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Abstract—We describe our application’s need for Machine
Learning on a General Purpose Processor of an embedded
device. Existing ML toolkits tend to be slow and consume
memory, making them incompatible with real-time systems,
limited hardware resources, or the rapid timing requirements
of most embedded systems. We present our ML application, and
the suite of optimizations we performed to create a system that
can operate effectively on an embeddded platform. We perform
an ablation study to analyze the impact of each optimization,
and demonstrate over 20x improvement in runtimes over the
original implementation, over a suite of 19 benchmark datasets.
We present our results on two embedded systems.

I. INTRODUCTION

Mobile ad hoc networks (MANETS) operate in highly dy-
namic, potentially hostile environments. Current approaches to
network configuration tend to be static, and therefore perform
poorly. It is instead desirable to adaptively configure the radio
and network stack to maintain consistent communications. A
human is unable to perform this dynamic configuration partly
because of the rapid timescales involved, and partly because
there are an exponential number of configurations [7].

Machine Learning is a suite of techniques that learn from
their experience, by analyzing their observations, updating
models of how previous actions performed, and using those
insights to make better decisions in the future. The system
can then learn how current conditions affect communications
quality, and automatically select a configuration to improve
performance, even in highly-dynamic missions. The domain
requires the ability for the decision maker to select a config-
uration in real-time, within the decision-making loop of the
radio and IP stack.

This paper presents our effort to place Support Vector Ma-
chines (SVMs) [21], [22] onto the general purpose processors
of two communications networks. Existing SVM libraries are
slow and memory intensive. This paper describes how we
optimized an existing SVM library to obtain a 20x runtime
improvement and controlled the memory footprint of the
system. This paper describes the optimizations that either had
the most effect on results, or were the most surprising to us
as developers.

II. EMBEDDED COMMUNICATIONS DOMAIN
Our target domain is a communications controller that
automatically learns the relationships among configuration
parameters of a mobile ad hoc network (MANET) to maintain
near-optimal configurations automatically in highly dynamic
environments. Consider a MANET with NV nodes; each node

has a set of observable parameters o that describe the envi-
ronment, a set of controllable parameters c that it can use to
change its behavior, and a metric m that provide feedback on
how well it is doing. Each control parameter has a known set
of discrete values. If all n controllables are binary on/off, then
there are 2" strategies, well beyond the ability of a human to
manage. The goal is to have each node choose a combination
of controllables ¢, to maximize performance of the metric m,
by learning a model f that predicts performance of the metric
from the observables o and controllables ¢: m = f(o,c).
The mathematics of this domain is described in more detail
elsewhere [8], [9].

Target Platforms: Our target platforms are two existing em-
bedded systems for communications, each with pre-established
hardware and runtime environments. These are legacy systems
on which we are deploying upgraded software capabilities.
Both platforms have general-purpose CPUs with no specialized
hardware acceleration. We consider this an embedded system
because it is dedicated to a specific set of capabilities, has
limited hardware resources, limited operating system capabili-
ties, and requires an external device to build and download its
runtime software. Our embedded platforms are:

ARMv7: ARMV7 rev 2 (v71) at 800 MHz, 256 kB cache,
256MB RAM, vintage 2005. Linux 2.6.38.8, G++
4.3.3, 2009.

PPC440: 1BM PPC440GX [1] at 533MHz, 256 kB cache,
128MB RAM, vintage 1999. Green Hills Integrity
RTOS, version 5.0.6. We use the Green Hills Multi
compiler, version 4.2.3, which (usually) follows the
ISO 14882:1998 standard for C++.

For comparison, we also show timing results on a modern
Linux server:

16 processor Intel Xeon CPU E5-2665 at 2.40GHz,
20480 kB cache, vintage 2012. Ubuntu Linux,
version 3.5.0-54-generic. g++ Ubuntu/Linaro 4.6.3-
lubuntu5, running with —std=c++98.

Linux:

Operating Environment: At runtime, the learner builds a
model from available training data, which is presented as a
set of vectors of observables and controllables, each with an
associated performance metric. To make control decisions, the
system receives a vector of observables describing the current
environment, uses the model to estimate expected performance
for each combination of controllables.

The operating system controls available CPU, shared be-
tween the learner and the communications IP stack. The learner
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operates asynchronously, returning a decision when finished.
Notably, the PPC440 platform’s real-time operating system
explicitly allows us to directly control how much CPU the
learner can use. The speed of the decision maker therefore
directly affects which controllable parameters to capture in
the learned model: any controllables that must be chosen more
rapidy than the learner can handle are not candidates.
Development Team: Our development team had one Machine
Learning expert, one hard-real time embedded expert, and
one C++ algorithms expert. We also received code reviews
and consulting from the individuals most familiar with the
platforms (hardware and software).

III. MACHINE LEARNING AND REGRESSION

Support Vector Machines [21], [22] are ideally suited to
learning this regression function from attributes to perfor-
mance. The regression function is commonly written as:

m = f(z) =<w,z > +b

where z are the attributes (combined o and c¢), where w is a
set of weights (similar to a slope) and b is the offset of the
regression function.

When the original problem is not linear, we transform the
feature space into a high-dimensional space that allows us
to solve the new problem linearly. In general, the non-linear
mapping is unknown beforehand, and therefore we perform the
transformation using a kernel, ¢(x;, x), where x; is an instance
in the training data that was selected as a support vector, x is
the instance we are trying to predict, and where ¢ is a vector
representing the actual non-linear mapping. In this work, we
use the Pearson Universal Kernel [21] because it has been
shown to work well in a wide variety of domains, and was
consistently the most accurate in our target communications
domain:

¢($Z,$) = !
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w describes the shape of the curve; as w = 1, it resembles a
Lorentzian, and as it approaches infinity, it becomes equal to
a Gaussian peak. o controls the half-width at half-maxima.

The regression function then becomes:
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where n is the number of training instances that become
support vectors, a; and «; are Lagrange multipliers computed
when the model is built (see Ustiin et al [21]).

There are many available implementations SVMs,
e.g., [12], [24]. We considered language (preference for C++),
licenses, memory usage, and compilation effort. Table 1
lists some of the options that are available in C++ with
licenses appropriate for our work. We did not consider Java
implementations because of its higher memory requirements
and because Java is not compatible with other software
components on our target platform. We also eliminated
several packages that rely heavily on malloc () calls, as
dynamic memory usage is both slow and likely to cause
runtime errors on our RAM-limited hardware. None of the
remaining libraries directly compiled on our embedded target
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TABLE 1. Several SVM packages are available in C++.
Software Language License
DLib ML [15] C++ Unlimited with copyright
LibSVM [3] C++, Java Unlimited with copyright
Shark [11] C++ GNU Lesser GPL
SVMEEH [13], [14] C Free for science
TinySVM [16] C++ GNU Lesser GPL
Weka [6], [10], [18] Java, C++ GNU GPL

TABLE 2. We measured performance against 19 regression datasets, of
which 10 are standard benchmarks, and 9 represent different scenarios in our
target communications domain.

Test Name Description Instances Attribs Source
airfoil Airfoil noise 1503 6 UCI [2]
AutoPrice Automobile prices 159 16 Weka [10]
bodyfat Percentage bodyfat 252 15 Weka [10]
concrete Concrete compressive strength 1030 9 UCI [25],[2]
cpu CPU relative performance 227 7 Weka [10]
fishcatch Fish weight 159 8 Weka [10]
housing Boston housing values 506 14 Weka [10]
pole Telecommunications 14998* 26 LIAAC [23]
wine red Wine quality, red 1599 12 UCI [4],[2]
wine white Wine quality, white 48981 12 UCI [4],[2]
commsA-TP  Communications throughput 1078 59 Custom
commsA-Lat  Communications latency 1078 59 Custom
commsB-TP  Communications throughput 820 59 Custom
commsB-Lat  Communications latency 820 59 Custom
commsC-TP  Communications throughput 378 59 Custom
commsC-Lat  Communications latency 378 59 Custom
commsD-TP  Communications throughput 1732 44 Custom
commsD-Lat ~ Communications latency 1732 44 Custom
commsD-BER Communications bit error rate 1732 44 Custom

t Due to memory restrictions on our embedded platforms, we used 2186 instances
on the target platforms.

platforms, so we conducted the initial tests on a modern
Linux server. We only tested those packages that compiled
within approximately an hour after download: if the software
wouldn’t compile easily on a modern platform, it would be
extremely painful to migrate it to the older platforms.

To select the specific package from which to continue
development, we ran the suite of benchmark datasets listed
in Table 2. Table 3 shows the timing results; Weka’s SMOReg
is the fastest in all but a few cases. LibSVM is 2.0x slower
than Weka on average.! Dlib is 10.4x slower than Weka on
average; moreover DLib gets worse the bigger the dataset (e.g.
4.1x when fewer than 1000 instances, and 15.6x when more
than 1000 instances).

Given these results, we decided to rely on the SVM
implementation found in Weka [10], with Ustiin’s Pearson VII
Universal Kernel (Puk) [21] and Platt’s Sequential Minimal
Optimization algorithm [17] to compute the maximum-margin
hyperplanes.

IV. OPTIMIZATIONS

Our first working C++ implementation was based on
SMOReg in WekaC++ [18], with a translation of WekaJava [6]
items that were not already in the C++ version. We refer to
this version as Baseline.

This paper describes the optimizations that either had
the most effect on our results, or were the most surprising
to us as developers. These include numerical representations
(double vs float vs integer) algorithmic constructs (kernel,
memory vs compute), data structures (vectors), and compiler
tricks (flattening object structure, inlining, exceptions). We also

! An implementation of LibSVM is also available as part of Weka; we used
the direct download [3].

ML for Embedded Systems
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TABLE 3. Weka performs faster than other SVM libraries
on our modern Linux server.

Weka DLib C++ LibSVM

Testcase

airfoil 350ms 385ms  9,270ms
autoPrice 8ms 6ms 23ms
bodyfat 12ms 15ms 66ms
Concrete 424ms 185ms  4,344ms
cpu 15ms 8ms 60ms
fishcatch 12ms Sms 29ms
housing 103ms 63ms 305ms
wine red 433ms 1,066ms  9,127ms
wine white 2,626ms  5257ms  68,006ms
pole 22,571ms 186,928ms 979,275ms

commsA-TP 276ms 427ms 1,948ms
commsA-Lat 264ms 735ms  2,217ms

commsB-TP 207ms 399ms 846ms
commsB-Lat 176ms 460ms 1,266ms
commsC-TP 39ms 135ms 94ms
commsC-Lat 35ms 150ms 100ms

commsD-TP 1,025ms 645ms  7,479ms
commsD-Lat 574ms 746ms  7,788ms
commsD-BER 790ms 954ms  7,600ms

TABLE 4. Linux. For the 1503 instances of airfoil, at least five functions
are called over a million times (gprof).

% time Num calls

0 122,409
1.27 2
1.27 1
2.53 1,503
2.53 1

5.06 3,371,229
6.33 4,279,744
8.86 26,212,709
11.39 90,074
16.46 11,057
17.72 5,612,202
26.58 26,354,158

Function name
SMOset::contains
SMOset::~SMOset
RegOptimizer::init
RegOptimizer::SVMOutput

CachedKernel::numCacheHits

Puk::evaluate

RegSMOImproved::updateBoundaries

SMOset::getNext
RegSMOImproved::takeStep
RegOptimizer::SVMOutput
CachedKernel::dotProd
CachedKernel::eval

examined cache use and loop unrolling; these had no effect on
compiler times on either platform.

A. Collapsing Object Structure and Inlining

Table 4 shows that many functions in Baseline are called
many times, and are thus good candidates for inlining. Across
all 19 datasets, Baseline Weka makes over 1 billion calls to
the eight most common functions.

Our first step was to collapse the Object hierarchy of the
original Weka code, to reduce indirection in the call stack
and to improve readability of the code. Baseline had 21 CPP
files (plus corresponding H files), of which 14 corresponded
to Weka functionality and 7 to data import. We flattened to 8
CPP files (2 importers). For example, Baseline’s Puk, Kernel,
and CachedKernel became a single class in our new code,
Puk. Similarly, Baseline’s RegSMOImproved, RegOptimizer,
SMOreg, RegSMO and Classifier became a single class in
our new code, SVMOptimizer. We incorporated the abilities
of Baseline’s ReplaceMissingValues and Normalize into At-
tribute.

We then repeated the profile analysis of the codebase, and
forced small, frequently-called functions to be inlined, includ-
ing those in SMOset, Puk, Attribute, and SVMOptimizer. (We
left longer functions alone.) Notably, the compiler on PPC440
is unable to inline any of the six SMOset functions, despite
the fact that each are only a few lines long. We first placed
the function in the HPP file (rather than in the CPP file), and
then verified that the compiler was able to successfully inline
the call. The compiler could not inline three key functions, so
we created #define macros to replace these; each of these
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were only called in one or two places in the code, and thus
we did not suffer from a bloated assembly.

B. Numerical Representations

The SVM code relies on many floating point mathematics
operations. To build a SVM, the code repeatedly computes
a predicted value and its corresponding error, and stops the
algorithm when error is sufficiently low. It is therefore critical
to find a numerical representation that can be computed quickly
and still meet accuracy requirements.

We performed the unit tests of Table 5 on our target
hardware for 64-bit double, 32-bit f1oat, 32-bit integer,
and a fixed point representation [5], [20]. Neither platform has
a floating point co-processor. The results in Table 6 indicate
that integer computations take only 1% of double precision
and 3% of float operations on PPC440 (3% and 8% on
ARMV7 respectively). Fixed Point was extremely slow; Table 7
and Table 8 show the assembly for the Fixed Point multiply-
accumulate operation on ARMv7 and PPC440 respectively.
The PPC440 requires eight instruction for each load, add,
multiply, divide, and store on a fixed point value, explaining
the extremely slow timing results.

We eliminated fixed point representation because the timing
results were so poor, and then updated the Weka code to sup-
port side-by-side testing of the other representations. We also
developed an intermediate mixed int+float version intended
to take advantage of the integer speed improvements without
impacting accuracy.

1) Double: All numbers in Weka are 64-bit double, using
a type definition, InstData.

2) Float: All numbers in Weka are 32-bit f1oat, using a
type definition, InstData.

3) Integer: All numbers in Weka are 32-bit integer. Our
approach was to scale all of the values « and kernel parameters
by a scaling factor F, and scale the data (or target values) and
error by F2.

4) Mixed Float and Integer: To leverage the potential
timing improvement from integer math as indicated by Table 6,
while not losing as much accuracy as for a fully integer repre-
sentation, we focussed on converting the two key inner loops:
dotProd () and SVMOutput (), both of which are multiply-
accumulate loops. dotProd () computes the dot product
between two instances; it is called 2n?2 times, for n instances in
the dataset. SVMOutput () calculates the predicted value for
a given instance, per Equation 2. It is a function the Lagrangian
multipliers «, and the kernel evaluation k. SVMOutput ()
is called approximately 10n times when building a model,
depending on the complexity of the underlying data.

In both cases, we use a scaling (or normalizing) factor F
outside the loop. The loop itself operates on scaled integer
values. For example, Table 9 shows pseudocode from the
original Weka implementation of SVMOutput (). Table 10
shows how we scale the « and kernel value k separately, and
then de-scale the sum outside the loop. This single floating-
point division outside the loop is much cheaper than many
inner-loop floating-point multiplies.

Note that evalKernel() of Table 10 contains a floating
point multiply and round. This multiply is computed relatively
infrequently due to caching of the kernel values (approximately
90% of all calls are cache hits).

ML for Embedded Systems
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TABLE 6.

TABLE 5.

To measure the performance of each numerical

type, we timed the three loops Creation, Division, and Multiply-
Accumulate on vectors of 250,000 elements.

template <T>
void measure()
size_t i,j;
static T values[250000];
for (i = 0; i < 250000; ++i) {// Base Data
values[i] = T((i & Ox7fff) + 1);

TABLE 8.

Assembly code on PPC440 requires eight instruc-

tions per value.

#

#128:
#129:
#130:
1i r19, O
#132:

/+* multiply accumulate x/
const size_t dim = 1000;
T sum(0);

for ++1)
.bs

(size_t 1 = 0; i != dim;

static T results[250000]; // Creation
for (i=0; 1<250000; ++i) {

results[i] = values][i];
const T numerator(127); // Division

for (i=0; 1<250000; ++i) {
results[i] = numerator / values[i];
}
T sum(0); // Mult-Accum
for (i=0; 1<250000; ++i) {
for (j=0; j<250000; ++j) {
results[i] += values[i] x values[j];

Fixed point representation is inappropriate for software on PPC440.

Integer computations are significantly faster than float or double;

PPC440 (us)
creation division multiply-accumulate
int 5,962 20,436 5,196
float 5,772 41,046 187,095
double 14,500 94,227 395,314
fixed 10,249 514,533 409,291
ARMV7 (us)
creation division multiply-accumulate
int 5,247 9,004 6,355
float 4,854 30,909 84,000
double 9,927 154,848 141,249
fixed 5,100 81,408 22,586
TABLE 7. Assembly code on ARMV7 is very efficient.
mov r7, #0 set r7 to be "j"
mov sl, r7 set sl to be "i"
.L16: for (1=0; i!= dim; ++1)
1dr r3, [r8, sl] r3 = values|[i]
mov 1r, #0
mov r5, r3
mov r6, r5, asr #31
LL17: for (3=0; j!=dim; ++73)
ldr rl, [r8, 1lr] rl = values|[]j]
add lr, 1lr, #4
mov r2, rl, asr #31
mul ip, r5, r2
umull r3, r4, r5, rl
mla r0, rl, r6, ip
mov r2, r3, lsr #16
add r4, r0, r4
orr r2, r2, r4, asl #16
cmp 1lr, #4000
add r7, 7, r2
bne .L17 branch back to .L17
add sl, sl, #4
cmp sl, #4000
bne .L16 branch back to .L16
Haigh et al 4

.LDW263:
mr rl8, rl9
1i r20, 500
1i r21, 4
subi r4,

.L12047:

# .bs

.LDW363:
lwzu r3, 8(r4)
1i r5, 125
subi r6, r31,
mtctr r5

.L12055:
lwzu r7,
lwz rl0,
lwz r8,
lwz r9,
lwz r5,
lwz rll,
lwz rl2, 24(r6)
lwz r0, 28(r6)
mullw rl6, r3,
mullw r7, r3,
mullw rl7, r3,
mullw rll, r3,
mullw rl2, r3,
mullw r9, r3,
mullw rl5, r3,
mullw r5, r3,
add r19, r19,
add rl19, r19,
add r19, r19,
add rl19, rl19,
add r19, r19,
add r19, r19,
add rl19, rl19,
add r19, r19,
bdnz .L12055

# .es

.LDW463:
lwz rloe, 4(r4)
1i r5, 125
subi rl7,
mtctr rd

.L12066:

r3l, 8

32

32(r6)

20 (r6)
16(r6)
4(r6)
12 (r6)

8(ro6)

r7
r8
rll
rl2
r9
rl0
r5
rQ0
rl6
rl2
rl7
rl5
r7
r9
rll
r5

r31l, 32

# (8 lwz then 8 mullw then 8 add)

bdnz .L12066
subic. r20, r20, 1
addi r21, r21, 8
addi rl18, rl1l8, 2
bne .L12047

# .es

.LDW563:

ML for Embedded Systems
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TABLE9. The original Weka imple- TABLE 10. The modified algorithm
mentation does floating point multi- uses integer multiplies and scaling.
plies.

/I typedef InstData: float or double

// id1: index of instance 1

// id2: index of instance 2

/I F: scale factor

int evalKernel(int id1, int id2)
Return cache(idl,id2) if possible
InstData dpl1 = dotProd(id1, id1)
InstData dp12 = dotProd(id1, id2)
InstData dp22 = dotProd(id2, id2)

/I typedef InstData: float or double
// id1: index of instance 1
/1 id2: index of instance 2

InstData evalKernel(int id1, int id2)
Return cache(idl,id2) if possible
InstData dpl1 = dotProd(idl, id1)
InstData dp12 = dotProd(id1, id2)
InstData dp22 = dotProd(id2, id2)

InstData sqDist = dpl1 - 2.0*dp12

+ dp22

InstData fk = evaluatePuK( sqDist )

int ik = round( F * fk )

cache(id1,id2) = ik

return ik

InstData sqDist = dpl11 - 2.0*dp12
+ dp22

InstData fk = evaluatePuK( sqDist )

cache(id1,id2) = fk

return fk

/I typedef InstData: float or double
/I SV: Support Vectors
/ index: instance to predict
/I F: scale factor
11 a®[i] : F * (afi] — a*[i])
InstData SVMOutput(int index)
int iResult = 0
for each SV;
int ad = a°[i]
int k = evalKernel(index, %)
iResult += ad X k
InstData fResult = iResult / F2
return (fResult - b)

/I typedef InstData: float or double
/I SV: Support Vectors
// index: instance to predict

InstData SVMOutput(int index)
InstData result = -b
for each SVi
InstData ad = afi] — ™ [i]
InstData k& = evalKernel(index, 7)
result += ad X k
return result

C. Kernel Implementation

We rigorously examined the code for correctness according
to the algorithm definition for SVMs, and discovered several
small inefficiencies. For example, the PuK kernel of Equation 1
squares the value of a square root: (y/sqDist)?. This function
requires calls to pow () and sqgrt () in the code, both of
which are expensive floating point computations.

We can simplify Equation 1 by removing the call to square
root and hence the subsequent floating point multiply:

1
¢($Z,$) = [1_’_%(“%,1_%”2) (2(1/w) —]_)]w (3)

We can also insert a simple test for when w is 1.0, allowing us
to avoid calling pow (). Table 11 shows the original pseudo

code for Equation 1, while the Table 12 shows the modified
pseudo code for the simpler Equation 3.

D. Memory vs Computation

We also explored the tradeoff between computing values
every time, versus caching them in memory. Two key items are

TABLE 11. The original function TABLE 12. The simplified function
squares a square root, and always removes sqrt (), a floating point
calls pow () even when the exponent multiply, and pow () when possible.

is 1.0.
/I typedef InstData: float or double

/I typedef InstData: float or double
/I sqFactor: %2 x (20/9) _ 1y

I/ factor: 2 % 4/2(1/w) — 1

// sqDist: ||z — y||?

InstData evaluatePuK(InstData sqDist)
InstData inter = factor * sqrt(sqDist);
InstData sqlnter = inter * inter;
result = 1.0 / pow(1.0 + sqlnter, w);
return result;

Haigh et al

/I sqDist: ||z — y]|?
InstData evaluatePuK(InstData sqDist)
InstData sqlnter = sqFactor * sqDist;

if (w==1){
result = 1.0 / (1.0 + sqlnter);
}else {

result = 1.0 / pow(1.0 + sqlnter, w);

return result;

TABLE 13. Linux. The gprof results show that Baseline Weka’s three
cached kernel functions take 75% of compute time on average, and are
therefore excellent candidates for optimization.

CachedKernel:: CachedKernel::  Puk::

Testcase dotProd eval evaluate
airfoil 17.72 26.58 5.06
autoPrice 0 100.01 0
bodyfat 50 0 0
concrete 8.93 32.15 7.14
cpu 0 0 0
fishcatch 100.01 0 0
housing 38.89 15.28 11.11
wine red 36.25 31.67 13.33
wine white 49.87 24.79 9.33
pole 65.52 16.1 4.6
commsA-TP 120.5 19.28 8.43
commsA-Lat 55.32 6.38 4.26
commsB-TP 63.42 9.76 7.32
commsB-Lat 62.51 12.5 12.5
commsC-TP 54.55 0 9.09
commsC-Lat 46.52 23.72 3.72
commsD-TP 59.5 17.72 8.23
commsD-Lat 54.77 22.03 3.57
commsD-BER 60.56 8.26 6.42
Average 49.7 19.3 6.0

the dot products of all pairs instances (dotProd), and the kernel
computations (eval). Baseline Weka caches kernel values but
does not cache dot products. Table 4 shows that Weka calls
these two functions 31 million times to build a model for the
1503 instances in the airfoil dataset.

Table 13 shows the profile results for all of the datasets, in
the original Baseline Weka code. On average, 75% of runtime
is spent in the kernel (Puk and CachedKernel), computing dot
products and the kernel values. evaluate () is the top-level
function, corresponding to evalKernel () in Table 9. De-
spite the fact that approximately 90% of all calls hit the cache,
and thus only 10% computes new dot products and kernel
values, these computations still require 69% of runtime (49.7%
and 19.3% respectively), suggesting a possible inefficiency in
the way Weka caches the data. (We also tested the effect of
removing caching of the kernel values entirely from Baseline
Weka; Baseline runtimes increase by approximately 600%.)

Given that such a large majority of compute time is spent
in these two functions, we made these significant changes:

e We optimized how Weka caches the kernel values.
Baseline Weka relies on a least-recently-used cache,
and moves items in the cache around with slow
memcpy routines. In Baseline Weka, the default cache
size is 250,007 elements times 4 slots per entry, storing
a double for the kernel value and a 1ong for the
key. In our optimized code, we use a fixed-size n X n
triangular matrix (n being the maximum number of
instances), and thus dramatically reducing both total
memory and all the management overhead.

e We added caching of dot product values. We first
precompute all of the dot products, allowing the
compiler to optimize the loop constructs. We also
increment pointers to the array of values, thus making
dereferencing faster. Pseudocode for the original Weka
construct is in Table 14; our optimizations are in
Table 15. The memory cost is an additional n X n
triangular matrix.

e  We ensured that our vector and matrix accesses are
efficient, by eliminating function calls and using fixed-
size memory, per Section IV-F.

ML for Embedded Systems
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TABLE 14. Weka computes all TABLE 15.  We precompute the dot
dot products every time they are products and cache them; we also use
needed. pointer addition to move along the vec-

/I typedef InstData: float or double tors.
/I z: index of instance 1
/I y: index of instance 2
/I a: number of attributes
InstData dotProd( int z, int y )
InstData result = 0
for (i=0; i < a; ++1)
result += inst[z].attr[]
Xinst[y].attr[]
return result

/I typedef InstData: float or double
/I m: number of instances
/I a: number of attributes
void computeDotProds()
for (x = 0; z < n; ++x)
InstData* xp = &(inst[z].attr[0])
for (y = 0; y < z; ++y)
InstData result = 0
InstData* yp = &(inst[y].attr[0])
for (j=0; j < a; ++j, ++Xxp, ++yp)
result 4= (*xp) X (*yp);
dpM[z, y] = result

/I z: index of instance 1
/I y: index of instance 2
InstData dotProd( int z, int y )
x >y ? return dpM{[z, y] :
return dpM[y, z]

E. Removing exceptions

In examining the assembly code for the PPC440 platform,
we discovered that GHS adds overhead (4 instructions) to every
function that declares a non-trivial object on the stack. To
reduce the impact of this overhead we

e Inlined as many functions as we could (Section IV-A)

e Disabled exceptions

e Removed all throw, try and catch statements.
We achieved this by changing throw to a #define
macro BBN_THROW. When exceptions are disabled,
BBN_THROW results in an abort. We used #ifdef to
eliminate try and catch statements.

F. Vector and Matrix Optimization

This section describes optimizations for vectors (containers
of values of the same type stored contiguously) and matrices
(multi-dimensional containers of values of the same type).
We consider these together because their similar underlying
representations and interfaces led to similar optimization ap-
proaches.

We make extensive use of the C++ vector container,
especially for maintaining Instance and Support Vector
data. In analyzing the assembly code produced by GHS
on PPC440, we observed that every indexing operation
(std::vector<T>::operator[]) generates a function
call. Table 16 shows the assembly generated by GHS compiler
for std: :vector. The compiler automatically unrolls the
loop of Table 17, but produces a function call in the listing
(the bl instruction).

To eliminate this overhead, we developed a minimal im-
plementation of the std: : vector interface. Our implemen-
tation uses a single, fixed size allocation; i.e. the vector size is
specified during template instantiation. By having the vector
size established at compile time, we were able to eliminate
all but the initial heap allocation/deallocation operations. We
also implemented bounds and safety checks as assert ()
calls, which we could eliminate or enable entirely at compile
time. Moreover, the simpler indexing operations allowed the
GHS compiler to successfully inline our implementation of
operator[] (Table 18).

On our PPC440 platform, running a focussed unit test to
determine the effect of our vector library, we initially observed
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TABLE 16. Assembly generated
by GHS compiler for std::vector
includes a function call.

8942 # for (size_t j = 0; j != 8192
8943 # .bs

TABLE 17.  This C code gener-

ates the assembly in Table 16 and

Table 18.

for (size_t j = 0; j = 8192; +4j)
for (size_t i = 0; i != SIZE; ++i)

8944 LDW642: sum += wl[i];

8945 li 121, 4096

8946 addi 25, sp, 60

8947 mr r?4’ 131 TABLE 18.  Assembly generated
ggig #L7§S35 by GHS compiler for bbn::vector

is extremely simple and involves no
function calls.

8950 .LDW742:
8951 lirl9, 0

8952 1ir20, 512 10205 # for (size_t j = 0; j != 8192
8953 mr 22, 125 10206 # .bs

8954 mr 123, 124 10207 LﬁW532‘

8955 .L7643: 10208  li r6, 4096
8056 lwz r4, 4(123) 10209 .L15251:

8957 mrr3, r22 ) 10210 # .bs

8958 bl __std_Vector_iterator 10211 .LDW632:

8059 lwz r4, 4(r23) 10212 # .es

8960  slwi rl2, r19, 2 10213 .LDW732:

8961 mr 13, 122 10214 subic. 16, 16, 1
8962 add r27, r27, r12' 10215 bne .L15251
8963 bl __std_Vector_iterator 10216 # .es

10217 LD 2:

9000 subic. 120, 120, 1 0217 W3

9001 addi r7, r19, 7
9002 slwi rl12, 17, 2
9003 add r27, r27, r12
9004 addi r19, r19, 8
9005 bne .L7643

TABLE 19.  bbn::vector is significantly faster than
std::vector on our PPC440 platform.
Time (ms) std::vector bbn::vector Speedup
AutoPrice 114 19 6.0x
bodyfat 258 62 4.2x
cpu 115 7 16.4x
fishcatch 138 17 8.1x
housing 564 73 7.8x

a 17x speed improvement with safety checks enabled and a 69x
improvement with safety checks disabled. Table 19 shows the
timing results when we first integrated our module into the
overall system, showing an 6.7x runtime improvement.

Weka’s kernel matrices are triangular. We also use a
triangular matrix for caching instance dot produ2cts to avoid
recomputing them. These matrices are large (%-) and have
dynamic size; we add a row to the matrix for each new
instance.

Representing a triangular matrix with a square matrix
would needlessly allocate unused memory. In our initial imple-
mentation, we used a std: : vector for rows, each of which
is a std::vector of columns. For dynamic resizing, we
simply called std::vector::resize (). For triangular
matrices, we developed a new triangular matrix implementa-
tion based on a fixed-size, one-dimensional array that uses
index arithmetic. the bbn::triangle class allocates only half of
a square matrix. The index of z[i, j] in the one-dimensional
array is 3i(i + 1) + J.

V. RESULTS

We performed a series of ablation experiments, in which
we independently removed each optimization from the final
version of the code, leaving other optimizations in place. This
approach allows us to evaluate the impact of each optimiza-
tion independently. We explicitly measured both timing and
accuracy, and measured memory through analysis.
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TABLE 20. Each ablation trial removes an optimization from the Mixed version. Baseline is the true original Weka code; Reference is the most similar version

that worked on the PPC440 platform.

Mixed pow+ vector+

Baseline  Reference | double float int int+float except sqrt triangle dotprod-x[i] inline
Representation  Double Double Double Float Integer  Int+Float | Int+Float Int+Float Int+Float Int+Float  Int+Float
except Enabled Enabled | Disabled Disabled Disabled Disabled | Enabled Disabled Disabled Disabled Disabled
pow+sqrt Call Call Eliminate Eliminate Eliminate Eliminate | Eliminate Call Eliminate Eliminate  Eliminate
vector+triangle std::vector std::vector |bbn::vector bbn::vector bbn::vector bbn::vector |bbn::vector bbn::vector std::vector bbn::vector bbn::vector
dotprod-x[i] Compute  Compute Cache Cache Cache Cache Cache Cache Cache Compute Cache
inline No inlining No inlining| Inlining Inlining Inlining Inlining Inlining Inlining  Inlining Inlining  No inlining

TABLE 21. ARMv7. Mixed int+float is better than other numerical representations, per Section V-B. Disabling exceptions does not affect ARMv7, see

Section V-E. sqrt () (Section V-C), dotprod (Section V-D) and vectors (Section V-F) depend on platform and dataset. Time (ms) in top. NormRMSE in bottom.
Matches Table 22 on PPC440. Bold is the best item.

Time (ms) Baseline Reference|double float integer Mixed | except pow+sqrt vec+tri dotprod-x[i] inline | exc+vec+tri exc+dp
airfoil 11,663 3,186| 3,186 848 1,581 954 916 923 1,017 895 1,259 1,013 892
AutoPrice 286 98 89 60 37 12 14 16 11 12 15 11 12
bodyfat 570 125 126 91 19 30 31 36 29 31 37 29 31
concrete 11,180 916| 1,357 649 401 511 548 754 511 506 615 513 624
cpu 612 143 331 48 52 66 68 58 64 67 161 63 66
fishcatch 453 183 216 26 69 31 21 86 19 20 24 19 20
housing 4,754 393 744 219 205 113 115 166 191 113 130 109 113
wine red 22,695 6,321| 4,483 1,657 1,170 1.216| 1,245 1,514 1,174 1,279 1,544 1,290 1,281
wine white 138,123 17,365| 6,264 2,848 4,626 1,938| 1,977 3,322 2,047 2,098 2,589 2,045 1,984
pole 14,937| 7,831 3,268 2,514 3,236| 3,298 2,849 3,370 3,360 4,317 3,357 3,350
commsA-TP 16,326 2,485| 2,070 1,026 1,405 703 660 915 749 645 820 629 643
commsA-Lat 15,920 1,813 2,375 794 972 908 871 971 956 850 947 834 1,128
commsB-TP 10,184 1,040 766 472 358 363 387 545 366 364 407 361 485
commsB-Lat 9,016 992 997 373 461 364 373 291 365 388 418 367 484
commsC-TP 2,141 357 359 134 51 127 131 129 125 128 145 126 128
commsC-Lat 1,939 265 263 153 127 198 202 145 194 198 334 194 198
commsD-TP 48,939 7,667 6,119 3,379 3,014 1,601| 1,646 1,794 1,646 1,667 1,876 1,638 1,665
commsD-Lat 32,850 7,439| 4,490 2,134 1,627 2,488| 2,543 1,990 2,588 2,675 3,432 2,694 2,665
commsD-BER 41,827 7.481| 6,516 3,308 1,465 1,692| 1,736 1,522 1,719 1,755 1,964 1,707 1,751
NormRMSE Baseline Reference |double float integer Mixed | except pow+sqrt vec+tri dotprod-x[i] inline | exc+vec+tri exc+dp
airfoil 0.448 0.398| 0.409 0.435 0.425 0.537| 0.537 0.518 0.537 0.537 0.537 0.537  0.537
AutoPrice 0.125 0.118| 0.114 0.116 0.116 0.207| 0.207 0.300 0.207 0.207 0.207 0.207  0.207
bodyfat 0.047 0.048| 0.048 0.049 0.054 0.067| 0.067 0.055 0.067 0.067 0.067 0.067  0.067
concrete 0.251 0.271| 0.276 0.290 0.301 0.291| 0.291 0.260 0.291 0.291 0.291 0.291 0.291
cpu 0.151 0.187| 0.148 0.189 0.160 0.260| 0.260 0.188  0.260 0.260 0.260 0.260  0.260
fishcatch 0.066 0.068| 0.067 0.080 0.090 0.123| 0.123 0.090 0.123 0.123 0.123 0.123  0.123
housing 0.146 0.172| 0.150 0.164 0.164 0.180| 0.180 0.165 0.180 0.180 0.180 0.180  0.180
wine red 0.778 0.626| 0.714 0.672 0.666 0.793| 0.793 0.731  0.793 0.793 0.793 0.793  0.793
wine white 1.016 0.731| 0.730 0.771 0.790 0.846| 0.846 0.706 0.846 0.846 0.846 0.846  0.846
pole 0.000 0.293| 0.214 0.240 0.240 0.205| 0.205 0.222  0.205 0.205 0.205 0.205  0.205
commsA-TP 1.103 0.873| 0.870 0.855 0.854 0.851| 0.851 0.881 0.851 0.851 0.851 0.851 0.851
commsA-Lat 1.102 0.878| 0.863 0.882 0.887 0.844| 0.844 0.882  0.844 0.844 0.844 0.844 0.844
commsB-TP 0.003 0.047| 0.047 0.019 0.013 0.020| 0.020 0.018  0.020 0.020 0.020 0.020  0.020
commsB-Lat 0.003 0.028| 0.028 0.028 0.036 0.021| 0.021 0.048 0.021 0.021 0.021 0.021 0.021
commsC-TP 0.050 0.053| 0.053 0.060 0.226 0.062| 0.062 0.062  0.062 0.062 0.062 0.062  0.062
commsC-Lat 0.002 0.017| 0.017 0.030 0.034 0.028| 0.028 0.025  0.028 0.028 0.028 0.028  0.028
commsD-TP 0.098 0.152] 0.160 0.314 0254 0.172| 0.172 0212 0.172 0.172 0.172 0.172  0.172
commsD-Lat 0.060 0.136| 0.192 0.467 0.169 0.272| 0.272 0.527 0.272 0.272 0.272 0272 0.272
commsD-BER  0.052 0.180| 0.138 0.205 0.208 0.174| 0.174 0.224 0.174 0.174 0.174 0.174 0.174

We tag the original Weka code as the Baseline; Baseline
is the first working C++ implementation we had. Mixed is the
version containing all of our intended optimizations: Mixed
integer+float, Sqrt, Pow, Disabling exceptions, etc. Section V-B
describes why we chose the Mixed representation as the basis
for additional trials.

We tag each ablation trial as the name of the relevant
optimization(s) subtracted from Mixed. Thus Double means
that all numerical representations in Weka use double rep-
resentation, but the other optimizations (Disabled exceptions,
Customized vectors, etc) are the same as in Mixed. Similarly,
Pow+Sqrt means that the sqrt () and pow () functions are
always called per Section IV-C, but it uses mixed int+float and
other optimizations as in Mixed.

Because we have not discussed all of the optimizations
we made to the Baseline, we created a version without any
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of the optimizations discussed in this paper, Reference, which
allows the reader to estimate how much of the change is due
the presented optimizations. Reference removes all of the pre-
sented optimizations: it uses double, it enables exceptions, it
calls sgrt () and pow (), it uses std: :vector, it always
computes dot products, and it does not inline functions.

Table 20 shows the tests we performed. Each row indicates
an optimization, each column indicates an ablation trial, and
each cell indicates the setting for that capability in that trial.

Table 21 and Table 22 show the results of these experi-
ments, in terms of fime and accuracy of each trial. Fig. 1 and
Fig. 2 plot the PPC440 results visually, where the ablation
trials on the x-axis are sorted by average time.

e FEach row represents a unit test from a benchmark
dataset of Table 2. Not all tests could be run on both

platforms.
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TABLE 22. PPC440. Baseline cannot run on PPC440. Mixed int+float is better than other numerical representations, per Section V-B. Disabling
exceptions makes a big difference, see Section V-E. sqrt () (Section V-C), dotprod (Section V-D) and vectors (Section V-F) depend on platform
and dataset. Time (ms) in top. NormRMSE in bottom. Matches Table 21 on ARMv7. Bold is the best item. Fig. 1 and Fig. 2 plot these results
visually, where the ablation trials on the x-axis are sorted by average time.

Time (ms) Reference | double

airfoil 11,950 7,115 1,982 4,396 2,787| 3,409
AutoPrice 475 216 72 114 50 59
bodyfat 531 301 141 62 86 100
concrete 3,650 5,610 1,209 1,103  604| 767
cpu 603 911 111 113 135 154
fishcatch 830 469 62 230 114 128
housing 1,719 1,333 363 610 282 328
wine red 15,538 5,634 3,292 3,222 2,610| 3,236
wine white 13,360 | 5,926 2,474 4,461 2,306 2,652
pole 11,518 8,605 2,109 1,588 2,624| 3,056
commsA-TP 6,790| 5,645 1,875 3,655 2,082| 2,335
commsA-Lat 9,539 | 5,054 2,480 2,560 1,990| 2,233
commsB-TP 6,389| 1,948 1,088 1,024 753 854
commsB-Lat 2,629| 3,347 1,371 1,109  756| 903

commsC-TP 1,459 788 330 159 437 465
commsC-Lat 1,125 621 328 425 423 471

NormRMSE Reference | double

float integer Mixed | except pow+sqrt vec+tri dotprod-x[i] inline | exc+vec+tri exc+dpli]

float integer Mixed | except pow+sqrt vec+tri dotprod-x[i] inline | exc+vec+tri exc+dpli]

2,391 2,332 2,784 4,019 6,374 3,393
58 4 51 61 111 59
80 72 86 106 191 100

1,064 504 604 908 1,524 765
57 112 127 156 295 153
56 103 114 131 227 128

209 256 282 344 623 326

2,635 2,195 2,608 3,810 6,121 3,220

2,822 1,985 2,301 2,910 4,959 2,637

2,218 2,269 2,621 3,404 5,715 3,042

1,557 1,866 2,081 2,481 4,376 2,328

2,243 1,760 1,989 2,373 4,154 2,227

1,401 684 754 913 1,623 853

881 667 755 1,013 1,786 902
327 393 420 495 876 465
381 405 416 497 917 469

airfoil 0.397| 0.401 0434 0425 0.513| 0.513 0.444  0.513 0.513 0.513 0.513 0.513
AutoPrice 0.118| 0.114 0.123  0.116 0.129| 0.129 0.126  0.129 0.129 0.129 0.129 0.129
bodyfat 0.048| 0.048 0.049 0.054 0.058| 0.058 0.055 0.058 0.058 0.058 0.058 0.058
concrete 0.271| 0.294 0.304 0301 0.344| 0.344 0.310  0.344 0.344 0.344 0.344 0.344
cpu 0.187| 0.148 0.206 0.160 0.189| 0.189 0.232 0.189 0.189 0.189 0.189 0.189
fishcatch 0.067| 0.066 0.090 0.090 0.093| 0.093 0.093  0.093 0.093 0.093 0.093 0.093
housing 0.173| 0.151 0.213 0.164 0.179| 0.179 0.225 0.179 0.179 0.179 0.179 0.179
wine red 0.630| 0.634 0.665 0.701 0.680| 0.680 0.679  0.680 0.680 0.680 0.680 0.680
wine white 0.761| 0.690 0.622 0.578 0.632| 0.632 0.619  0.632 0.632 0.632 0.632 0.632
pole 0.266| 0.212 0.234 0229 0.205| 0.205 0.234  0.205 0.205 0.205 0.205 0.205
commsA-TP 0.874| 0.858 0.872 0.854 0.877| 0.877 0.887  0.877 0.877 0.877 0.877 0.877
commsA-Lat 0.868| 0.873 0.884 0.887 0.878| 0.878 0.864 0.878 0.878 0.878 0.878 0.878
commsB-TP 0.015| 0.009 0.117 0.013 0.026| 0.026 0.015  0.026 0.026 0.026 0.026 0.026
commsB-Lat 0.031| 0.025 0.036  0.036 0.040( 0.040 0.021  0.040 0.040 0.040 0.040 0.040
commsC-TP 0.053| 0.053 0.052 0226 0.053| 0.053 0.054  0.053 0.053 0.053 0.053 0.053
commsC-Lat 0.017| 0.017 0.035 0.034 0.018] 0.018 0.016 0.018 0.018 0.018 0.018 0.018
e  Each column represents an ablation trial. The Baseline TABLE 23. NormRMSE measures the accuracy of the learned model.

could not run on the PPC440, and thus Reference is
the closest representation we have of Baseline on this
platform.

e  The top half of each table shows the fime to build the
model, in milliseconds. Boldface indicates the fastest
time.

e  The bottom half of each table shows the NormRMSE
of the model, as defined in Table 23, Boldface indi-
cates the lowest NormRMSE.

Several time results below are explained in terms of the
convergence to build the model. Convergence in an SVM is de-
fined as how many examples violate optimality conditions [19],
and is measured by the number of examples that cause the
model to change. The numerical representation (Section V-B
and kernel implementation (Section V-C) directly impact the
number of computations required to converge.

A. Collapsing Object Structure and Inlining

Column Inline of Table 21 and Table 22 shows the timing
and NormRMSE results when most Weka functions are func-
tion calls, while column Mixed shows the results when these
are inlined. Inlining function calls reduces runtime by about
20%.

Table 24 shows that inlining the functions reduces function-
call overhead from 1 billion calls in Baseline, to 20 million
calls in Mixed. Differences between Baseline and Inline are
partially due to flattening, and partially due to the total number
of calls to converge because we move from Double to Mixed
(Section V-B).
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Normalized Root-Mean-Squared Error (NormRMSE) is
a measure of how well the learned model performs. It
measures the difference between values predicted by the
SVM model and the values observed in the training data.
We compute it as the Root-Mean-Squared error divided by
the standard deviation of the data:

w2 (@i — wi)?)
w2 (@i — p)?)

where n is the number of instances in the data, p is the
average target value, Z; is the observed value of instance ¢,
and z; is the predicted value of instance ¢ using Equation 2.

The standard deviation represents the performance of a
learner that uses the mean as the prediction for all instances.
Our goal is to achieve as low a NormRMSE as possible;
0.0 indicates that every instance is predicted with no error,
while 1.0 indicates that no “fancy” model is needed because
the mean value is just as good.

NormRMSE =

Table 25 shows the average results for the two platforms
and groups of datasets, and also breaks down the inlining
concepts by Weka module. Column Mixed inlines most Weka
functions. Column SMOset+SVMOptimizer removes inlining
for all functions in SMOset, and some functions in the
SVMOptimizer. Column Puk removes inlining for functions
related to the kernel. Column Inl/ine has minimal inlining; it
enforces most functions in Weka as functions with overhead
incuding SMOset, SVMOptimizer, Puk, and Attribute. The
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Fig. 1. PPC440, communications datasets. While ablation trials tend to
yield a similar performance improvement across datasets, characteristics of
the dataset can cause varied results.
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PPC440, non-communications datasets. While ablation trials tend

TABLE 24. By inlining functions, We reduce 1 billion function calls from Baseline to 20 million calls in Mixed.

SMOset:: Puk:: SVMOptimizer::

Baseline Inline Mixed Baseline Inline Mixed Baseline Inline Mixed
airfoil 26,339,476 17,116,905 0 35,337,590 17,038,926 1,130,258 4,581,774 2,253,452 108,533
autoPrice 551,778 137,754 0 632,078 130,113 12,720 251,661 51,009 5,634
bodyfat 777,743 383,622 0 1,004,410 370,659 31,878 339,330 131,205 12,779
concrete 16,689,819 8,256,954 0 20,883,175 8,193,441 530,965 6,299,215 2,307,960 76,740
cpu 1,152,233 802,530 0 1,279,303 776,187 21,945 508,734 1,435,242 16,633
fishcatch 932,400 239,583 0 988,402 228,270 12,561 439,098 6,360,099 6,702
housing 6,996,474 1,494,210 0 7,978,030 1,468,386 128,271 3,221,846 4,240,755 18,082
wine red 24,184,029 41,527,128 0 34,296,581 21,289,674 3,966,338 8,696,277 7,303,671 137,899
wine white 54,699,503 21,372,672 0 86,356,027 40,295,430 1,279,201 10,215,449 2,845,732 133,553
pole 68,449,393 40,393,032 0 100,076,035 41,393,729 3,966,339 20,873,528 3,730,674 147,865
commsA-TP 11,413,877 7,783,980 0 27,999,242 7,721,310 662,977 4,685,919 1,525,365 61,716
commsA-Lat 10,454,653 9,507,624 0 29,390,957 9437436 662,976 4,233,701 1,388,763 62,992
commsB-TP 10,488,652 4,146,540 0 12,742,813 4,101,445 336,611 4,701,337 607,110 41,439
commsB-Lat 8,282,091 4,668,729 0 10,846,363 4,615,512 336,610 3,626,289 966,129 77,973
commsC-TP 1,958,177 1,440,888 0 2,527,100 1,408,203 71,631 922,243 1,526,424 39,384
commsC-Lat 1,765,778 2,200,104 0 2,282,637 2,146,260 71,631 781,643 335,535 51,225
commsD-TP 56,020,056 19,023,933 0 67,722,573 18,924,544 1,500,779 25,203,021 100,617 120,792
commsD-Lat 26,854,672 51,665,469 0 38,531,625 51,444,433 1,500,778 10,496,839 538,074 663,993
commsD-BER 39,976,688 19,672,197 0 52,055,883 19,573,639 1,500,778 17,416,322 10,352,839 91,716
TOTAL 367,987,492 251,833,854 0 532,930,824 250,557,597 17,725,247 127,494,226 48,000,655 1,875,650
compare to inline 0.0% 7.1% 3.9%
compare to baseline 0.0% 3.3% 1.5%

TABLE 25. Inlining functions cuts runtime to about 80%. This table
summarizes data in Table 21 and Table 22.
Average Time (ms)
Minimal Puk SMOset+ All
Platform (dataset) Inline SVMOptimizer Inlined
PPC440 (comms only) 1,295 1,251 1,168 1,073
PPC440 (all datasets) 1,476 1,401 1,236 1,127
ARMvV7 (comms only) 1,149 1,131 978 957
ARMV7 (all datasets) 1,107 1,074 901 890
Average NormRMSE
PPC440 (comms only) 0.315 0.315 0.315 0315
PPC440 (all datasets) 0.307 0.307 0.307  0.307
ARMv7 (comms only) 0.272 0.272 0272  0.272
ARMV7 (all datasets) 0.313 0.313 0313 0313

majority of accessor functions like getValue () are inlined,
but functions that perform meaningful computation are not
inlined.

B. Numerical Representations

The columns Double, Float, Integer, and Mixed in Table 21
and Table 22 show the results for each of the four numerical
representations. (Note that the other columns to the right of
Mixed all use the mixed integer+float representation.)
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TABLE 26. On average, Mixed is consistently faster than the other
representations, for a small impact on NormRMSE. This table summarizes
data in Table 21 and Table 22.

Average Time (ms)
Baseline Reference double

Platform (dataset) float integer Mixed

PPC440 (comms only) 4,464 2901 1,246 1,488 1,073
PPC440 (all datasets) 5,192 3,345 1,205 1,552 1,127
ARMV7 (comms only) 19,905 3282 2,662 1,308 1,053 938
ARMV7 (all datasets) 20,659 4,016 2,567 1,244 1,098 1,012

Average NormRMSE

Platform (dataset) Baseline Reference double float integer Mixed

PPC440 (comms only) 0.310 0.306 0.333 0.342 0.315
PPC440 (all datasets) 0.299 0.287 0.309 0.304 0.307
ARMV7 (comms only) 0.275 0.263 0.263 0.318 0.298 0.272
ARMV7 (all datasets) 0.268 0.265 0.258 0.303  0.285 0.308

As expected, Double representation is always slower than
the other representations. Table 26 summarizes the raw data
of Table 21 and Table 22, showing the average runtimes for
the two platforms, for all of the datasets and for the subset
of datasets we are most interested in. On average, Mixed is
consistently faster than either Float or Integer, although there
are specific cases in which Float or Integer performs faster
than Mixed.
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TABLE 27. PPC440. The number of changed examples correlates
highly with the runtime (ms) of Table 22.

Test case Reference double float integer Mixed
airfoil 8,712 8,961 4,734 11,412 4,800
AutoPrice 2,688 2,268 1,293 5,568 945
bodyfat 1,989 1,989 1464 1,491 1,008
concrete 3,870 8,790 3,576 5,661 2,103
cpu 2,577 10,140 1,392 3,579 1,740
fishcatch 5,145 4926 1,083 11,715 1,602
housing 3,237 4,449 2,163 7,140 1,950
wine red 9,537 6471 4,350 8454 4,140
wine white 8,148 5,709 5,250 11,889 5,529
pole 6,582 8,331 4,158 4,380 5475
commsA-TP 5907 7,737 4,761 15,105 5,343
commsA-Lat 7,803 7,044 5,790 10,773 5,184
commsB-TP 6,894 3,987 3,606 7410 3,027
commsB-Lat 3,099 6,825 3,174 7,140 2,655
commsC-TP 3,357 3,306 2,379 2,628 2,772
commsC-Lat 2,988 2,988 2,682 7,773 3,420
Correlation (comms only) 96.8% 96.5% 95.7% 93.7% 93.9%
Correlation (all datasets) 93.8% 68.0% 90.8% 71.7% 91.4%

While some might expect Integer to perform consistently
fastest because there are never any floating point operations,
building a strictly integer SVR model may require more overall
computations to converge. The last two rows of Table 27 indi-
cate how well correlated these results are to the runtime results
of Table 22. The primary conclusion is that the properties of
the data drive the runtime: the harder it is to build a model
that fits the data, the longer it takes to build the model.

When choosing the final representation for our target
platform, our secondary factor is the NormRMSE: we do not
want to sacrifice too much accuracy. While the 64-bit double
representation tends to have the lowest NormRMSE, its very
high runtime does not justify the small gain. Moreover, note
that in 4 of the 12 PPC440 cases and 7 of the 19 ARMv7
cases, one of the other representations yields lower error. The
Mixed representation has lower error than Float or Integer for
the communications datasets, while the Integer representation
does better across all the datasets.

Overall Mixed runs at 22% of the runtime of the Reference
on PPC440, 30% of the runtime of Reference on ARMv7. and
6% of the runtime of Baseline on ARMv7.

Given that our primary interest is for communications
datasets, we have selected the Mixed numerical representation
for all further tests. Thus, columns Except, Pow+Sqrt, etc. can
all be directly compared to the Mixed column.

C. Kernel Implementation

Column pow+sgrt in Table 21 and Table 22 shows the
performance results when we enable the sqgrt () and pow ()
functions from the original kernel computation for PuK (Ta-
ble 11). Table 28 shows the average runtimes for our two
platforms, for all of the datasets and for our communications
datasets. In all cases, pow () is slightly cheaper than Mixed
because our tests used w = 1.0, and our code from Table 12
incurrs an if call; we have since removed the if from our
code.

On both platforms, sgrt () is extremely expensive, par-
ticularly for the double representation. On PPC440, for
example, a single call to the sqrtf () for float is 0.129us,
sqgrt () for double is 0.455us. With over a million calls to this
function, we can quickly account for a large percentage over
overall compute time. Despite this standalone performance,
when we remove the functions from the system, we get mixed
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TABLE 28. On average, removing sqrt () and pow () improves
runtimes on PPC440, but specific cases may improve or worsen. Similarly,
NormRMSE may increase or decrease because removing the unnecessary
sqrt () avoids incorrect floating point errors on the processor. This table
summarizes data in Table 21 and Table 22.

Average Time (ms)
Platform (dataset) pow+sqrt sqrt pow Mixed
PPC440 (comms only) 1,132 1,066 1,132 1,073

PPC440 (all datasets) 1,149 1,122 1,148 1,127
ARMV7 (comms only) 922 923 929 938
ARMV7 (all datasets) 1,033 1,035 1,002 1,012

Average NormRMSE
Platform (dataset) pow+sqrt sqrt pow Mixed
PPC440 (comms only) 0.310 0.310 0.315 0.315
PPC440 (all datasets) 0.305 0.305 0.307 0.307
ARMV7 (comms only) 0.320 0.320 0.272 0.272
ARMvV7 (all datasets) 0.317 0.317 0.308 0.308

TABLE 29. PPC440. The number of changed examples is 96%
correlated to the runtime. Ratio is (pow+sqrt / Mixed). Table 27
presents similar results.

Runtime (ms) Optimize count
Test name pow+sqrt Mixed Ratio pow+sqrt Mixed Ratio
cpu 57 135 42% 855 1,740 49%
fishcatch 56 114 49% 1,026 1,602 64%
housing 209 283 74% 1,602 1,950 82%
commsC-TP 326 435 75% 2,400 2,772 87%
commsA-TP 1,560 2,083 75% 4,434 5343 83%
pole 2,221 2,625 85% 5,115 5475 93%
airfoil 2,393 2,787 86% 5,199 4,800 108%
commsC-Lat 380 422 90% 3,168 3,420 93%
bodyfat 80 86 93% 993 1,008 99%
wine red 2,637 2,610 101% 4,266 4,140 103%
commsA-Lat 2,247 1,991 113% 5,643 5,184 109%
AutoPrice 58 50 116% 1,050 945 111%
commsB-Lat 882 756 117% 3,336 2,655 126%
wine white 2,826 2,307 123% 5,997 5,529 108%
concrete 1,064 604 176% 3,018 2,103 144%
commsB-TP 1,403 753 186% 4,776 3,027 158%

performance results: on average removing these two functions
yields a runtime that is 118% of Mixed, and almost identical
on ARMv7.

On PPC440, removing these two functions can improve
runtime dramatically compared to Mixed (54% for commsB-
TP), or it make runtime significantly worse (236% for cpu).
On ARMvV7, the range is 38% (for fishcatch) to 135% (for
commsC-Lat). When we remove the sqgrt () call, we in-
crease overall floating point accuracy, and this may actually
cause Weka to take longer to converge. Table 29 shows the
runtime and total number of changed examples for Mixed and
pow+sqrt on PPC440; the number of changed examples is 96%
correlated to the runtime across all testcases.

Just as for the numerical representations (Section V-B),
the results for sqgrt () and pow () depend on the specific
platform and dataset. While we expected that removing these
functions would reduce computation time, the increased con-
vergence time might yield slower overall performance. This
was yet another example where our intuitive expectation did
not bear out.

D. Memory vs Computation

Recall that caching the kernel results saved 600% of run-
time, and thus it is clear that caching the kernel computations is
usually worth the memory cost of a fixed-size n X n triangular
matrix.

The timing results for caching dot products, however, show
that caching dot products are probably not worth the memory

ML for Embedded Systems



Raylheon BBN Technologies

BBN REPORT-8571

March 16, 2015

TABLE 30. Computing (dotprod-x[i] and dotprod-*x++) or caching
(Mixed) the dot products has little impact on run times when exceptions
are disabled. There is no impact on NormRMSE. This table summarizes
data in Table 21 and Table 22. (Table 31 shows that caching dot products
is useful when exceptions are enabled.)

Average Time (ms)
Platform (dataset) dotprod-x[i] dotprod-*x++ Mixed
PPC440 (comms only) 1,069 1,065 1,073
PPC440 (all datasets) 1,125 1,124 1,127
ARMV7 (comms only) 963 955 938
ARMV7 (all datasets) 1,048 1,039 1,012
Average NormRMSE
Platform (dataset) dotprod-x[i] dotprod-*x++ Mixed
PPC440 (comms only) 0.315 0.315 0.315
PPC440 (all datasets) 0.307 0.307 0.307
ARMvV7 (comms only) 0.272 0.272 0.272
ARMV7 (all datasets) 0.308 0.308 0.308

TABLE 31. When exceptions are enabled, runtimes are slower on
PPC440, and have little impact on ARMv7. There is no impact on
NormRMSE. This table summarizes data in Table 21 and Table 22.

Average Time (ms)
exct+vec+  exc+ exc+ exc+
Platform (dataset) tri+dp[i] vec+tri dp[i] dp* except Mixed
PPC440 (comms only) 2,328 2,289 1,207 1,212 1,210 1,073
PPC440 (all datasets) 2,508 2492 1,317 1,322 1,322 1,127
ARMV7 (comms only) 950 1,016 950 938
ARMV7 (all datasets) 1,061 1,064 1,030 1,012
Average NormRMSE
PPC440 (comms only) 0.315 0.315 0.315 0.315 0.315 0.315
PPC440 (all datasets) 0.307 0.307 0.307 0.307 0.307 0.307
ARMV7 (comms only) 0272 0.272 0.272 0.272 0.272 0.272
ARMV7 (all datasets) 0.308 0.308 0.308 0.308 0.308 0.308

cost. Column dotprod-x[i] in Table 21 and Table 22 shows
the timing and NormRMSE results when we do not cache the
dot product results. Column Mixed shows the results when
we do cache the dot products. Table 30 shows the average
results for the two platforms and groups of datasets. There is
no significant difference in the timing results between these
two columns.

Table 30 also shows the effect of using pointer math,
by breaking out the dot product results into dotprod-x[i],
which refers to dot product computations similar to Table 14,
and dotprod-*x++, which refers to computations similar to
Table 15. Note again that only Mixed caches the results of the
dot product computations.

When we take into account the number of attributes or in-
stances in the data, there is a slight performance improvement;
that is, when there are more computations to make, caching the
dot product results can reduce overall compute time. However
the cost to memory is probably not worth the small timing
improvements.

E. Removing exceptions

Each of the columns exc in Table 21 and Table 22 show the
timing and NormRMSE results when exceptions are enabled,
while column Mixed shows the results when they are disabled.
Table 31 shows the average results by platform and dataset
group.

Disabling exceptions speeds up execution by about 15%
on PPC440, and 1% on ARMv7.

The more interesting (unexpected) result is the effect of
exceptions on our custom vector and matrix structures. When
we disable exceptions, std: : vector becomes more efficient
than our custom bbn: :vector (Section IV-F and V-F).

Haigh et al
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TABLE 32. Unexpectedly, our custom vector and matrix modules
performed better than the Mixed when exceptions are disabled. When
we enable exceptions, std modules (column exc+vec+tri) performs
significantly more poorly than Mixed. There is no impact on NormRMSE.
This table summarizes data in Table 21 and Table 22.

Average Time (ms)

Platform (dataset) exc+vec+tri vec+tri triangle vector Mixed

PPC440 (comms only) 2,289 962 966 1,053 1,073
PPC440 (all datasets) 2,492 978 990 1,100 1,127
ARMvV7 (comms only) 950 994 967 890 938
ARMV7 (all datasets) 1,061 1,081 1,068 978 1,012

Average NormRMSE

Platform (dataset) exc+vec+tri vec+tri triangle vector Mixed

PPC440 (comms only) 0315 0.315 0315 0.315 0315
PPC440 (all datasets) 0.307 0.307  0.307 0.307 0.307
ARMV7 (comms only) 0272 0272 0.272 0.272 0.272
ARMV7 (all datasets) 0.308 0.308  0.308 0.308 0.308

FE. Vector and Matrix Optimization

Column vec+tri of Table 21 and Table 22 shows the timing
and NormRMSE results when we use std: :vector, while
column Mixed shows the results with our custom vector and
matrix modules. Table 32 shows the average results for our
two platforms and dataset groups.

To our surprise, std: :vector is faster than our custom
bbn: :vector. To validate our initial results (Table 19), we
enabled exceptions in a variety of trials for dot products and
vectors, corresponding to the columns exc+ in Table 31 and
Table 32. Ablation trials specifically tied to the vectors and
matrices are:

Ablation version Exceptions Vectors Triangles

exc+vec+tri Enabled std::vector std::vector
vec+tri Disabled  std::vector std::vector
triangle Disabled  bbn::vector std::vector
vector Disabled  std::vector bbn::vector
except Enabled bbn::vector bbn::vector
Mixed Disabled  bbn::vector bbn::vector

Therefore exc+vec+tri therefore corresponds to the perfor-
mance results before we created our custom modules, and
except corresponds to the results immediately after creating
them.

The code relies heavily on triangular matrices for caching
dot products and kernel results. As we expected initially, when
exceptions are enabled our bbn : : vect or modules of except
saved over 50% of compute time compared to std: : vector
of exc+vec+tri on PPC440. ARMv7 does not add the exception
overhead, and thus there is no time savings. However, when
exceptions are disabled, the std::vector of vec+tri is
faster than our custom modules Mixed on PPC440.

VI. CONCLUSION

Table 33 summarizes the impact of our modifications to
the Weka code. We obtained a final runtime that is on average
5% the runtime of Baseline on ARMv7. We were unable to get
the original code to run on the PPC440 platform. The ablation
trials revealed the independent effects of the optimizations.
This paper presented the optimizations that either had the
most effect, or were the most surprising. The following list
summarizes the results, in approximate order of impact:

e Removing double saved at least 50% of runtime
on both platforms. Improvements for Float, integer,
and mixed int+float depend on the dataset and the
platform. The SVM model is extremely sensitive to
numerical representation, as all four representations
can yield different NormRMSE results.
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TABLE 33.  Our optimized version of Weka requires about
5% of the original runtimes. This table summarizes data in
Table 21 and Table 22.

Compared to Compared to
Platform (dataset) Baseline Reference
PPC440 (comms only) 27.7%
PPC440 (all datasets) 11.7%
ARMvV7 (comms only) 5.5% 37.4%
ARMvV7 (all datasets) 6.1% 32.1%

Disabling exceptions saves at least 50% of runtime
(with std: :vector) on PPC440, but has a smaller
impact with (a) our custom vector module and (b) on
ARMV7.

Inlining functions saves about 20% of runtime, even
on the ARMv7 platform whose more modern compiler
can automatically inline more functions.

Fixed-size vectors improves memory usage, but may
not affect runtime.

Removing sqgrt () and pow () does not necessarily
reduce runtime or improve accuracy, due to character-
istics of the dataset.

Adding a cache of the dot product calculations can
improve performance when there are many attributes
in the data.

Creating a custom vector module (and not using
std: :vector) may be valuable on some platforms
if exceptions are enabled.

The main lesson learned is to not make assumptions about

how the hardware will respond to code structures. This was
most noticeable for the surprising results when removing
expensive function calls in the kernel implementation. We
constructed our unit tests to monitor both time and accuracy;
if either of these changed significantly, we inspected the
assembly to find an explanation. Some changes we adopted,
others we reverted, and others we redesigned to leverage
positive effects and reduce negative effects.
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