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A. DENSITY MEASURE

In this section, we show that the density measure (Definition 1) used in the main paper
satisfies properties that a reasonable “anomalousness” measure should meet. These prop-
erties were proposed in [Jiang et al. 2015]. Here, we consider two N-way tensors, I of size

I x Iy x ... x Iy and T’ of size I} x I} x ... x I;. We denote the sum of the entries in each

tensor by sum(J) and sum(J’), and define their average entry value as t = %L(?V and
n=1

= 22T We first list three basic axioms that any anomalousness measure f should

N I/
n=1"N
meet.

Axiom 1 (Entry Sum). Between two tensors with the same dimensionality, one with higher
entry sum is more anomalous than the other. Formally, suppose 1 < Vn < N, I, = I,.
Then sum(T) > sum(T") implies f(T) > f(T'), and equality holds if and only if sum(T) =
sum(T").

Axiom 2 (Concentration). Between two tensors with the same entry sum, one with smaller
dimensionality is more anomalous than the other. Formally, suppose sum(T) = sum(T").
Then 1 < ¥n < N, I, < I, implies f(T) > f(T'), and equality holds if and only if
1<Vn<N,I,=1I,.

Axiom 3 (Size). Between two tensors with the same average entry value, one with larger
dimensionality is more anomalous than the other. Formally, supposet =t'. Then 1 < Vn <
N, I, > I, implies f(T) > f(T'), and equality holds if and only if 1 <¥n < N, I,, = I,.

Although two more axioms were proposed in [Jiang et al. 2015], they are not relevant to
our work. The additional axioms are for comparison between subtensors in different tensors,
while in our work, only subtensors within the same tensor are compared.

As in the main paper, the densities of 7 and J”, denoted by p(T) and p(T’), are defined as
p(T) = ;Nmi(?v and p(J") = ;‘;"7(7[,), respectively. We prove that Axioms 1-3 are satisfied

n=1 n=1"N
by the density measure used in the paper, in Theorem A.1.
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Theorem A.1. Let T and T’ be two N-way tensors, and let p be the density measure in
Definition 1. Then p satisfies Axiom 1-3, i.e.

(i) (Entry Sum). Suppose 1 < ¥n < N, I, = I. Then sum(T) > sum(T') implies
p(T) > p(T'), and equality holds if and only if sum(T) = sum(T").

(ii) (Concentration). Suppose sum(T) = sum(T'). Then 1 < Vn < N, I,, < I implies
p(T) > p(T"), and equality holds if and only if 1 <¥n < N, I, = I.

(iii) (Size). Suppose t =t'. Then 1 <Vn < N, I, > I/ implies p(T) > p(T'), and equality
holds if and only if 1 <Vn < N, I, =1.
Proof. (i) Suppose 1 <Vn < N, I, = I!. Then sum(J) > sum(J") implies
sum(T) _ sum(T')  sum(T”)
p(T) = N e = ;= p(“TI)‘
Zn:l In Zn:l In Zn 1 In

And equivalents for the equality condition are

) sum(T)  sum(T") ,
p(T)=p(T) = —x = — sum(T) = sum(T").
Zn:l I" Zn 1 IrIL
(ii) Suppose sum(T) = sum(J’). Then 1 < Vn < N, I,, < I/, implies
sum(T sum(T sum/(T’
o(7) = @) 5 sum@) _ sum@) _ gy,
Zn:l I” Zn 1 In Zn 1 In

And equivalents for the equality condition are

N N
o(T) = p(T') = sum(T) _ sum(JT’ Z ZI,
Zg:l In Zn 1 I’;L n=1 =1

Then under 1 < Vn < N, I,, < I/ conditions, anl I, = Zn 1 I, can happen if and only
if1<Vn<N,I,=1.

(iil) We first prove that 1 < Vn < N, I,, > I/, implies H" L I" =2 g’]v L 17 , and the equality
holds if and only if 1 <Vn < N, I, = I/,. This is since
il 1 (N | Y
N =N Z &N T N ‘
Zn:l I, Zn:l ﬁ Zn 177, ;n J Zn:l IrlL
And H% 111" = l‘[ﬁ 1 i{ if and only if Zn 1 H#ﬂ - = 25:1 m Under 1 < Vn <
N, I,, > I, condition, this can happen if and only if 1 <Vn<N,I,=1,.
Now, suppose t = t/, i.e. 5“15”(? = sum( 12. Then, 1 < Vn < N, I, > I’ implies
n=1"1 n=1"n
nN 1In > Hn 1 ';L h n
A S Al
sum(T)  sum(T) Hg: I, _ sum(J") Hn I sum(T")
p(T) = N = N X N : 2 X ! = = p('J'/),

Zn:l In Hn:l In Zn:l In Hn 117/1 En 117/1 Zn 111/1

And equivalents for the equality condition are

N
I, I
p(T)=p(T) = [ :H"1” < 1<Vn<N,I,=1,.

N
Zn:l I” Zn 1 17/1
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B. PROOFS

B.1. Lemma B.1

Lemma B.1. Let T be an N-way tensor, and let T’ be the updated T after the change
of either ((i1,...,in),0,+) or ((41,...,in),0,—). Let w be a D-ordering of Q, and let ¢ =

argmin 7~ 1(q) where C = {(n,i,) : 1 <Vn < N}. For ¢ € Ry, let M(c) be the set of slice
qeC
indices that are located after q¢ in ™ and having d.(-) at least c, i.e.

M(c):={q€Q:m(q) > 7 '(qr) Ndx(q) > c}. (9)
And let jr,,jg € [|Q]] be satisfying

min 7! — ) c
i = {qu(c) @-1 §M#), (10)

Q| otherwise,
and j, < ju. Let R={q € Q : 7 1(q) € [ir,jul}. Let ' be an ordering of slice indices Q
in T’ where Vj & i, jm], ™ (j) = 7(j) and ¥j € [jr, jul,

dT’ 1ot (4 (4 = i d 7/ 1ot (5 . 11
( (QTI’ K (j)),’lT (.7)) reRﬂ%l,,Ill),r/(j) ( (Qﬂ' T (])),7’) ( )

Then,
(i) For all g € Q with m=*(q) & i, ju],
Qrq = Qr g (12)
(ii) For all g € Q with 7=*(q) > ju,
iT(Qw,q) = :T/(Qw’,q)' (13)
(iii) For all ¢ € Q with j, < 7 1(q) < ju,
/ . . ’ ,
AT @) =i AT (Qur)7). (1)
(iv) For all ¢ € Q with j;, <7 (q) < ju,
i "(Qnr >ec.
et d(T(Qrq)s7) 2 € (15)
(v) For all g € Q with jp < 7 1(q) < ju, let r := arnginﬂ"l(q’) be the slice index located
IEQ 4
earliest in ™ among Q' 4. Then the following inequalities hold:
AT (Qrrq),q) < AT (Qrr )5 7), (16)
d(T(Qnrq),7) < dr(r). (17)
(vi) For all ¢ € Q with 7= (q) > ju,
AT (Qnr ) ) = ,Zain AT (Qnr ), 7). (18)

Proof. (i) If 7=Y(q) ¢ [jL,jm], then either 771(q) < jp or 77 1(q) > ju. Consider 771(q) <
gz, first. Since 7 and 7’ coincide on [1,51), 7'~ 1(q) = 7~ 1(¢q) < jr holds, so m and 7’ coincide
on [1,771(q)) as well. This implies that

Qrg=Q\{reQ:a '(r) <n (@)} =Q\{reQ:a"'(r) <7 (@)} = Qu.q-

Now consider m~1(q) > jg case. Since 7 and 7’ coincide on (ju, |Q|], 71 (q) = 771 (q) > ju
holds, so 7 and 7’ coincide on [771(q), |Q|] as well. This implies that

Qeg={reQ:n () > g}={reQ:7'(r)>7 )} = Qn 4
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Hence for either cases, Eq. (12) holds.
() Since 7 1(g ) > jg, Lemma B.1 (i) implies Qr 4 = Q4. And since 77 1(q) > jg >
T (qp) = mlrcmr 1(¢"), the changed entry t;, ,;, with index (iy,...,ix) is not contained in
‘e

T(Qr,q). These together imply Eq. (13).

(iii) Note that 7 and 7’ coinciding on [|Q|]\[jz, x| implies that j;, < 7'~1(q) < jg as
well. Hence this with the condition of 7’ in Eq. (11) implies Eq. (14).

(iv) If M(c) = 0, then Q 4\R = 0, so there is nothing to show. When M(c) # 0
so that Qr 4\R # 0, fix any r € Qn 4\R, and let g, := 7(jg + 1). We show Eq.
(15) as d(T (Qnar.q),7) > d(T(Qnrgp)s7) > dr(gn) > c. First, 7 and 7’ coinciding on
QU\jz. ] mplis that 7'~ (q) < gir < jur + 1 = 7@, 50 Qurg > Qv And
o r) = 77 r) > ju+1 = 7 Yqn) = 7" (qn) implies r € Qns4,, which im-
plies d(T'(Qr o)1) > d(T (Qnr.q,),7). Also, since 77 1(qs) > ju, Lemma B.1 (i) im-
plies T(Qrg,) = T (Qn' q,), and hence d(T'(Qnrq,),7) > d(T(Qn,q,): 7). Also, 7 being
a D-ordering implies d(T(Qr.q,),7) > AT (Qr.q,)sqn) = dx(qn). Also, M(c) # 0 and

ju+1 = g}vi[r(l)ﬁ’l(q) in Eq. (10) implies ¢, € M(c), and definition of M(c) in Eq.
q c
(9) implies that d.(gn) > c. These together imply Eq. (15).

(v) Note that 7 and 7’ coinciding on [|Q|] \ [jr,jx] with 7=1(q) € [jL,jm] implies that
7=1(r) € [ir, ju], i.e. 7 € R. Then Eq. (16) is from the condition of 7’ in Eq. (11) and that
r € RN Qu 4. Also, r = argmin 7 1(¢') implies Q4 C Qr., which implies Eq. (17).

'€Qrr

(vi) We show Eq. (18) as d(T'(Qrq).q0) = d(T(Qnryq).q) = éan dT(Qrgq),7) =
r%m d(T'(Qrr q),7). First, from Lemma B.1 (i), d(T'(Qr),q) = d(T(Qxr4),q) holds.
re
Next, since 7 is a D-ordering, d(T(Qnrq),q9) = r%in d(T(Qr,q),7) holds. Lastly,

re

™4

min d(T(Qr,q),7) = TénQin d(T'(Qnr.q),7) is again from Lemma B.1 (ii). These together

TGQW,(]

imply Eq. (18). |

B.2. Proof of Lemma 3.7

In the following proof, we use qf := argmin ' (r) = n(j) where C = {(n,i,) : 1 <Vn <
reC

N}, M:={qeQ:m " q) >n"qs) N dr(q) >dr(qs)+6},and R:={qeQ:7'(q) €

[ir,7m]}, all of which are defined in the main paper. Note that T, I', «, ¢y, jr, ju, R, 7’

satisfies the conditions in Lemma B.1 with M = M (d.(gs) + J), and hence Lemma B.1 is
applicable.

Proof. From Definition 3.1 of D-ordering, we need to show that for all ¢ € Q,
AT (Qrr ), q) = ,Zoin AT (Qzr q), 7). (19)
7/ ,q

We divide into 3 cases depending on the location of ¢ with respect to m: (i) 7=1(q) < jr,
(i) jr <7 Yq) < ju, and (iii) 771 (q) > jg.

(i) For the case of 771(q) < jr, we show Eq. (19) as d(T'(Qx.q),q) = d(T(Qxr.q),q) =

énQin AT (Qrq) 1) < EI?EIQHI d(T'(Qr q), 7). At first, 771 (¢) < jr and Lemma B.1 (i) imply

,q 7/ ,q

Qrr g = Qrg- (20)

Also, from 771 (q) < ji = mEHCl’ 77 1(q") where C = {(n,i,) : 1 <V¥n < N}, the changed entry
q/

t; is not in the slice with index q. From this and Eq. (20), d(T7'(Qx'.4),q) = d(T(Qx.4),q)

914N
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holds. Next, from 7 being a D-ordering, we have d(T(Qr.q),q) = rrbin d(T(Qx,q),7) holds.
7€, q

Lastly, from Eq. (20) and that the slice sums of the slices in @ either increase or remain
the same under ((i1,...,in),0,+), rrbin AT (Qr,q) 1) < rréin d(T'(Qn 4),7) holds. From
r€Qxr,q TEQ L 4

these, d(T'(Qnrr.q),q) = Te%ir} d(ﬂ"(Qﬂ’/’q),r) holds for 7~1(q) < jr.

(ii) For the case of j, < 7 l(q) < jm, we show Eq. (19) by d(T'(Qn4),q) =
min (7' (Qrrq),r) and _min_d(T(Qug)7) = drlgs) +0 > d(T(Qu ) q)-

TGQw’,qu T‘GQW/,Q—

At first, Lemma B.1 (iii) implies d(T'(Qx 4),q) = GC51[111101?d(‘J'/(QW/,q),r). Also, since
s ! q L

M = M(d.(gs) + 6), Lemma B.1 (iv) implies Qmin Rd(T’(Q,T/g),r) > d(qf) + 0. For
TEQ L o~

AT (Qrr ), @) < drlqp)+9, let 7 := argmin71(q") be the slice with the index earliest in 7
TEQ 4

among Qs 4, and we show d(T'(Qr ¢),q) < d(T' (Qrr.q),7) < dr(qf) + 6. d(T'(Qnrr ), q) <
d(T'(Qrr q),7) is from Eq. (16) in Lemma B.1 (v). For d(T'(Q 4),7) < dx(qs) + 0, we
divide into cases where r = gy or r # gqy. When r = g7, note that slice sums can in-
crease at most & under ((i1,...,in),d,+), s0 d(T'(Qr 4);qr) < d(T(Qr 4),qs) + § holds.
And Eq. (17) in Lemma B.1 (v) implies d(T(Qx~/q),qf) + 6 < dx(gs) + J. Hence these
implies d(T'(Qx.q),7) < dr(qs) + 6 for r = qy. When r # g = 7(j), # and 7’ coin-
ciding on [1,jr) implies that ¢f ¢ Qn 4, which implies that t;, ;. is not in T(Qn 4).
Hence T(Qr ) = T'(Qx,4), and this implies d(T'(Qr 4),7) = d(T(Qx',q),7). Then Eq.
(17) in Lemma B.1 (v) implies d(T(Qr4),7) < dr(r). Then, # and 7’ coinciding on
IQI\ljz,ju], 7~ (q) < ju, and r # «(j.) imply that jp < 77'(r) < 77(q) < ju,
and Eq. (2) implies that » ¢ M. Hence d(r) < dx(gs) + 6 holds, and these imply
AT (Qrr.q)s7) < dr(qs) + 8 for r # qp. Hence d(T'(Qr 4),7) < dx(qy) + 6 holds for any r.
This with d(T"(Qr 4),q) < d(T'(Qxr.4), ) implies that for j;, < 77 1(q) < ju we have

AT (Qnr,4):0) < dr(qy) + 0. (21)
Then Lemma B.1 (iii), (iv), and Eq. (21) imply that d(T'(Qx4),q) = min d(T'(Qx 4),7)
TEQ 4
holds for j;, < 77 (q) < jpu.
(iii) For the case of 771(q) > ju, Lemma B.1 (vi) implies Eq. (19). ]

B.3. Proof of Lemma 3.11

In the following proof, we use ¢ := argmin7—!(r) where C = {(n,i,) : 1 < Vn < N},
reC

Myin = {q €Q: dTr(Q) > CW(Q) - 6}7 Muax == {q €Q: 77_1<Q) > 7T'_1(Qf) A d‘n’(Q) >
cx(gf)}, and R == {q € Q : 7 (¢) € [jr,jul}, all of which are defined in the main
paper. Note that T, I/, «, qr, jr, ju, R, 7' satisfies the conditions in Lemma B.1 with
Mmax = M(cr(gy)), and hence Lemma B.1 is applicable.

Proof. From Definition 3.1 of D-ordering, we need to show that for all ¢ € @,

d(“T/(Qﬂ’,q)v q) = Tengl} d(7I<Q7r’,q)aT)- (22)

We divide into 3 cases depending on the location of ¢ with respect to m: (i) 7=1(q) < jr,
(i) jr <7 '(q) < jm, and (iii) 7 (q) > jnu.

(i) For the case of 771(q) < jz, we show as d(T'(Qxr.4),7) > dr(q) = A(T' (Qnr4),q). At
first, 771(¢) < j and Lemma B.1 (i) imply

erﬂq = qu- (23)
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Also, jr, <7 1 (qp) = ;peucl 7 1(q") where C' = {(n,i,) : 1 <Vn < N}, so the changed entry
ti,..in is not in the slice with index ¢. This and Eq. (23) imply that d.(¢) = d(T(Qrq),q) =
d(T'(Qn.4), q) holds. For showing d(T'(Qr 4),7) > dr(q), we divide into cases when r € C
and 7 € Q4 — C. For r € C case, let x € Q be satisfying 7= (z) < 77! (qr) and dr(z) =
cx(qyr), whose existence is from the definition of c.(-). We show by d(T'(Qn 4),7) + & >
AT (Qrq)1) = AT (Qrz),7) > dr(x) = cx(qr) > dr(g) + d. Since slice sums decrease
at most ¢ under ((iy,...,in),6,—) and from Eq. (23), d(T"(Qr q),7) + 6 > d(T(Qrq),7)
holds. Also, dr(x) = cx(qr) > cx(qf) — ¢ implies that * € My, from definition of My,
hence 7~ (z) > j, = qenzlv}n 77 1(g). Then 7 %(q) < jr < 7 *(z) implies Qrz C Qg
and 771 (z) < 77 Y(qy) < 7 1(r) implies r € Q. Hence r € Qr » C Qrq4, which implies
AT (Qr.q),7) = AT (Qr ), 7). Also, d(T(Qrz),7) > dr(z) is from 7 being a D-ordering.
Also, d(x) = cx(qy) is from definition of z. Lastly, definition of j;, in Eq. (7) and 7~!(q) <
jr implies ¢ ¢ Myin, hence c(qr) > dx(g) + & holds. From these, d(T'(Q. 4),7) > dx(q)
holds for r € C case. For 1 € Q. , — C case, we show as d(T'(Qr'.4),7) = d(T(Qn.q),7) >
d(T(Qr.4),q)- Since r is not in C and from Eq. (23), d(T'(Qx 4),7) = d(T(Qyr4),7) holds.
Then from 7 being a D-ordering, d(T(Qx,4),7) > dx(g) holds for r € Qs 4 — C case. Hence
for either case, d(J'(Qx.4),7) > dx(q) holds. This with d.(q) = d(T'(Qr 4),q) implies

d(‘.)"(Q,rrﬂ),q) = rleinn d(f]'/(Q,r/7q),r) for 771(q) < jr.

(ii) For the case of jr < 7 Yq) < ju, we show Eq. (22) by d(T'(Qn4),q) =
min__ d(T'(Qn 4),7) and __min Rd(T’(Qw,’q),r) > cx(gy) > AT (Qnr.q),q). At first,

T'EQﬂ./’qﬂR TEQﬂ./,q—

Lemma B.1 (iii) implies d(T'(Qx'4),q) = GI?nin Rd(‘J”(Q,rgq),r). Also, since Myax =
TEQ s N

M (cx(gy)), Lemma B.1 (iv) implies TeQmin Rd(‘.T/(Qﬂ/,q),r) > cr(qy). For d(T'(Qr 4),q) <
7\'/,(17

cr(gqy), let v = argminq/eQw,yq n71(¢") be the slice index earliest in 7 among Q. ,. We
show d(T'(Qn ), 0) < d(T(Qr q),7) < A(T(Qnrg),7) < dr(r) < ex(ay)- d(T'(Qnrg),q) <
d(T'(Qnq),7) is from Eq. (16) in Lemma B.1 (v). And slice sums either decrease or
remain the same under ((i1,...,in),d,—), 50 (T (Qrq),7) < d(T(Qx'.4),7) holds. And
Eq. (17) in Lemma B.1 (v) implies d(T(Qn/4),;7) < dx(r). Then, 7 and 7’ coinciding on
QL ju], 71 (r) < 77 1(¢q) < ju holds. Then Eq. (8) implies that 7 ¢ Mpy.x. Hence
7 (r) < 71 (gy) or dr(r) < cx(gs) holds. For m#=1(r) < m~!(gqs) case, definition of ¢, (-)
implies that d.(r) < ¢z (1) < cx(qf), hence in any case d(r) < cx(gs) holds. Hence for for
jr <7 (q) < jg we have

AT (Qr.q),0) < cxlay)- (24)
Then Lemma B.1 (iii), (iv), and Eq. (24) imply that d(T"(Qr 4),q) = énQin AT (Qrr q),7)

holds for j;, < 7 (q) < ju.
(iii) For the case of 771(q) > ju, Lemma B.1 (vi) implies Eq. (19). |

C. ADDITIONAL EXPERIMENTS
We design additional experiments to answer the following question:

— Q5. Accuracy in the Case of Decrement: Does DENSESTREAM accurately maintain
a dense subtensor when the values of tensor entries decrease?

Experimental settings were the same as in the main paper.
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Fig. 6: DenseStream is ‘any-time’ and accurate in the case of decrement. While
tensors change, DENSESTREAM maintains and instantly updates a dense subtensor, whereas
batch methods update dense subtensors once in a time interval. Moreover, while the values of
tensor entries decrease (and eventually become zero), the subtensors maintained by DENS-
ESTREAM have density (red lines) similar to the density (points) of the subtensors found
by the best batch methods. In the main paper, we show that DENSESTREAM accurately
update dense subtensors while the values of tensor entries increase.

C.1. Q5. Accuracy in the Case of Decrement

We tracked the density of the dense subtensor maintained by DENSESTREAM while the
values of tensor entries decrease (and eventually become zero), and compared it with the
densities of the dense subtensors found by batch algorithms [Jiang et al. 2015; Maruhashi
et al. 2011; Shin et al. 2016] As seen in Figure 6, the subtensors maintained by DENS-
ESTREAM have density (red lines) similar to the density (points) of the subtensors found
by the best batch algorithms. Moreover, DENSESTREAM is ‘any time’. That is, as seen in
Figure 6, DENSESTREAM updates the dense subtensor instantly, while the batch algorithms
cannot update their dense subtensors until the next batch processes end. In the main paper,
we show that DENSESTREAM also accurately updates dense subtensors while the values of
tensor entries increase.
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