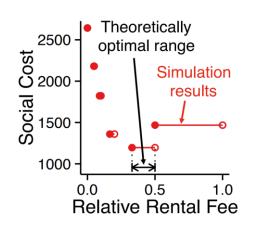


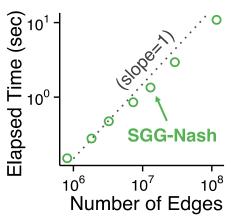


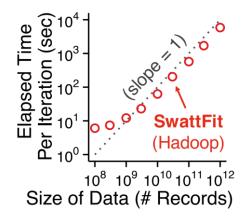
#### 〈滎 Tools for **progression modeling** [www18]

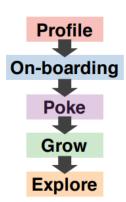
- Scale to datasets with a trillion records
- Real-world usage: Linked in











# Organization of the Thesis (Recall)

|         | Part1. Structure Analysis                         | Part2. Anomaly Detection       | Part3.<br>Behavior<br>Modeling 〈符 |
|---------|---------------------------------------------------|--------------------------------|-----------------------------------|
| Graphs  | Triangle Court<br>(§§ 3-6)<br>Summarizat<br>(§ 7) | Anomalous<br>Subgraph<br>(§ 9) | Purchase<br>Behavior<br>(§ 14)    |
| Tensors | Summarization<br>(§ 8)                            | Dense Subtensors<br>(§§ 10-13) | Progression<br>(§ 15)             |

### Roadmap



▲ •T1. Structure Analysis (Part 1)



T2. Anomaly Detection (Part 2)

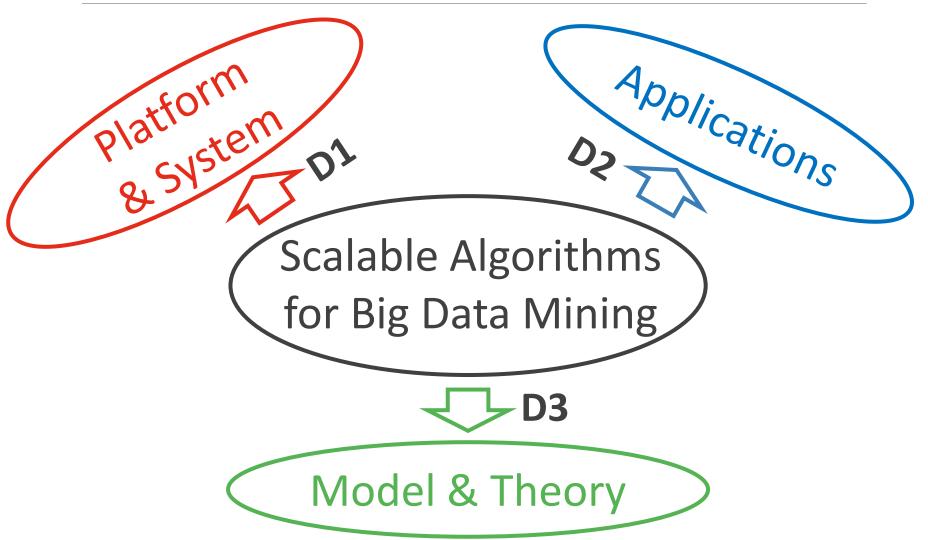


(學 • T3. Behavior Modeling (Part 3)

- Future Directions <<</li>
- Conclusions

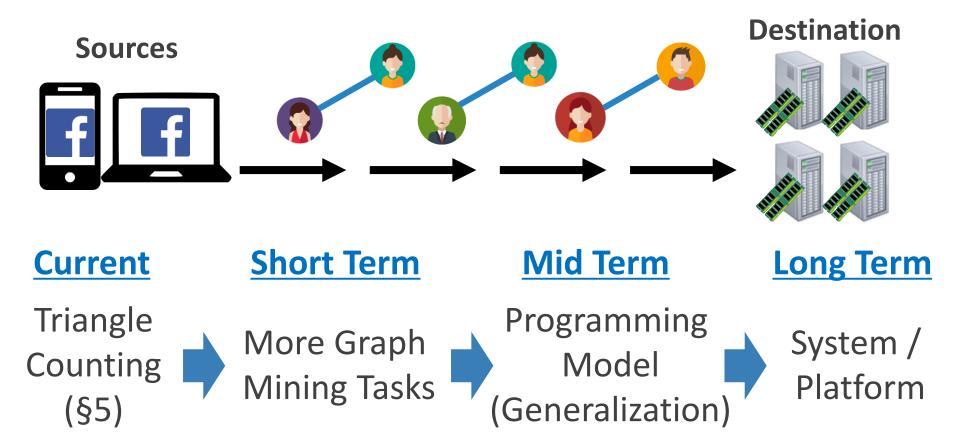


# Vision: Algorithms for "Big Data"



### **D1: Distributed Graph Stream Processing**

"How to analyze *large dynamic graphs* on a *cluster* of machines?"



### D2: Detecting Adversarial Anomalies

#### **Anomalies / Fraudsters**









#### **Current**

Algorithms for Static **Anomalies** 

**Short Term** 

Profits of **Anomalies** 



**Mid Term** 

Cost to Avoid **Algorithms** 

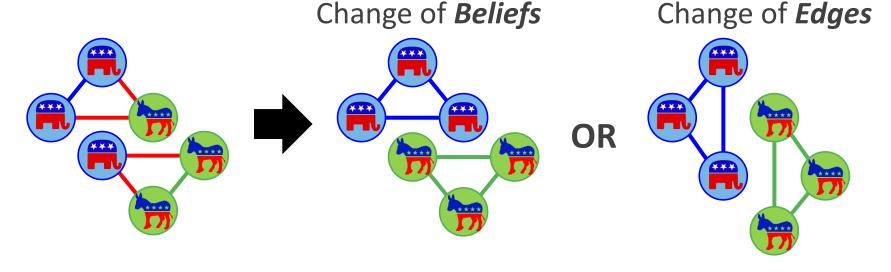


**Long Term** 

Algorithms Costly to Avoid

### D3: Co-Evolution of Beliefs and Graphs

"How to model the co-evolution of nodes' beliefs and edges?"



#### **Current**

Regression

Model

[PKDD18]

#### **Short Term**

Game Theory
/ Nash
Equilibrium

#### **Mid Term**

Prediction Algorithms

#### **Long Term**

Reducing Polarization

# Roadmap



T1. Structure Analysis (Part 1)



T2. Anomaly Detection (Part 2)

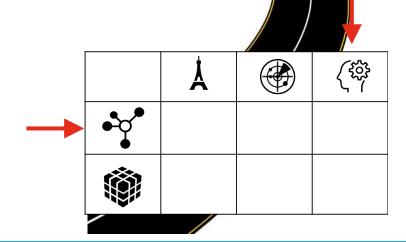


{६९७ • T3. Behavior Modeling (Part 3)

T3-1. Modeling Purchases (§14) <</li>

T3-2. Modeling Progression (§ 15) (Skip)

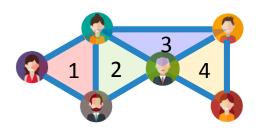
- Future Directions
- Conclusions <<</li>



### Conclusion

"To fully understand and utilize • Goal: large dynamic graphs and tensors"

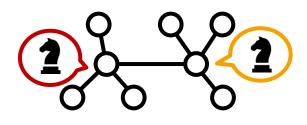
Contributions: developing scalable algorithms for



T1. Structure Analysis (Part 1)



T2. Anomaly Detection (Part 2)



T3. Behavior Modeling (Part 3)





Technology











### References

- [1] **K Shin**, B Hooi, and C Faloutsos, "M-Zoom: Fast Dense-Block Detection in Tensors with Quality Guarantees", **ECML/PKDD 2016** (§11)
- [2] **K Shin**, T Eliassi-Rad, and C Faloutsos, "CoreScope: Graph Mining Using k-Core Analysis Patterns, Anomalies and Algorithms", **ICDM 2016** (§9)
- [3] **K Shin**, "Mining Large Dynamic Graphs and Tensors for Accurate Triangle Counting in Real Graph Streams", **ICDM 2017** (§4)
- [4] **K Shin**, B Hooi, J Kim, and C Faloutsos, "D-Cube: Dense-Block Detection in Terabyte-Scale Tensors", **WSDM 2017** (§12)
- [5] **K Shin**, E Lee, D Eswaran, and AD. Procaccia, "Why You Should Charge Your Friends for Borrowing Your Stuff", **IJCAI 2017** (§14)
- [6] **K Shin**, B Hooi, J Kim, and C Faloutsos, "DenseAlert: Incremental Dense-Subtensor Detection in Tensor Streams", **KDD 2017** (§13)
- [7] J Oh, **K Shin**, EE Papalexakis, C Faloutsos, and Hwanjo Yu, "S-HOT: Scalable High-Order Tucker Decomposition", **WSDM 2017** (§8)

# References (cont.)

- [8] **K Shin**, B Hooi, and C Faloutsos, "Fast, Accurate and Flexible Algorithms for Dense Subtensor Mining", **TKDD 2018** (§11)
- [9] **K Shin**, M Shafiei, M Kim, A Jain, and H Raghavan, "Discovering Progression Stages in Trillion-Scale Behavior Logs" **WWW 2018** (§14)
- [10] **K Shin**, T Eliassi-Rad, and C Faloutsos, "Patterns and Anomalies in k-Cores of Real-world Graphs with Applications", **KAIS 2018** (§9)
- [11] **K Shin**, M Hammoud, E Lee, J Oh, and C Faloutsos. "Tri-fly: Distributed estimation of global and local triangle counts in graph streams" **PAKDD 2018** (§5)
- [12] **K Shin**, J Kim, B Hooi, and C Faloutsos, "Think before You Discard: Accurate Triangle Counting in Graph Streams with Deletions", **ECML/PKDD 2018** (§6)
- [13] **K Shin**, A Ghoting, M Kim and H Raghavan, "SWeG: Lossless and Lossy Summarization of Web-Scale Graphs", **WWW 2019** (§7)

### Thank You!

• Sponsors:









• Admins:







Collaborators:



### Thank You!

Homepage (Software & Datasets): http://www.cs.cmu.edu/~kijungs/defense/ Applications Discovering Modeling Stochastic Dense-Block Elapsed Time Scalable Large-scale **Algorithms** I will follow you Random @TwitterFollower Real-world Terabyte-Scale Walk 10<sup>5</sup> Coreness 101 10<sup>4</sup>  $10^8 \ 10^9 \ 10^{10} \ 10^{11} \ 10^{12}$ 10<sup>3</sup> Patterns **Factorization Large** Size of Data (# Records) 10<sup>1</sup> (Confidence Interval) 1792K - 1791K - 1790K - Streams Number of Triangles Accurate Restart 10<sup>1</sup>  $10^2 10^3$ Degree k-Cores Fast Camouflage Triangle Anomalies Trillion-Scale Analysis -ACC 980100 979900 Number of **Processed Elements**