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Abstract—In this supplementary document, we provide a
pictorial description, proofs, time and space complexity analyses,
descriptions of datasets, and additional experimental results, all
of which supplement the main paper [1].

APPENDIX A
PICTORIAL DESCRIPTION OF THE SAMPLING PROCESS

Figure 5 gives a pictorial representation of the sampling
process in WRS.

APPENDIX B
PROOFS

In this section, we present the proofs of Lemma 1, Theo-
rem 1, and Lemma 2 of the main paper.

A. Proof of Lemma 1

Proof. Without loss of generality, we assume t
(1)
uvw = tvw,

t
(2)
uvw = twu, and t

(3)
uvw = tuv . That is, (v, w) arrives earlier

than (w, u), and (w, u) arrives earlier than (u, v).
If typeuvw = 1, (u, v) arrives at time k+1 or earlier. When

(u, v) arrives, (v, w) and (w, u) are always stored in S . Thus,
WRS discovers (u, v, w) with probability 1.

If typeuvw = 2, we have tuv − twu < tuv − tvw ≤ kα.
When (u, v) arrives, (v, w) and (w, u) are always stored in
W . Thus, WRS discovers (u, v, w) with probability 1.

If typeuvw = 3, then tuv − twu ≤ kα but tuv − tvw > kα.
When (u, v) arrives, (w, u) is always stored inW , while (v, w)
cannot be inW but can be in R with probability p(tuv−1) (see
Eq. (1)). For WRS to discover (u, v, w), (v, w) should be inR,
thus the probability is p(tuv−1) = k(1−α)

(tuv−1−kα) =
k(1−α)

(t
(3)
uvw−1−kα)

.
If typeuvw = 4, we have tuv − tvw > tuv − twu > kα.

Thus, when (u, v) arrives, (v, w) and (w, u) cannot be in W .
For WRS to discover (u, v, w), both (v, w) and (w, u) should
be in R when (u, v) arrives. The probability of the event is

P[(v, w) ∈ R and (w, u) ∈ R]
= P[(v, w) ∈ R]× P[(w, u) ∈ R|(v, w) ∈ R]

=
k(1− α)

tuv − 1− kα ×
k(1− α)− 1

tuv − 2− kα ,

which is equal to the last case of Eq. (2). �

B. Proof of Theorem 1
Proof. From Eq. (2), if k(1 − α) ≥ 2, we have E[xuvw] =
1/puvw × puvw + 0 × (1 − puvw) = 1. Combining this and
c(t) =

∑
(u,v,w)∈T (t) xuvw gives

E[c(t)] = E

 ∑
(u,v,w)∈T (t)

xuvw

 =
∑

(u,v,w)∈T (t)

E[xuvw] = |T (t)|,

which proves Eq. (3) for every t ∈ {1, 2, ...}. Likewise,
E[xuvw] = 1 and c(t)u =

∑
(u,v,w)∈T (t)

u
xuvw imply

E[c(t)u ] = E

 ∑
(u,v,w)∈T (t)

u

xuvw

 =
∑

(u,v,w)∈T (t)
u

E[xuvw] = |T (t)
u |,

which proves Eq. (4) for every u ∈ V(t) and t ∈ {1, 2, ...}. �

C. Proof of Lemma 2
Proof. By the definition of typeuvw, typeuvw ≥ 2 implies

t(3)uvw > k + 1. (9)

First, we show the case when typeuvw = 2. Eq. (7) and
Eq. (9) give

t
(3)
uvw − 1

k
× t

(3)
uvw − 2

k − 1
− 1 > 0 = Var[xuvw].

Second, we show the case when typeuvw = 3
and t

(3)
uvw > 1 + α

1−αk. From t
(3)
uvw > 1 + α

1−αk,(
1 + k

t
(3)
uvw−1

)
α < 1 holds. This and Eq. (9) imply(

1 + k

t
(3)
uvw−1

)(
1− k−1

t
(3)
uvw−2

)
α < 1 − k−1

t
(3)
uvw−2

. Again,

this and Eq. (9) give
(
1− k(k−1)

(t
(3)
uvw−1)(t(3)uvw−2)

)
α <(

1 + k

t
(3)
uvw−1

− k−1
t
(3)
uvw−2

− k(k−1)
(t

(3)
uvw−1)(t(3)uvw−2)

)
α < 1− k−1

t
(3)
uvw−2

.

This is equivalent to (k − 1)(t
(3)
uvw − 1 − kα) <

(t
(3)
uvw − 1)(t

(3)
uvw − 2)(1 − α), which is again equivalent

to t(3)uvw−1−kα
k(1−α) − 1 <

t(3)uvw−1
k × t(3)uvw−2

k−1 − 1. Combining this
and Eq. (7) gives

Var[xuvw] =
t
(3)
uvw − 1− kα
k(1− α) − 1 <

t
(3)
uvw − 1

k
× t

(3)
uvw − 2

k − 1
− 1.

Lastly, the same conclusion holds when typeuvw = 3 and
α < 0.5. Eq. (9) and α < 0.5 imply t(3)uvw > 1 + α

1−αk. This
and typeuvw = 3 give the second case, which is proven above.

Hence, Eq. (8) holds under any of the given conditions. �

APPENDIX C
TIME AND SPACE COMPLEXITY ANALYSES

In this section, we prove the time and space complexities of
WRS. Especially, we show that WRS has the same time and
space complexities as the state-of-the-art algorithms [2], [3].
We assume that sampled edges are stored in the adjacency
list format in memory, as in our implementation used for
our experiments. However, storing them sequentially, as in
Figure 5, does not change the results below.



...

𝑺: 𝒌 slots in memory 𝑾: 𝛂𝒌 slots in memory 𝑹: (𝟏 − 𝛂)𝒌 slots in memory

𝑾

𝑹Push
Pop

prob. 𝒑(𝒕)

Discard
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Step 2
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(sample with the 
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Waiting Room
(First in First Out)
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(Random Replace)

... Waiting Room
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prob. 𝟏 − 𝒑(𝒕)

Fig. 5: Pictorial description of the sampling process in WRS. Once the given memory space is full (by Step 1), the memory
space is divided into the waiting room and the reservoir (by Step 2). In Step 3, the latest αk edges are stored in the waiting
room, while the remaining older edges are uniformly sampled in the reservoir.

The worst-case time complexity of WRS is linear in the
memory budget and in the number of edges in the input stream,
as formalized in Theorem 2.

Theorem 2 (Worst-Case Time Complexity of WRS). Pro-
cessing an incoming edge in Algorithm 1 takes O(k), and
thus processing t edges in the input stream takes O(kt).

Proof. The most expensive step in processing an incoming
edge (u, v) in Algorithm 1 is to find their common neighbors
N̂u ∩ N̂v in line 2. Computing N̂u ∩ N̂v requires accessing
|N̂u|+ |N̂v| = O(k) edges. �

However, this analysis assuming the worst-case graph
stream is too pessimistic for real graph streams, where |N̂u|+
|N̂v| is usually much smaller than k.

Theorem 3 gives the space complexity of WRS. Note that,
except the space for outputs (specifically local triangle counts),
WRS only requires O(k) space.

Theorem 3 (Space Complexity of WRS). Let V(t) be the set
of nodes in the graph consisting of the first t edges in the input
stream. Processing t edges in the input stream by Algorithm 1
requires O(k) space in case of global triangle counting and
O(k + |V(t)|) space in case of local triangle counting.

Proof. Algorithm 1 uses O(k) space for sampling edges, and
it uses O(|V(t)|) space for maintaining local triangle counts,
which need not be maintained in case of global triangle
counting. �

APPENDIX D
DESCRIPTION OF REAL GRAPH STREAMS

In this section, we describe the real dynamic graph streams
used in our experiments.
• ArXiv [4]: A citation network between papers in ArXiv’s

High Energy Physics. Each edge (u, v) represents that
paper u cited paper v. We used the submission time of u
as the creation time of (u, v).

• Facebook [5]: A friendship network between users of
Facebook. Each edge (u, v) represents that user v ap-

peared in the friend list of user u. Edges whose creation
times are unknown were ignored.

• Email [6]: An email network from Enron Corporation.
Each edge (u, v) represents that employee u sent to or
received from person v (who may be a non-employee)
at least one email. We used the creation time of the first
email between u and v as the creation time of (u, v).

• Youtube [7]: A friend network between users of Youtube.
Each edge (u, v) represents that user u and user v became
friends. Edges created before 12/10/2006 were ignored
since their exact creation times are unknown.

• Patent [8]: A citation network between patents. Each
edge (u, v) indicates that patent u cited patent v. We
used the time when u was granted as the creation time
of (u, v).

The self loops, the duplicated edges, and the directions of the
edges were ignored in all the graph streams.

APPENDIX E
ADDITIONAL EXPERIMENTS

In this section, we present the results of additional experi-
ments to answer the following questions:
• Q4. Accuracy in terms of Rank Correlation: Is WRS

more accurate than its competitors especially when we
compare their accuracies in terms of Rank Correlation?

• Q5. Effects of α: How does the relative size α of the
waiting room affect the accuracy of WRS? What is the
optimal value of α?

The detailed experimental settings were the same with those
in the main paper.

A. Q4. Accuracy in terms of Rank Correlation

We compared the accuracies of the considered methods in
local triangle counting using Spearman’s rank correlation coef-
ficient [9]. Specifically, we used it to measure the similarity of
(a) the ranking of the nodes in terms of the true local triangle
counts and (b) their ranking in terms of the estimated local
triangle counts, at the end of each input stream. The coefficient
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Fig. 6: WRS is accurate. M: million, K: thousand. In all the datasets, WRS shows the highest accuracy in global and local
triangle counting regardless of memory budget k. The relative size α of the waiting room is fixed to 0.1.
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Fig. 7: Effects of α on the accuracy of WRS . Using about 10% of given memory space for the waiting room (α = 0.1) gives
higher accuracy than using no space for the waiting room (α = 0) or using half the space for the waiting room (α = 0.5).

has a value between −1 and 1, and a higher value indicates
higher accuracy in local triangle counting.

Figure 6 shows the results in the real graph streams with
different memory budgets k. In the figure, the average values
over 1, 000 runs were reported with error bars indicating the
estimated standard errors. In all the datasets, WRS was most
accurate, giving highest rank correlation coefficients regardless
of memory budgets.

B. Q5. Effects of the Size of the Waiting Room of WRS
We measured how the accuracy of WRS changes depending

on α, the relative size of the waiting room. Figure 7 shows the
results with different memory budgets. Here, we used global
error as the accuracy metric, and the average values over
1, 000 runs were reported. In all the datasets and regardless of
memory budgets, using proper amount of memory space for
the waiting room gave better accuracy than using no space for
the waiting room (α = 0) and using half the space for the
waiting room (α = 0.5). Although proper α values depended
on datasets and memory budgets, the accuracy was maximized
when α was about 0.1 in most of the cases.
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