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Abstract. In this supplementary document, we provide accuracy anal-
yses, complexity analyses, descriptions of datasets, and additional exper-
imental results, all of which supplement the main paper [6].

A Detailed Bias and Variance Analyses

A.1 Bias Analysis (Proof of Theorem 1)

We provide a proof of Theorem 1 of the main paper.

Proof of Theorem 1. Consider a triangle (u,v,w) € T® and assume with-
out loss of generality that ¢y, < tywy < tuy < t. Let d;[uvw] be the contribution
of (u,v,w) to each of ¢®, c®[u], cV[v], and ¢ [w] by each worker i € W. If we
let El(t““) be the set of edges stored in worker ¢ when edge (u,v) arrives, then by
lines 7-12 and lines 21-22 of Algorithm 1,

1 . i (tuv) (tun)
diuvw] = J(IW| - piluvw]) i (U,w)'e & and (w,u) € &,
0 otherwise.
By definition, p;[uvw] is the probability that both (v,w) and (w,u) are in

Ei(t“”). Therefore, E[d;[uvw]] = 1/|W)|. By linearity of expectation, the following
equations hold:
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Hence, the estimates given by TRI-FLY are unbiased. |



(a) Type 1 Triangle Pair (b) Type 2 Triangle Pair

Fig.4: Type 1 and Type 2 triangle pairs. In each triangle, the edge with double
lines is the last edge to arrive.

A.2 Variance Analysis (Proof of Theorem 2)

We give a detailed variance analysis including a proof of Theorem 2 of the main
paper. We first define the two types of triangle pairs illustrated in Figure 4.

Definition 1 (Type 1 Triangle Pair). A Type 1 triangle pair is two dif-
ferent triangles (u,v,w) and (u,v,x) sharing an edge (u,v) satisfying ty. =
maX(tuvv tvwv twu) and twu = maX(tulh tvmz twu)

Definition 2 (Type 2 Triangle Pair). A Type 2 triangle pair is two dif-
ferent triangles (u,v,w) and (u,v,z) sharing an edge (u,v) satisfying ty, =
max(tuv, tow, twu) and tpy = max(tuy, tos, teu)-

Let p® and ¢(*) be the counts of Type 1 pairs and Type 2 pairs, respectively,
in G which is the graph composed of the edges arriving at time ¢ or earlier.
Then, as in the main paper, we define z(*) as

(t) ._ @ (E=D(E=2) W, w\i=1-k
z .-maX(O,T |( K= 1) 1 —I—(p +q ) A ;

which upper bounds the variance of the estimate ¢ when a single worker is
used, as formalized in Lemma 1.

Lemma 1 (Variance with a Single Worker). Assume that a single worker
is used in Algorithm 1 (i.e., |W| = 1). At any time t, the variance of the estimate
é® of the global triangle count |T®)| is upper bounded by z*). That is,

Var[é(t)} < z(t), Vvt >1 (3)

Proof Sketch. TRI-FLYy with a single worker is equivalent to TRIESTppr [1].
Eq. (3) follows from Theorem 4.13 in [1], where the variance of the estimate of
the global triangle count in TRIESTypg is upper bounded. |

Intuition behind z( and Lemma 1. The estimate &*) increases whenever a
triangle is discovered. That is, ¢® is the sum of the contributions of the trian-
gles in 7(®), where the contribution of a triangle is zero if it is not discovered.
However, the variance of ¢® is not simply the sum of the variances of the con-
tributions since events that certain triangles are discovered are not independent.



Especially, the variance of ¢*) increases additionally for each Type 1 or Type 2
pair, where the discoveries of the two triangles are positively dependent. In z(*)
the term (% — 1) upper bounds the variance of the contribution of each

triangle, and the term % upper bounds the increase in the variance by each

Type 1 or Type 2 pair. Thus, z(®) itself upper bounds the variance of ).

The upper bound of the variance of the estimate ¢ in TRI-FLy decreases
inversely proportional to the number of workers, as formalized in Theorem 2 of
the main paper. We give a proof of Theorem 2.

Proof of Theorem 2. Let Egt) be the global triangle count sent from each
worker ¢ by time ¢. Then, by line 21 of Algorithm 1, ¢®) = Diew (‘:Et)/\W\. Since
Egt) of each worker 7 € W is independent of those of the other workers,

Varle"] =Y Varlg? /Wi =3 Varle")/wP?
S I

where the inequality follows from Lemma 1 (i.e., for each worker i € W, Var [El(t)] <
z(t)). Hence, Eq. (2) of the main paper holds. |

B Time and Space Complexity Analyses

We discuss the time and space complexities of TRI-FLY.

B.1 Time Complexity Analysis

The time complexity of TRI-FLY for processing the first ¢ edges in the input
stream (i.e., {e),...e®¥}) is summarized in Table 3 of the main paper. The
masters take O(t - [W)]) in total since each edge is broadcast to |W| workers.
Each worker takes O(¢-min(t, k)), and thus the workers take O(|W|-t-min(¢, k))
in total, as formalized in Lemma 2 and Theorem 3.

Lemma 2. Processing edge e'®) by each worker (lines 7-16 of Algorithm 1) takes
O(min(s, k)).

Proof. The most expensive step of processing e(®) = (u,v) in Algorithm 1 is to
find the common neighbors of nodes u and v (line 8 of Algorithm 1). Let 51.(5) be
the set of edges stored in worker 7 when edge e(®) arrives. Then, for each worker
i € W, computing N;[u] NN;[v] requires accessing |V;[u]| + [N;[v]| = O(IEF)]) =
O(min(s, k)) edges. |

Theorem 3 (Time Complexity of Workers in Tri-Fly). In Algorithm 1,
the time complezity of each worker for processing the first t edges in the input
stream is O(t - min(¢, k)).



Proof. From Lemma, 2, each worker takes O(min(s, k)) to process each edge e(*).

Thus, each worker takes O (2221 min(s, k)) to process t edges. From

Z min(s, k) < Z min(¢, k) =t - min(¢, k),

s=1 s=1

processing the first ¢ edges by each worker takes O(t - min(t, k)). [ |

Lastly, the aggregators take O(|W]| -t - min(¢, k)) in total, as formalized in
Theorem 4.

Theorem 4 (Time Complexity of Aggregators in Tri-Fly). In Algorithm 1,
the time complexity of the aggregators for processing the first t edges in the input
stream is O(|W| -t - min(t, k)) in total.

Proof. While processing edge e(®) = (u,v) (lines 7-16 of Algorithm 1), each
worker sends less than min(s, k) + 3 counts to the aggregators in total because
[Ni[u] N N;]| + 3 < |8i(8)\ + 3 = min(s, k) + 3. Thus, while processing the
first ¢ edges, the workers send less than ), ,,, Zzzl(min(s, k)+3) counts to the
aggregators in total. Since processing each count takes O(1), the time complexity
of the aggregators is O(> ;.\ S (min(s, k) 4 3)) in total. Since

SO (min(s, k) +3) < 3 (¢ min(t, k) + 3¢)

iew s=1 iew
= |W|- (¢t min(¢, k) + 3t) = O(|W| - t - min(¢, k)),

Theorem 4 holds. ]

Notice that, with a fixed storage budget k, the time complexity of TRI-FLY
is linear in the number of edges in the input stream, as confirmed empirically in
Section 5.2 of the main paper and Section D.

B.2 Space Complexity Analysis

The space complexity of TRI-FLY for processing the first ¢ edges in the input
stream (i.e., {eM)...e()}) is summarized in Table 3 of the main paper. Each mas-
ter requires O(1) space since it simply broadcasts the received edges. Thus, the
masters require O(]M)|) space in total. Since each worker requires O(min(t, k))
space for sampled edges, the workers require O(|W| - min(¢, k)) space in total.
The aggregators require O(]V®|) space in total to maintain 1 estimate for the
global triangle count and [V(®)| estimates for the local triangle counts.
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Fig.5: Tri-Fly scales linearly with the size of the input stream. The
graph streams were created by sampling different numbers of edges from the
Friendster dataset.

C Descriptions of Datasets

We give the descriptions of the real-world datasets used in our experiments. The
sizes of the datasets are summarized in Table 4 of the main paper.

— BerkStan [3]: A hyperlink network between the web pages from UC Berkeley
and Stanford University.

— Patent [2]: A citation network between U.S. patents.

— Flickr [4]: A friendship network between the members of Flickr, an image
and video hosting website.

— FriendSter [7]: A friendship network between the members of Friendster, a
social gaming website.

D Scalability in Graph Streams with Realistic Structures

To show the linear scalability of TRI-FLY in graph streams with realistic struc-
tures, we measured its running times in input streams created by sampling dif-
ferent numbers of edges from the Friendster dataset. The experimental settings
were the same with those in Section 5.2 of the main paper, and thus we fixed
storage budget k to 107. As seen in Figure 5, TRI-FLY scaled linearly with the
size of the input stream, as expected from Theorems 3-4 in Section B.1.

E Related Work on Triangle Counting in a Graph Stream
with Multiple Sources

Using multiple machines was discussed theoretically by Pavan et al. [5] for tri-
angle counting in a graph stream with multiple sources. The authors aimed to
minimize communication cost while giving the same estimation as if edges are
streamed from one source. In their algorithm, the number of machines is deter-
mined by the number of sources, and using more machines makes the algorithm
neither faster nor more accurate (see Theorem 5.2 of [5]). Thus, their goal is
clearly different from ours, which is to utilize multiple machines for fast and
accurate estimation.
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