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A. DENSITY MEASURE

In this section, we show that the density measure (Definition 1) used in the main paper
satisfies properties that a reasonable “anomalousness” measure should meet. These prop-
erties were proposed in [Jiang et al. 2015]. Here, we consider two N -way tensors, T of size
I1 × I2 × ...× IN and T′ of size I ′1 × I ′2 × ...× I ′N . We denote the sum of the entries in each

tensor by sum(T) and sum(T′), and define their average entry value as t̄ = sum(T)∏N
n=1 IN

and

t̄′ = sum(T′)∏N
n=1 I

′
N

. We first list three basic axioms that any anomalousness measure f should

meet.

Axiom 1 (Entry Sum). Between two tensors with the same dimensionality, one with higher
entry sum is more anomalous than the other. Formally, suppose 1 ≤ ∀n ≤ N , In = I ′n.
Then sum(T) ≥ sum(T′) implies f(T) ≥ f(T′), and equality holds if and only if sum(T) =
sum(T′).

Axiom 2 (Concentration). Between two tensors with the same entry sum, one with smaller
dimensionality is more anomalous than the other. Formally, suppose sum(T) = sum(T′).
Then 1 ≤ ∀n ≤ N , In ≤ I ′n implies f(T) ≥ f(T′), and equality holds if and only if
1 ≤ ∀n ≤ N , In = I ′n.

Axiom 3 (Size). Between two tensors with the same average entry value, one with larger
dimensionality is more anomalous than the other. Formally, suppose t̄ = t̄′. Then 1 ≤ ∀n ≤
N , In ≥ I ′n implies f(T) ≥ f(T′), and equality holds if and only if 1 ≤ ∀n ≤ N , In = I ′n.

Although two more axioms were proposed in [Jiang et al. 2015], they are not relevant to
our work. The additional axioms are for comparison between subtensors in different tensors,
while in our work, only subtensors within the same tensor are compared.

As in the main paper, the densities of T and T′, denoted by ρ(T) and ρ(T′), are defined as

ρ(T) = sum(T)∑N
n=1 IN

and ρ(T′) = sum(T′)∑N
n=1 I

′
N

, respectively. We prove that Axioms 1-3 are satisfied

by the density measure used in the paper, in Theorem A.1.
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Theorem A.1. Let T and T′ be two N -way tensors, and let ρ be the density measure in
Definition 1. Then ρ satisfies Axiom 1-3, i.e.

(i) (Entry Sum). Suppose 1 ≤ ∀n ≤ N , In = I ′n. Then sum(T) ≥ sum(T′) implies
ρ(T) ≥ ρ(T′), and equality holds if and only if sum(T) = sum(T′).

(ii) (Concentration). Suppose sum(T) = sum(T′). Then 1 ≤ ∀n ≤ N , In ≤ I ′n implies
ρ(T) ≥ ρ(T′), and equality holds if and only if 1 ≤ ∀n ≤ N , In = I ′n.

(iii) (Size). Suppose t̄ = t̄′. Then 1 ≤ ∀n ≤ N , In ≥ I ′n implies ρ(T) ≥ ρ(T′), and equality
holds if and only if 1 ≤ ∀n ≤ N , In = I ′n.

Proof. (i) Suppose 1 ≤ ∀n ≤ N , In = I ′n. Then sum(T) ≥ sum(T′) implies

ρ(T) =
sum(T)∑N
n=1 In

≥ sum(T′)∑N
n=1 In

=
sum(T′)∑N
n=1 I

′
n

= ρ(T′).

And equivalents for the equality condition are

ρ(T) = ρ(T′) ⇐⇒ sum(T)∑N
n=1 In

=
sum(T′)∑N
n=1 I

′
n

⇐⇒ sum(T) = sum(T′).

(ii) Suppose sum(T) = sum(T′). Then 1 ≤ ∀n ≤ N , In ≤ I ′n implies

ρ(T) =
sum(T)∑N
n=1 In

≥ sum(T)∑N
n=1 I

′
n

=
sum(T′)∑N
n=1 I

′
n

= ρ(T′).

And equivalents for the equality condition are

ρ(T) = ρ(T′) ⇐⇒ sum(T)∑N
n=1 In

=
sum(T′)∑N
n=1 I

′
n

⇐⇒
N∑
n=1

In =

N∑
n=1

I ′n.

Then under 1 ≤ ∀n ≤ N , In ≤ I ′n conditions,
∑N
n=1 In =

∑N
n=1 I

′
n can happen if and only

if 1 ≤ ∀n ≤ N , In = I ′n.

(iii) We first prove that 1 ≤ ∀n ≤ N , In ≥ I ′n implies
∏N
n=1 In∑N
n=1 In

≥
∏N
n=1 I

′
n∑N

n=1 I
′
n

, and the equality

holds if and only if 1 ≤ ∀n ≤ N , In = I ′n. This is since∏N
n=1 In∑N
n=1 In

=
1∑N

n=1
1∏

j 6=n Ij

≥ 1∑N
n=1

1∏
j 6=n I

′
j

=

∏N
n=1 I

′
n∑N

n=1 I
′
n

.

And
∏N
n=1 In∑N
n=1 In

=
∏N
n=1 I

′
n∑N

n=1 I
′
n

if and only if
∑N
n=1

1∏
j 6=n Ij

=
∑N
n=1

1∏
j 6=n I

′
j
. Under 1 ≤ ∀n ≤

N, In ≥ I ′n condition, this can happen if and only if 1 ≤ ∀n ≤ N , In = I ′n.

Now, suppose t̄ = t̄′, i.e. sum(T)∏N
n=1 In

= sum(T)∏N
n=1 I

′
n

. Then, 1 ≤ ∀n ≤ N , In ≥ I ′n implies∏N
n=1 In∑N
n=1 In

≥
∏N
n=1 I

′
n∑N

n=1 I
′
n

, hence

ρ(T) =
sum(T)∑N
n=1 In

=
sum(T)∏N
n=1 In

×
∏N
n=1 In∑N
n=1 In

≥ sum(T′)∏N
n=1 I

′
n

×
∏N
n=1 I

′
n∑N

n=1 I
′
n

=
sum(T′)∑N
n=1 I

′
n

= ρ(T′).

And equivalents for the equality condition are

ρ(T) = ρ(T′) ⇐⇒
∏N
n=1 In∑N
n=1 In

=

∏N
n=1 I

′
n∑N

n=1 I
′
n

⇐⇒ 1 ≤ ∀n ≤ N, In = I ′n.
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B. PROOFS

B.1. Lemma B.1

Lemma B.1. Let T be an N -way tensor, and let T′ be the updated T after the change
of either ((i1, ..., iN ), δ,+) or ((i1, ..., iN ), δ,−). Let π be a D-ordering of Q, and let qf :=
arg min
q∈C

π−1(q) where C = {(n, in) : 1 ≤ ∀n ≤ N}. For c ∈ R>0, let M(c) be the set of slice

indices that are located after qf in π and having dπ(·) at least c, i.e.

M(c) := {q ∈ Q : π−1(q) > π−1(qf ) ∧ dπ(q) ≥ c}. (9)

And let jL, jH ∈ [|Q|] be satisfying

jH =

{
min

q∈M(c)
π−1(q)− 1 if M(c) 6= ∅,

|Q| otherwise,
(10)

and jL ≤ jH . Let R = {q ∈ Q : π−1(q) ∈ [jL, jH ]}. Let π′ be an ordering of slice indices Q
in T′ where ∀j /∈ [jL, jH ], π′(j) = π(j) and ∀j ∈ [jL, jH ],

d(T′(Qπ′,π′(j)), π
′(j)) = min

r∈R∩Qπ′,π′(j)
d(T′(Qπ′,π′(j)), r). (11)

Then,

(i) For all q ∈ Q with π−1(q) /∈ [jL, jH ],

Qπ,q = Qπ′,q. (12)

(ii) For all q ∈ Q with π−1(q) > jH ,

T(Qπ,q) = T′(Qπ′,q). (13)

(iii) For all q ∈ Q with jL ≤ π−1(q) ≤ jH ,

d(T′(Qπ′,q), q) = min
r∈R∩Qπ′,q

d(T′(Qπ′,q), r). (14)

(iv) For all q ∈ Q with jL ≤ π−1(q) ≤ jH ,

min
r∈Qπ′,q−R

d(T′(Qπ′,q), r) ≥ c. (15)

(v) For all q ∈ Q with jL ≤ π−1(q) ≤ jH , let r := arg min
q′∈Qπ′,q

π−1(q′) be the slice index located

earliest in π among Qπ′,q. Then the following inequalities hold:

d(T′(Qπ′,q), q) ≤ d(T′(Qπ′,q), r), (16)

d(T(Qπ′,q), r) ≤ dπ(r). (17)

(vi) For all q ∈ Q with π−1(q) > jH ,

d(T′(Qπ′,q), q) = min
r∈Qπ′,q

d(T′(Qπ′,q), r). (18)

Proof. (i) If π−1(q) /∈ [jL, jH ], then either π−1(q) < jL or π−1(q) > jH . Consider π−1(q) <
jL first. Since π and π′ coincide on [1, jL), π′−1(q) = π−1(q) < jL holds, so π and π′ coincide
on [1, π−1(q)) as well. This implies that

Qπ,q = Q \ {r ∈ Q : π−1(r) < π−1(q)} = Q \ {r ∈ Q : π′−1(r) < π′−1(q)} = Qπ′,q.

Now consider π−1(q) > jH case. Since π and π′ coincide on (jH , |Q|], π′−1(q) = π−1(q) > jH
holds, so π and π′ coincide on [π−1(q), |Q|] as well. This implies that

Qπ,q = {r ∈ Q : π−1(r) ≥ π−1(q)} = {r ∈ Q : π′−1(r) ≥ π′−1(q)} = Qπ′,q.
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Hence for either cases, Eq. (12) holds.
(ii) Since π−1(q) > jH , Lemma B.1 (i) implies Qπ,q = Qπ′,q. And since π−1(q) > jH ≥

π−1(qf ) = min
q′∈C

π−1(q′), the changed entry ti1...iN with index (i1, ..., iN ) is not contained in

T(Qπ,q). These together imply Eq. (13).
(iii) Note that π and π′ coinciding on [|Q|]\[jL, jH ] implies that jL ≤ π′−1(q) ≤ jH as

well. Hence this with the condition of π′ in Eq. (11) implies Eq. (14).
(iv) If M(c) = ∅, then Qπ′,q\R = ∅, so there is nothing to show. When M(c) 6= ∅

so that Qπ′,q\R 6= ∅, fix any r ∈ Qπ′,q\R, and let qh := π(jH + 1). We show Eq.
(15) as d(T′(Qπ′,q), r) ≥ d(T′(Qπ′,qh), r) ≥ dπ(qh) ≥ c. First, π and π′ coinciding on
[|Q|]\[jL, jH ] implies that π′−1(q) ≤ jH < jH + 1 = π′−1(qh), so Qπ′,q ⊃ Qπ′,qh . And
π′−1(r) = π−1(r) ≥ jH + 1 = π−1(qh) = π′−1(qh) implies r ∈ Qπ′,qh , which im-
plies d(T′(Qπ′,q), r) ≥ d(T′(Qπ′,qh), r). Also, since π−1(qh) > jH , Lemma B.1 (ii) im-
plies T(Qπ,qh) = T′(Qπ′,qh), and hence d(T′(Qπ′,qh), r) ≥ d(T(Qπ,qh), r). Also, π being
a D-ordering implies d(T(Qπ,qh), r) ≥ d(T(Qπ,qh), qh) = dπ(qh). Also, M(c) 6= ∅ and
jH + 1 = min

q∈M(c)
π−1(q) in Eq. (10) implies qh ∈ M(c), and definition of M(c) in Eq.

(9) implies that dπ(qh) ≥ c. These together imply Eq. (15).
(v) Note that π and π′ coinciding on [|Q|] \ [jL, jH ] with π−1(q) ∈ [jL, jH ] implies that

π−1(r) ∈ [jL, jH ], i.e. r ∈ R. Then Eq. (16) is from the condition of π′ in Eq. (11) and that
r ∈ R ∩Qπ′,q. Also, r = arg min

q′∈Qπ′,q

π−1(q′) implies Qπ′,q ⊂ Qπ,r, which implies Eq. (17).

(vi) We show Eq. (18) as d(T′(Qπ′,q), q) = d(T(Qπ,q), q) = min
r∈Qπ,q

d(T(Qπ,q), r) =

min
r∈Qπ,q

d(T′(Qπ′,q), r). First, from Lemma B.1 (ii), d(T′(Qπ′,q), q) = d(T(Qπ,q), q) holds.

Next, since π is a D-ordering, d(T(Qπ,q), q) = min
r∈Qπ,q

d(T(Qπ,q), r) holds. Lastly,

min
r∈Qπ,q

d(T(Qπ,q), r) = min
r∈Qπ,q

d(T′(Qπ′,q), r) is again from Lemma B.1 (ii). These together

imply Eq. (18). �

B.2. Proof of Lemma 3.7

In the following proof, we use qf := arg min
r∈C

π−1(r) = π(jL) where C = {(n, in) : 1 ≤ ∀n ≤

N}, M := {q ∈ Q : π−1(q) > π−1(qf ) ∧ dπ(q) ≥ dπ(qf ) + δ}, and R := {q ∈ Q : π−1(q) ∈
[jL, jH ]}, all of which are defined in the main paper. Note that T, T′, π, qf , jL, jH , R, π′

satisfies the conditions in Lemma B.1 with M = M(dπ(qf ) + δ), and hence Lemma B.1 is
applicable.

Proof. From Definition 3.1 of D-ordering, we need to show that for all q ∈ Q,

d(T′(Qπ′,q), q) = min
r∈Qπ′,q

d(T′(Qπ′,q), r). (19)

We divide into 3 cases depending on the location of q with respect to π: (i) π−1(q) < jL,
(ii) jL ≤ π−1(q) ≤ jH , and (iii) π−1(q) > jH .

(i) For the case of π−1(q) < jL, we show Eq. (19) as d(T′(Qπ′,q), q) = d(T(Qπ,q), q) =
min
r∈Qπ,q

d(T(Qπ,q), r) ≤ min
r∈Qπ′,q

d(T′(Qπ′,q), r). At first, π−1(q) < jL and Lemma B.1 (i) imply

Qπ′,q = Qπ,q. (20)

Also, from π−1(q) < jL = min
q′∈C

π−1(q′) where C = {(n, in) : 1 ≤ ∀n ≤ N}, the changed entry

ti1...iN is not in the slice with index q. From this and Eq. (20), d(T′(Qπ′,q), q) = d(T(Qπ,q), q)
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holds. Next, from π being a D-ordering, we have d(T(Qπ,q), q) = min
r∈Qπ,q

d(T(Qπ,q), r) holds.

Lastly, from Eq. (20) and that the slice sums of the slices in Q either increase or remain
the same under ((i1, ..., iN ), δ,+), min

r∈Qπ,q
d(T(Qπ,q), r) ≤ min

r∈Qπ′,q
d(T′(Qπ′,q), r) holds. From

these, d(T′(Qπ′,q), q) = min
r∈Qπ′,q

d(T′(Qπ′,q), r) holds for π−1(q) < jL.

(ii) For the case of jL ≤ π−1(q) ≤ jH , we show Eq. (19) by d(T′(Qπ′,q), q) =
min

r∈Qπ′,q∩R
d(T′(Qπ′,q), r) and min

r∈Qπ′,q−R
d(T′(Qπ′,q), r) ≥ dπ(qf ) + δ ≥ d(T′(Qπ′,q), q).

At first, Lemma B.1 (iii) implies d(T′(Qπ′,q), q) = min
r∈Qπ′,q∩R

d(T′(Qπ′,q), r). Also, since

M = M(dπ(qf ) + δ), Lemma B.1 (iv) implies min
r∈Qπ′,q−R

d(T′(Qπ′,q), r) ≥ dπ(qf ) + δ. For

d(T′(Qπ′,q), q) ≤ dπ(qf )+δ, let r := arg min
q′∈Qπ′,q

π−1(q′) be the slice with the index earliest in π

among Qπ′,q, and we show d(T′(Qπ′,q), q) ≤ d(T′(Qπ′,q), r) ≤ dπ(qf ) + δ. d(T′(Qπ′,q), q) ≤
d(T′(Qπ′,q), r) is from Eq. (16) in Lemma B.1 (v). For d(T′(Qπ′,q), r) ≤ dπ(qf ) + δ, we
divide into cases where r = qf or r 6= qf . When r = qf , note that slice sums can in-
crease at most δ under ((i1, ..., iN ), δ,+), so d(T′(Qπ′,q), qf ) ≤ d(T(Qπ′,q), qf ) + δ holds.
And Eq. (17) in Lemma B.1 (v) implies d(T(Qπ′,q), qf ) + δ ≤ dπ(qf ) + δ. Hence these
implies d(T′(Qπ′,q), r) ≤ dπ(qf ) + δ for r = qf . When r 6= qf = π(jL), π and π′ coin-
ciding on [1, jL) implies that qf /∈ Qπ′,q, which implies that ti1...iN is not in T(Qπ′,q).
Hence T(Qπ′,q) = T′(Qπ′,q), and this implies d(T′(Qπ′,q), r) = d(T(Qπ′,q), r). Then Eq.
(17) in Lemma B.1 (v) implies d(T(Qπ′,q), r) ≤ dπ(r). Then, π and π′ coinciding on
[|Q|]\[jL, jH ], π−1(q) ≤ jH , and r 6= π(jL) imply that jL < π−1(r) ≤ π−1(q) ≤ jH ,
and Eq. (2) implies that r /∈ M . Hence dπ(r) < dπ(qf ) + δ holds, and these imply
d(T′(Qπ′,q), r) ≤ dπ(qf ) + δ for r 6= qf . Hence d(T′(Qπ′,q), r) ≤ dπ(qf ) + δ holds for any r.
This with d(T′(Qπ′,q), q) ≤ d(T′(Qπ′,q), r) implies that for jL ≤ π−1(q) ≤ jH we have

d(T′(Qπ′,q), q) ≤ dπ(qf ) + δ. (21)

Then Lemma B.1 (iii), (iv), and Eq. (21) imply that d(T′(Qπ′,q), q) = min
r∈Qπ′,q

d(T′(Qπ′,q), r)

holds for jL ≤ π−1(q) ≤ jH .
(iii) For the case of π−1(q) > jH , Lemma B.1 (vi) implies Eq. (19). �

B.3. Proof of Lemma 3.11

In the following proof, we use qf := arg min
r∈C

π−1(r) where C = {(n, in) : 1 ≤ ∀n ≤ N},

Mmin := {q ∈ Q : dπ(q) > cπ(q) − δ}, Mmax := {q ∈ Q : π−1(q) > π−1(qf ) ∧ dπ(q) ≥
cπ(qf )}, and R := {q ∈ Q : π−1(q) ∈ [jL, jH ]}, all of which are defined in the main
paper. Note that T, T′, π, qf , jL, jH , R, π′ satisfies the conditions in Lemma B.1 with
Mmax = M(cπ(qf )), and hence Lemma B.1 is applicable.

Proof. From Definition 3.1 of D-ordering, we need to show that for all q ∈ Q,

d(T′(Qπ′,q), q) = min
r∈Qπ′,q

d(T′(Qπ′,q), r). (22)

We divide into 3 cases depending on the location of q with respect to π: (i) π−1(q) < jL,
(ii) jL ≤ π−1(q) ≤ jH , and (iii) π−1(q) > jH .

(i) For the case of π−1(q) < jL, we show as d(T′(Qπ′,q), r) ≥ dπ(q) = d(T′(Qπ′,q), q). At
first, π−1(q) < jL and Lemma B.1 (i) imply

Qπ′,q = Qπ,q. (23)
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Also, jL ≤ π−1(qf ) = min
q′∈C

π−1(q′) where C = {(n, in) : 1 ≤ ∀n ≤ N}, so the changed entry

ti1...iN is not in the slice with index q. This and Eq. (23) imply that dπ(q) = d(T(Qπ,q), q) =
d(T′(Qπ′,q), q) holds. For showing d(T′(Qπ′,q), r) ≥ dπ(q), we divide into cases when r ∈ C
and r ∈ Qπ′,q − C. For r ∈ C case, let x ∈ Q be satisfying π−1(x) ≤ π−1(qf ) and dπ(x) =
cπ(qf ), whose existence is from the definition of cπ(·). We show by d(T′(Qπ′,q), r) + δ ≥
d(T(Qπ,q), r) ≥ d(T(Qπ,x), r) ≥ dπ(x) = cπ(qf ) ≥ dπ(q) + δ. Since slice sums decrease
at most δ under ((i1, ..., iN ), δ,−) and from Eq. (23), d(T′(Qπ′,q), r) + δ ≥ d(T(Qπ,q), r)
holds. Also, dπ(x) = cπ(qf ) > cπ(qf ) − δ implies that x ∈ Mmin from definition of Mmin,
hence π−1(x) ≥ jL = min

q∈Mmin

π−1(q). Then π−1(q) < jL ≤ π−1(x) implies Qπ,x ⊂ Qπ,q

and π−1(x) ≤ π−1(qf ) ≤ π−1(r) implies r ∈ Qπ,x. Hence r ∈ Qπ,x ⊂ Qπ,q, which implies
d(T(Qπ,q), r) ≥ d(T(Qπ,x), r). Also, d(T(Qπ,x), r) ≥ dπ(x) is from π being a D-ordering.
Also, dπ(x) = cπ(qf ) is from definition of x. Lastly, definition of jL in Eq. (7) and π−1(q) <
jL implies q /∈ Mmin, hence cπ(qf ) ≥ dπ(q) + δ holds. From these, d(T′(Qπ′,q), r) ≥ dπ(q)
holds for r ∈ C case. For r ∈ Qπ′,q − C case, we show as d(T′(Qπ′,q), r) = d(T(Qπ,q), r) ≥
d(T(Qπ,q), q). Since r is not in C and from Eq. (23), d(T′(Qπ′,q), r) = d(T(Qπ,q), r) holds.
Then from π being a D-ordering, d(T(Qπ,q), r) ≥ dπ(q) holds for r ∈ Qπ′,q −C case. Hence
for either case, d(T′(Qπ′,q), r) ≥ dπ(q) holds. This with dπ(q) = d(T′(Qπ′,q), q) implies
d(T′(Qπ′,q), q) = min

r∈Qπ,q
d(T′(Qπ′,q), r) for π−1(q) < jL.

(ii) For the case of jL ≤ π−1(q) ≤ jH , we show Eq. (22) by d(T′(Qπ′,q), q) =
min

r∈Qπ′,q∩R
d(T′(Qπ′,q), r) and min

r∈Qπ′,q−R
d(T′(Qπ′,q), r) ≥ cπ(qf ) ≥ d(T′(Qπ′,q), q). At first,

Lemma B.1 (iii) implies d(T′(Qπ′,q), q) = min
r∈Qπ′,q∩R

d(T′(Qπ′,q), r). Also, since Mmax =

M(cπ(qf )), Lemma B.1 (iv) implies min
r∈Qπ′,q−R

d(T′(Qπ′,q), r) ≥ cπ(qf ). For d(T′(Qπ′,q), q) ≤

cπ(qf ), let r := arg minq′∈Qπ′,q
π−1(q′) be the slice index earliest in π among Qπ′,q. We

show d(T′(Qπ′,q), q) ≤ d(T′(Qπ′,q), r) ≤ d(T(Qπ′,q), r) ≤ dπ(r) ≤ cπ(qf ). d(T′(Qπ′,q), q) ≤
d(T′(Qπ′,q), r) is from Eq. (16) in Lemma B.1 (v). And slice sums either decrease or
remain the same under ((i1, ..., iN ), δ,−), so d(T′(Qπ′,q), r) ≤ d(T(Qπ′,q), r) holds. And
Eq. (17) in Lemma B.1 (v) implies d(T(Qπ′,q), r) ≤ dπ(r). Then, π and π′ coinciding on
[|Q|]\[jL, jH ], π−1(r) ≤ π−1(q) ≤ jH holds. Then Eq. (8) implies that r /∈ Mmax. Hence
π−1(r) ≤ π−1(qf ) or dπ(r) < cπ(qf ) holds. For π−1(r) ≤ π−1(qf ) case, definition of cπ(·)
implies that dπ(r) ≤ cπ(r) ≤ cπ(qf ), hence in any case dπ(r) ≤ cπ(qf ) holds. Hence for for
jL ≤ π−1(q) ≤ jH we have

d(T′(Qπ′,q), q) ≤ cπ(qf ). (24)

Then Lemma B.1 (iii), (iv), and Eq. (24) imply that d(T′(Qπ′,q), q) = min
r∈Qπ,q

d(T′(Qπ′,q), r)

holds for jL ≤ π−1(q) ≤ jH .
(iii) For the case of π−1(q) > jH , Lemma B.1 (vi) implies Eq. (19). �

C. ADDITIONAL EXPERIMENTS

We design additional experiments to answer the following question:

— Q5. Accuracy in the Case of Decrement: Does DenseStream accurately maintain
a dense subtensor when the values of tensor entries decrease?

Experimental settings were the same as in the main paper.
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Fig. 6: DenseStream is ‘any-time’ and accurate in the case of decrement. While
tensors change, DenseStream maintains and instantly updates a dense subtensor, whereas
batch methods update dense subtensors once in a time interval. Moreover, while the values of
tensor entries decrease (and eventually become zero), the subtensors maintained by Dens-
eStream have density (red lines) similar to the density (points) of the subtensors found
by the best batch methods. In the main paper, we show that DenseStream accurately
update dense subtensors while the values of tensor entries increase.

C.1. Q5. Accuracy in the Case of Decrement

We tracked the density of the dense subtensor maintained by DenseStream while the
values of tensor entries decrease (and eventually become zero), and compared it with the
densities of the dense subtensors found by batch algorithms [Jiang et al. 2015; Maruhashi
et al. 2011; Shin et al. 2016] As seen in Figure 6, the subtensors maintained by Dens-
eStream have density (red lines) similar to the density (points) of the subtensors found
by the best batch algorithms. Moreover, DenseStream is ‘any time’. That is, as seen in
Figure 6, DenseStream updates the dense subtensor instantly, while the batch algorithms
cannot update their dense subtensors until the next batch processes end. In the main paper,
we show that DenseStream also accurately updates dense subtensors while the values of
tensor entries increase.

REFERENCES

Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos. 2015. A general
suspiciousness metric for dense blocks in multimodal data. In ICDM.

Koji Maruhashi, Fan Guo, and Christos Faloutsos. 2011. Multiaspectforensics: Pattern mining on large-scale
heterogeneous networks with tensor analysis. In ASONAM.

Kijung Shin, Bryan Hooi, and Christos Faloutsos. 2016. M-Zoom: Fast Dense-Block Detection in Tensors
with Quality Guarantees. In ECML/PKDD.

Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. 2017. DenseAlert: Incremental Dense-Subtensor
Detection in Tensor Stream. In KDD.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.


	Density Measure
	Proofs
	Lemma B.1
	Proof of Lemma 3.7
	Proof of Lemma 3.11

	Additional Experiments
	Q5. Accuracy in the Case of Decrement


