
Visual Query Language:
Finding patterns in and relationships among time series data

To appear in Seventh Workshop on Mining Scientific and Engineering Datasets, 24 Apr 2004, Lake Buena Vista, FL

Karen Zita Haigh, Wendy Foslien, Valerie Guralnik
Honeywell Technology Center

3660 Technology Drive
Minneapolis, MN 55418

{karen.haigh,wendy.foslien,valerie.guralnik}@honeywell.com

Abstract

Many scientific datasets archive a large number of variables
over time. These timeseries data streams typically track many
variables over relatively long periods of time, and therefore
are often both wide and deep. In this paper, we describe the
Visual Query Language (VQL) [3], a technology for locat-
ing time series patterns in historical or real time data. The
user interactively specifies a search pattern, VQL finds sim-
ilar shapes, and returns a ranked list of matches. VQL sup-
ports both univariate and multivariate queries, and allows the
user to interactively specify the the quality of the match, in-
cluding temporal warping, amplitude warping, and temporal
constraints between features.

1 Introduction
Many scientific datasets archive a large number of variables
over time. These timeseries data streams typically track
many variables over relatively long periods of time, and
therefore are often both wide and deep. As a result, the
size of some data sequences is on the order of Gigabytes.
Much of this data is irrelevant. Most existing techniques for
extractingpatterns of interestare both time consuming and
tedious.

Data sequences have conventionally been analyzed using
such techniques as database query languages, or machine
learning of pattern labels [6; 8; 15]. Such techniques are
frequently limited in the complexity of the pattern that can
be described, or fail to incorporate time-based features ade-
quately. Moreover, the lack of an intuitive interface impairs
efficiency for many users.

The Visual Query Language (VQL) [3] is a technology for
locating time series patterns in historical or real time data. It
was initially developed for visually describing signal pat-
terns to find interesting shapes in very large time series data
sets. The desired time series “shape” from a set of data is se-
lected interactively by a user, or defined as a template. VQL
allows specification of how insensitive the matcher should
be to variations in temporal length and variations in feature
amplitude. Once this shape is defined, the VQL search en-
gine uses various algorithms to find similar shapes in the
historical or real time data stream, and returns a ranked list
of matches.

Archived data contains important but often widely scat-
tered information; and archives can be both wide (many-
dimensioned) and deep (numerous samples). With VQL,
users can define qualitative patterns in the data graphically
or select previously defined templates and then expresses the
selections as search directives. The VQL search engine uses
trend-oriented algorithms to find similar patterns in the data

stream and returns a ranked list of matches. Patterns may
exist on single variables or multiple variables with temporal
constraints on segment positions.

For the purposes of discussion in this paper, our moti-
vating example is a small subset of data collected from the
International Space Station’s two Beta Gimbal Assemblies
(BGA). The BGAs rotate the two solar panels to generate
electricity for the station. Normally, as the angle error be-
tween the desired angle and the actual angle increases, the
BGA PID controller corrects by increasing motor current
(hence increasing the velocity of the angle change). How-
ever, sometimes the the velocity does not change, so the cur-
rent increases until the motor trips. Nominal motor current
is 0.2 Amps; ground controllers consider 0.6 Amps to be
abnormal; the motor trips at 1.1 Amps.

The data is characterized by 41 BGA 4B parameters, 32
BGA 2B parameters, and 5 parameters external to the two
BGAs. We had both nominal behavior (no abnormal events),
and data containing abnormal events. The data totalled ap-
proximately 18 days, spread over 1.5 years; for a total of 3.2
million lines of data. Most parameters were sampled at 1 Hz,
some at 0.1 Hz. There were frequent communication drops
between the station and earth, lasting a duration of approx
20 minutes each time.

2 Univariate patterns
VQL is designed to find patterns of interest within timeseries
datastreams. Typically, the first question we want to pose to
VQL is “where else in the data set did we see a particular
behavior in the same variable?” VQL is a template based
querying tool, and uses an examplar to locate similar se-
quences. For a univariate search, we need to define a tem-
plate feature using historical data, and set search parameters
for that feature. Once the template feature is defined, we
use one of VQL’s underlying search algorithms to locate a
ranked set of matches. In the next sections, we describe the
process of creating the template feature.

2.1 Specifying a Univariate Query

The first step the user needs to take is to specify a template
for the query. There are three mechanisms to do so. First,
the user can click-and-drag over a rectangular region on the
datastream; VQL will use the data in that region as a tem-
plate. Figure 1 shows a feature created in this way. Second,
the user can use afeature editorto draw a template (or mod-
ify an existing one). Third, the user can create afeature li-
brary, which contains templates of features and can be used
across datasets.

4B Motor Current

2B Motor Current

4B Angle Error

2B Angle Error

Figure 1:An interesting high-current event in the BGA data.

The user can set a series of parameters on the template,
including:

• theminimum fitnessof returned matches,
• whether to search onshapeor energy,
• the degree to which theduration must match (compress

and expand),
• the degree to which theamplitudemust match (grow and

shrink),
• a downsample ratio(which controls resolution of the

search, and trades off accuracy for time),
• expectedperiodicity, and
• thenumber of hitsto return

The duration and amplitude constraints are expressed rela-
tive to the original feature, e.g. 1.0 would be identical to the
feature, while 2.0 is twice as long or twice as intense. VQL
will create default values for these parameters; the user can
interactively search and then modify parameters as needed.

2.2 Search Algorithm
The application is written in Visual C++ and uses the Mi-
crosoft Foundation Classes along with a several Component
Object Model (COM) entities. The default search algorithm
uses an efficient implementation of a simple moving win-
dow correlation calculation. Other search algorithms can be
added to VQL by designing additional COM libraries.

The following steps are followed in the default search al-
gorithm. First, a low pass filtered version of the original fea-
ture is prepared to eliminate transients that are irrelevant to
the feature of interest; the user can set the frequency cutoff
(downsample ratio).

Then, a series of time warped versions of the original filter
are created according to the input constraints. The shrinking
and stretching of the time axis in the template is performed

using a variation of uniform scaling [7], rather than dynamic
time warping. Prior to the search, a finite set of uniform
“warps” of the template feature are generated based on the
property settings for the template feature. The user controls
the minimum and maximum warp size, as well as the gran-
ularity of the warps.

Next, each temporally warped template is swept over the
larger target data set. A correlation coefficient is used to
compute the degree of match. The coefficient loosely rep-
resents the covariance of the two sequences, normalized by
their individual standard deviations, effectively implement-
ing the shapematch. To gain in efficiency, the algorithm
uses a circular buffer to incrementally update the mean and
variance calculation for the moving window.

The algorithm generates a sequence of correlation coeffi-
cients for the target data set. All peaks in this sequence are
considered candidate matches. The user specifies limits on
the number of peaks to retain; the threshold for the fitness
measure (correlation coefficient) for retention of peaks; and
thresholds on RMS magnitude of the match. The final list
of matches found by the search algorithm is presented to the
user sorted by theirfitness, emphasizing shape (through the
correlation coefficient). Note that match duration is included
implicitly in this ranking through the shrinking and stretch-
ing of the feature, and magnitude limits eliminate matches
from the ranked list.

The default search algorithm also includes the capability
for periodic searches. In a periodic search, the user can con-
strain the time of day where searches may be located. This is
useful in domains such as commercial building monitoring,
where differences in the behavior between in occupied hours
and unoccupied hours can be significant. Another capability
included in the default algorithm is searching by exception.

There are scenarios where the absence of a match is of inter-
est, rather than the presence. Taking another example from
building monitoring, there may be activities that we want to
ensure are occurring during unoccupied hours, such as shut-
ting down equipment at specified times. For the periodic
searches by exception, VQL tracks the best match inside the
specified daily window. At the end of searching, the days
that fail to meet the minimal fitness criterion are retained.

In addition, the default search engine can use anenergy
based algorithm, rather than the shape algorithm described
above. The energy algorithm uses a fitness measure based
on the absolute variance difference between the feature and
the search data, using the feature variance as the scaling fac-
tor. This contrasts with the windowed correlation approach
described above, in that it does not take into account rela-
tionships between individual points in the feature and the
search data. Some care needs to be exercised with the en-
ergy algorithm, because an appropriate value for scaling is
very dependent upon variance of the original target relative
to the surrounding data. This algorithm is generally used
to find periods of flatline data, such as a controller with a
saturated output.

2.3 Results
Figure 1 shows the main window in the VQL application.
There are two panes in the main window. On the left, a
tree view is used to access and manipulate active data, fea-
tures, and feature matches. The tree is also used to access
bookmarks in the data set, multivariate queries (described in
Section 3) and feature templates stored in a library.

In Figure 1, we see an example of the BGA data read into
VQL. The topmost plot shows a feature of interest that has
been selected by the user. In the BGA data, we are gener-
ally interested in cases where the motor current rises above
about 0.5 Amps. This feature shows a case where the current
returned to normal without tripping (at 1.1 Amps).

The user has specified a match threshold, and also defined
the tolerance for expansion and shrinkage of the feature in
the temporal and amplitude dimensions7. In this exam-
ple, the repository searched includes approximately 370,000
data points. This search takes about 5 seconds on a 1200
MHz computer using VQL’s default search algorithm.

Figure 2 shows the best match to the original template.
We can see this match has a similar current rise, as compared

Figure 2:Best match for the original template.

Figure 3: The user can see how well this fair match com-
pares to the original template.

Cylinder Bell Funnel
42 29 29

Table 1: Distribution of class instances in the Cyliner-Bell-
Funnel Dataset

to the template. This rise is followed by a step decrease in
both the template and the match. The durations of the fea-
ture and match are also quite similar. The magnitude of the
match is slightly smaller, and we can also see some higher
frequency oscillation just before the end of the match.

We can also look at a side by side comparison of the fea-
ture and match by viewing the properties sheet for the match,
as shown in Figure 3 (a fair match). The original feature
is shown in the upper curve, the match shown in the lower
curve. We see some differences in this feature compared
with the original template. Again, we see the characteristic
rise and fall of the signal, but the start of the match also in-
cludes a linear decrease. The duration of the match is about
80% of the template feature duration, and the overall mag-
nitude is about one half that of the template feature.

Note that we can also view statistics for each match, in-
cluding the overall fitness measurement, the relative dura-
tion and magnitude, as well as the precise time of the match
in the historical data.

One of the nice features of VQL is that all the datastreams
are tied to the samex axis. That means that when the user
zooms in or scrolls on one datastream, all the other datas-
treams also zoom in or scroll, ensuring that the user sees
coordinated events.

Matching Algorithm Effectiveness To test the effective-
ness of VQL’s default matching algorithm we generated an
artificial data set from thecylinder-bell-funnel taskorigi-
nally proposed by Saito [12]. The datastream is a randomly-
ordered concatenation of these events from the classes cylin-
der, bell, and funnel, each of which is a univariate time series
of fixed length, but with Gaussian noise, and variance on be-
ginning and ends of particular events. The generated data
set contained a total of 100 sequences with class distribution
shown in Table 1.

Cylinder Bell Funnel
No. of Matches 36 29 30

No. of True Positives 33 28 28
No. of False Positives 3 1 2
No. of False Negatives 9 1 1

Table 2:Match Results for Cylinder-Bell-Funnel Data.

We defined a feature representing each class based on the
first sequence of that class in the data set. We then searched
the entire data set to find matches. The results are presented
in Table 2.

The matching algorithm was able to achieve almost 100%
accuracy with very small number of false positives and neg-
atives for classes Bell and Funnel. The false positives for
all three classes had a poor fit with the original feature. The
large number of false negatives in case of the Cylinder class
can be explained by large variability in the width of the tails
of the shape. We attempted to redefine a VQL feature repre-
senting the Cylinder class by omitting most of the right and
left tails of the shape and capturing only the part represen-
tative of the class. The search algorithm was able to reduce
the number of false positives from 9 down to 3. Unfortu-
nately, the number of false positives also increased from 3
to 8. The false positives had a very good match in the shape
throughout the first half of the feature. Note that the cor-
relation filter algorithm does not distinguish the location of
the ’good’ points in the match. Thus, matching only the first
half of the feature has an equivalent fitness to matching half
of the shape in the overall feature, for the default algorithm.

Time Performance To demonstrate the efficiency of the
matching algorithm, we used aircraft engine timeseries data.
Each timeseries consisted of around 13.5 million points sam-
pled at 1Hz rate. We defined several VQL features represen-
tative of major events in the timeseries. Table 3 summarizes
computation times for finding the matches (if such exist) to
each VQL query on a 1.7GHz Pentium M. The time to com-
pute matches increases linearly with the width of the query.
The underlying calculation in the default algorithm requires
a pass through the length of the feature at each step to calcu-
late the sum needed for the correlation coefficient, and thus
we would expect this to scale with the length of the feature.

Width of Query Computation
(time) (num samples) Time

4min 47sec 287 16sec
6min 46sec 406 22sec
6min 57sec 417 22sec
8min 30sec 510 26sec
11min 37sec 697 36sec
15min 39 sec 939 46sec
21min 23sec 1283 63sec

Table 3: Computation Time of VQL queries for 13.5 million
engine datapoints.

3 Multivariate Queries
Interesting events may be characterized by patterns that oc-
cur on multiple variables. For example, the user might be
interested in cases when a rapid increase in temperature is
accompanied by a rapid decrease in pressure. VQL supports

this kind of multivariate query, along with an intuitive mech-
anism for specifying it.

3.1 Specifying a multivariate Query
The user specifies a multivariate query by first specifying the
(univariate) features of interest, then dropping them on the
“Compound Query” folder. As described above, the user can
set properties on the match quality of each of the features.

The user can also set constraints on the temporal relation-
ship between the features, denoted atemporal join. Each
feature has an associatedreference point, denotedRef1 and
Ref2, which is stored as a percentage of the feature width,
and used by the search algorithm to determine whether and
how well a candidate match meets constraints.

Given a matchm to featuref , t(refm) is the timestamp
associated withReff : for example, if a matchm for feature 1
starts at 10 seconds and ends at 20 seconds, andRef1 = 0.2,
thent(refm) = 12. We refer toδ ast(Ref2)− t(Ref1).

The link between the two reference points has an asso-
ciatederror bar, whose limits are denotedstart and end.
Given a matchm for feature 1, and a matchn for feature
2, they will match the compound query if they meet the con-
straint:

t(refm) + start≤ t(refn) ≤ t(refm) + end

Figure 4 shows a query in which feature 2 (T2-1) must
start between 6 and 24 hours after feature 1 (T1-1) starts;
i.e. Ref1 = 0.0 andRef2 = 0.0, δ = 0.502 days,start =
0.25 days, andend= 1.00 days. Figure 5 shows a query in
which feature 2 may only start after feature 1 is complete,
up to 12 hours after, i.e.Ref1 = 1.0 andRef2 = 0.0, δ = 0.0
hours,start = 0.0 hours, andend = 12.0 hours. Figure 6
shows a query where the two featurescoincide, that is, both
reference points fall within the error bars:Ref1 = 0.50 and
Ref2 = 0.50, δ = −6.0 hours,start = -12.0 hours, andend
= 6.0 hours. (Note that VQL displays appropriate temporal
units based on the features and their distance.)

A compound query may be a pair of features, a pair of
compound queries, or one of each. Temporal joins over com-
pound queries are specified in the same way as described
above. In addition to temporal joins, the user may specify
a logical join between a pair of compound queries (AND
and OR; NOT will be addressed in future work). As an ex-
ample, let us say that the user has constructed two queries
Q1 = F1 → F2 andQ2 = F2 → F3. Then, he can con-
structQ3 involving Q1 andQ2, with either a temporal join
or a logical join.

3.2 Search Algorithm
Our search algorithm finds matches in a bottom-up fashion.
The algorithm takes the specification of the compound query
and the relevant data as inputs. The algorithm finds the uni-
variate matches for each of the features, according to the
properties of the feature. Then, the algorithm merges the
matches of the individual features according to the join’s
temporal or logical constraints, pruning out the ones which
do not fit join specifations.

To be a match, all of the query’s hard logical and temporal
constraints must be met. When the results are presented to
the user, the set of matches is sorted according to fitness,
where a match’s fitness is defined by three factors:

• the fitness of match to the first feature, independently:
Fit(m)

Figure 4:Feature 2 starts between 6 and
24 hours after feature 1 starts.

Figure 5:Feature 2 must occur only after
feature 1 is complete.

Figure 6:Features 1 and 2 may coincide;
either may occur first.

Figure 7: The fitness of a temporal join is linear, based on
the widest error bar.

• the fitness of match to the second feature, independently:
Fit(n)

• the fitness of the temporal join: Fit(join)

The fitness of the compound query is:

Fit(CQ) = Fit(join)×
√

Fit(m)× Fit(n)

Intuitively, if both m andn are 50% fit and there is no
error on the join, then Fit(CQ) is 0.5.

We define fitness of the join to be:

Fit(join) =
[
1− abs(t(refn)− t(refm)− δ)

max(end− δ, δ − start)

]

whereδ = t(Ref2) − t(Ref1). Figure 7 shows one example
(normalized to t(Ref1) = 0), wheret(Ref2) = δ = 5, start=
3 andend= 10. A match whoset(refn)− t(refm) is 8 has a
fitness of 0.4.

Temporal Join Optimization. To limit the search space
we need to employ optimization strategies. The basic strat-
egy is to use a technique from the database community: de-
termining in which order the logical and temporal join op-
erations in compound query should be processed. After the
order is determined, each of the joins operations can be op-
timized independently.

To optimize the search in case of temporal join, we em-
ploy a sliding window technique commonly used in other

temporal data mining algorithms [11]. First, the matches of
each of the two sub-queries are determined and then sorted
in increasing order of their reference point.

To find all the matches that meet the constraints of the join
for the match of the first sub-query, the algorithm starts by
iterating over matches of the second sub-query until it finds
a match such that the second reference point is past thestart
error bar position:t(refm) + start≥ t(refn). The algorithm
adds additional candidate matches until the second reference
point is past theend error bar position:t(refm) + end <
t(refn).

When next match of the left sub-query is considered, the
algorithm does not start iteration from the very first match of
the second sub-query. Instead, the iteration starts from the
first match that had a reference point within thestart error
bar of the previous search.

The algorithm is outlined in Table 4.

LetM1 be the matches for feature 1, sorted by reference time
LetM2 be the matches for feature 2, sorted by reference time
LetMCQ be the (NULL) set of compound matches
Let i = 1; denoteni to be theith element ofM2

Foreachm ∈M1

While t(refm) + start < t(refni)
i = i + 1

j = i; denotenj to be thejth element ofM2

While t(refm) + end≤ t(refnj)
Add (m → nj) toMCQ

j = j + 1
ReturnMCQ

Table 4:Multivariate search algorithm.

Reusability of (intermediate) results. Since compound
queries are constructed from other queries and features, it
is reasonable to assume that some of those queries were ex-
ecuted and results of those queries are available. The cached
results of those queries can be re-used as needed as long as
their search parameters have not been modified. In cases
when constraints were tightened, the cached results can also

Figure 8:Best match for a multivariate query.

be reused by pruning the matches that do not fit tighter con-
straints. The pruning operation is more efficient, because
it operates on relatively small number of matches and does
not require searching through the whole data set in case of
univariate features or performing expensive join operation in
case of multivariate (sub-)query.

3.3 Results
In Figure 8, we see an example of a multivariate query. We
are interested in cases when both the angle error and the mo-
tor current oscillate significantly. Searching for this kind of
feature would be extremely challenging without the interac-
tive, visual interface. By changing search parameters and
altering search constraints, we can quickly find interesting
sections of the data.

We set the following margins on the match constaints:
matches for individual features had to be at least 30%
“good”, with an allowable temporal warp range of 0.8-2.0,
and an amplitude range of 0.5-20.0. The temporal join prop-
erties were structured to expect the features to coincide:
Ref1 = 0.5 and Ref2 = 0.5, δ = 0.0 hours,start = -3.0
hours, andend= 3.0 hours (each feature lasted approx 12
hours).

Figure 8 shows the best match, and Figure 9 shows a fair
match. We can clearly see that the intent of the query has
been maintained, even though the exact shape of the features
does not match the exact shape of the templates, as shown in
Figure 10. In Figure 10a, the match is twice as long as the
template, and approximately 80% of the template’s ampli-
tude. In Figure 10b, the match is about 90% of the duration,
and approximately 60% of the template’s amplitude.

Note that it would be very difficult to describe these two
features in a non-visual manner, especially given considera-
tions like amplitude and duration. In particular, a non-visual
technique to describe the templates would not return this
match to feature 1, since it has an “extra” local minimum.

Figure 9:Fair match (#5) for the query.

(a) Feature 1 (b) Feature 2

Figure 10:Detailed comparison for the two features in com-
pound match #5.

4 Related Work
Timesearcher [9] is similar to VQL in that it is a visually
interactive method to specify searches on timeseries data.
Unlike VQL, however, timesearcher is interested infilter-
ing through many similar time series streams; for example,
given a set of 1500 stocks, show the stocks whose value was
low on a certain date, and then high on a later date. By
drawing a rectangle on the timeseries, the user specifies the
search constraints.

There are several systems whose similarily to VQL lies in
searching for similar events or patterns in the data. However,
rather than using a visual method for describing features and
time warping to find matches, they usually use an alphabet
or labeling system [4; 6; 8; 10; 15]. The claim is made that
dynamic time warping is too expensive; VQL uses the sim-
pler approach of uniform scaling. The warping via uniform
scaling also gives the following benefits:

• it is easier for a user to describe complex shapes
• the search can be constrained by amplitude and time

warping considerations
• the search is less susceptible to noisy data

Keogh et al [10] use a probabilistic approach to find the
best possible match to a univariate query. In their work,
a time series is segmented with piece-wise straight lines.
Features such as peaks and plateaus are defined using this
representation. The query is defined as a sequence of fea-
tures with permissible time distance between features. The
model allows specification of degree of deformation as well
as specification of degree of elasticity in time and amplitude.
The best possible match to a query is found by scanning the
timeseries for matches of individual features and then com-
bining them according to the specified sequence for the best
possible match.

Tarzan’s [8] uniqueness is in its ability to findsurpris-
ing patterns in timeseries data. The algorithm discritizes the
data according to an alphabet, builds suffix trees to model
the strings seen in the training data, and then finds the prob-
ability of occurrence of a string seen in the test data. A pat-
tern is surprising if the frequency of its occurrence differs
substantially from that expected by chance.

Timeweaver [15] predicts events in multivariatecategori-
cal time series data. A data value on a timestream is an event
(i.e. not continuous); a pattern is a sequence of events with
ordering constraints. A genetic algorithm searches over the
space of patterns, and is shown to be effective if the event
of interest is within the prediction window. For example
351:<|TMSP|?|MJ|>*<|?|?|MJ|>*<|?|?|MN|>
means that a major severity alarm occurs on a TMSP de-
vice is followed by a major then a minor alarm, all within
351 seconds.

Höppner [5; 6] uses “english” labels (e.g. decreasing, in-
creasing), extracts intervals in time that conform to these
labels, and then induces sequences of labeled intervals.
Höppner detects multivariate relationships using associa-
tion rule mining [1] with a sliding window to detect pat-
terns. The relationships between intervals are described
through Allen’s temporal logic [2], which could also be ex-
pressed through multivariate VQL query specification capa-
bility. VQL’s query specification capability allows a user to
tighten or loosen constraints to customize a query to more
match user’s needs. In Höppner’s work the emphasis is on
finding all frequent temporal sequences of simple univariate
patterns. In our work the emphasis is on finding the best
matches of queries cosisting of complex shapes.

Weber et al [14] developed an approach to visualize pe-
riodic patterns in time-series data based on spirals. In this
approach time-series are mapped to spiral graphs, where the
cycle length indicates the periodicity of the data. Color, tex-
ture, thickness and/or icons is used to indicate value of time-
series data. By changing a cycle length a user is able to vi-
sually detect periodic patterns as the apperance will change
from unstructured to structured.

Wijk et al [13] presented a visualiation approach that is
based on clustering similary daily time-series and present
a user with cluster representatives as graphs and the corre-
sponding days on a calendar. Color is used to indicate clus-
ters and corresponding days on a calendar.

5 Conclusion
Using VQL, we were able to identify numerous properties
in the BGA data that were previously unknown. For ex-
ample, our NASA expert had informed us of specific dates
and times where known events had occurred. We found nu-
merous additional events, including several in the “nominal”

dataset – collected before any events had been noticed by the
ground controllers. Using VQL, we gained an understand-
ing of the relationships among parameters, including a good
understanding of the internal workings of the PID controller.
We were able to specifically find events when the PID con-
troller did not achieve its desired results.

VQL’s search algorithm is an powerful way to search
through large amounts of data for specific events, especially
in a noisy datastream. By adjusting the search parameters,
the user can control the flexibility of the search algorithm,
and find patterns that match his general intent.

Using a visually-oriented apporach to analyzing data se-
quences allows the user to specify events of interest intu-
itively and without needing to know traditional query lan-
guages. In addition, the user can confidently avoid review-
ing large amounts of data not relevant to the current query,
instead viewing regions of interest quickly and easily. VQL
is particularly useful in data sequences in which (relatively
rare) events of interest are represented by relatively short
data sequences contained in large amounts of data.

Please contact the authors if you are interested in obtain-
ing a copy of VQL.

References
[1] R. Agrawal and R. Srikant. Mining sequential patterns.

In Proceedings of the Eleventh International Confer-
ence on Data Engineering (ICDE), pages 3–14, Taipei,
Taiwan, 1995.

[2] J. Allen. Maintaining knowledge about temporal inter-
vals. ACM Communications, 26(11):832–843, 1983.

[3] W. Foslien, S. A. Harp, K. Lakshminarayan, and
D. Mylaraswamy. Content based retrieval of time se-
ries data, 2 July 2002. United States patent pending
09/346,245.

[4] P. Geurts and L. Wehenkel. Early prediction of electric
power system blackouts by temporal machine learn-
ing. In A. Danyluk, T. Fawcett, and F. Provost, ed-
itors, Proceedings of the ICML98-AAAI98 Workshop
on “Predicting the Future: AI Approaches to Time-
Series Problems”, pages 21–28, Madison, WI, July
1998. AAAI Press (Menlo Park, CA). Technical Re-
port WS-98-07.

[5] F. Höppner. Discovery of temporal patterns: Learning
rules about the qualitative behaviour of time series. In
L. D. Raedt and A. Siebes, editors,Proceedings of the
5th European Conference on Principles and Practice
of Knowledge Discovery in Databases, Lecture Notes
in Computer Science 2168, pages 192–203. Springer-
Verlag (Heidelberg, Germany), September 2001.

[6] F. Höppner. Learning dependencies in multivariate
time series. In C. Dousson, F. Höppner, and R. Quin-
iou, editors,Proceedings of the ECAI’02 Workshop
on Knowledge Discovery from Temporal and Spatial
Data, pages 25–31, Lyon, France, July 2002.

[7] E. Keogh. Efficiently finding arbitrarily scaled pat-
terns in massive time series databases. InKnowl-
edge Discovery in Databases: Pkdd 2003: 7th Euro-
pean Conference on Principles and Practice of Knowl-
edge Discovery in Databases, pages 253–265, Cavtat-
Dubronik, Croatia, 2003.

[8] E. Keogh, S. Lonardi, and W. Chiu. Finding surpris-
ing patterns in a time series database in linear time and
space. InProceedings of 8th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 550–556, Edmonton, Alberta, Canada,
July 2002.

[9] E. J. Keogh, H. Hochheiser, and B. Shneiderman. An
augmented visual query mechanism for finding pat-
terns in time series data. In T. A.et al, editor,In the 5th
International Conference on Flexible Query Answer-
ing Systems, Lecture Notes in Computer Science 2522,
pages 240–250, Copenhagen, Denmark, October 2002.
Springer-Verlag (Heidelberg, Germany).

[10] E. J. Keogh and P. Smyth. A probabilistic approach
to fast pattern matching in time series databases. In
D. Heckerman, H. Mannila, and D. Pregibon, edi-
tors, Proceedings of the Third Conference on Knowl-
edge Discovery and Data Mining (KDD-97), pages
20–24, Newport Beach, CA, August 1997. AAAI Press
(Menlo Park, CA).

[11] H. Mannila, H. Toivonen, and A. I. Verkamo. Dis-
covering frequent episodes in sequences. InFirst In-
ternational Conference on Knowledge Discovery and
Data Mining (KDD-95), pages 210 – 215, Montreal,
Canada, August 1995.

[12] N. Saito. Local feature extraction and its application
using a library of bases. PhD thesis, Yale University,
1994.

[13] J. J. van Wijk and E. R. van Selow. Cluster and calen-
darbased visualization of time series data. InProceed-
ings of IEEE Symposium on Information Visualization,
pages 4–9, October 1999.

[14] M. Weber, M. Alexa, and W. Mller. Visualizing time-
series on spirals. InProceedings of IEEE Sympo-
sium on Information Visualization, pages 7–14, Octo-
ber 2001.

[15] G. M. Weiss and H. Hirsh. Learning to predict rare
events in categorical time-series data. In A. Dany-
luk, T. Fawcett, and F. Provost, editors,Proceedings of
the ICML98-AAAI98 Workshop on “Predicting the Fu-
ture: AI Approaches to Time-Series Problems”, pages
83–90, Madison, WI, July 1998. AAAI Press (Menlo
Park, CA). Technical Report WS-98-07.

