Test Time Feature Ordering with FOCUS:
Interactive Predictions with Minimal User Burden

Kirstin Earlyl, Stephen E. Fienbergl’z, Jennifer Mankoff' >
'Machine Learning Department, “Department of Statistics, *Human-Computer Interaction Institute
Carnegie Mellon University, Pittsburgh, USA
{kearly, fienberg, jmankoff} @andrew.cmu.edu

ABSTRACT

Predictive algorithms are a critical part of the ubiquitous
computing vision, enabling appropriate action on behalf of
users. A common class of algorithms, which has seen
uptake in ubiquitous computing, is supervised machine
learning algorithms. Such algorithms are trained to make
predictions based on a set of features (selected at training
time). However, features needed at prediction time (such as
mobile information that impacts battery life, or information
collected from users via experience sampling) may be
costly to collect. In addition, both cost and value of a
feature may change dynamically based on real-world
context (such as battery life or user location) and prediction
context (what features are already known, and what their
values are). We contribute a framework for dynamically
trading off feature cost against prediction quality at
prediction time. We demonstrate this work in the context of
three prediction tasks: providing prospective tenants
estimates for energy costs in potential homes, estimating
momentary stress levels from both sensed and user-
provided mobile data, and classifying images to facilitate
opportunistic device interactions. Our results show that
while our approach to cost-sensitive feature selection is up
to 45% less costly than competing approaches, error rates
are equivalent or better.

Author Keywords
Online data collection; interactive machine learning; cost-
based dynamic question ordering

ACM Classification Keywords
[.5.2. Pattern recognition: Design methodology: Feature
evaluation and selection.

INTRODUCTION
Online data collection from individuals can provide them
with personalized, timely predictions at scale and at low

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UbiComp ‘16, September 12-16, 2016, Heidelberg, Germany

© 2016 ACM. ISBN 978-1-4503-4461-6/16/09 $15.00
DOIL: http://dx.doi.org/10.1145/2971648.2971748

cost to the data collectors. However, users do not have the
resources to provide all the information we seek—they
cannot answer too many questions that may be difficult to
get answers for, and their mobile devices do not have
sufficient battery life to provide constant streams of high-
fidelity sensed data. Strategically choosing which feature to
obtain next from a particular user, depending on previous
responses, can lower these costs while still making useful
predictions. We develop an approach to test time Feature
Ordering with Cost and Uncertainty Score (FOCUS) that
trades off the expected utility of the next prediction, were
we to have any of the yet-unanswered feature values, with
the cost of acquiring that feature. FOCUS sequentially
requests feature values to make wuseful, confident
predictions with the resources users are willing and able to
provide.

We validate our approach in the context of three datasets
drawn from related existing work. The first is a U.S.
Government-collected dataset about household energy use
[46]. The second is a research dataset that collected both
sensed and user-provided data from college students over
the course of one ten-week academic term, including self-
reports on stress levels [47]. The third is a dataset used to
validate a mobile application that can identify devices (e.g.,
printers, projectors) in photographs to support lightweight
opportunistic interaction without forcing users to manually
install drivers [9]. On all three, we demonstrate that
prediction quality is not significantly worse than a standard
fixed-order baseline, while costs are decreased.

BACKGROUND

In standard supervised machine learning approaches, a
predictor is learned from training data and used to make a
prediction on a test point. It is assumed that the training
data and test points share a common set of features, but
labels are provided for only the training data.

Because labels can be costly to acquire at training time, a
large body of related work has focused on active learning,
which strategically selects which unlabeled data to acquire
labels for, so as to maximize a model’s performance while
minimizing the cost of data collection [7].

Alternatively, it may be features that are costly to acquire at
test time (or, equivalently, prediction time, for deployed
systems). For application arecas where feature computation
time is a bottleneck at test time (e.g., natural language
processing (NLP), computer vision), the primary goal of

test time feature acquisition is to speed up prediction (e.g.,
[21, 42, 49]). In other domains, there is an allowable test
time budget of costs other than time, such as user burden of
providing information (e.g., [12]) or the resulting loss in
privacy from disclosing information (e.g., [33]).

Feature selection—i.e., choosing at training time a relevant
subset of features to include in a model [19]—can
implicitly cut down on the number of features that must be
acquired to make a prediction on a new instance at test
time. However, typically, the main motivations for feature
selection are (1) avoiding overfitting to the training set in
high-dimensional problems and (2) generating interpretable
models. Some past work (e.g., [1]) has approached training-
time feature selection with the goal of reducing test time
prediction costs. Other researchers have pointed out that the
optimal budget-constrained set and/or number of features to
acquire likely depends on each particular instance. Thus,
there is a need for test time, dynamic feature selection.

Cost & order at training time; # at test time

One approach to test time feature selection is learning
sequences of features to add. For example, Strubell et al.
[42] learn an ordering of features at training time through
the use of prefix scores that capture the prediction margin
(i.e., how much more confident the classifier is in the
correct prediction than any other). At test time, they then
acquire features in this order, computing prefix scores at
each stage until some label is predicted above all others by
a specified margin. They apply this technique to several
problems in NLP (part-of-speech tagging, dependency
parsing, and named-entity recognition). A related method is
classifier cascades and trees [51], which learn at training
time cost-sensitive trees or cascades, where each node is a
classifier. At test time each instance is passed through the
tree or cascade, evaluating additional features as
necessitated by the tree structure.

While these approaches dynamically decide how many
features to acquire in an instance-specific fashion at test
time, they do not determine an instance-specific order in
which features are acquired at test time. As a result, such
methods may have to obtain more features than would be
necessary to adequately predict any given instance, just to
get the relevant features for that particular instance.

Cost at training time; # & order at test time

A more flexible approach is to decide both order and
number of features to acquire at test time. Across several
domains, test time feature selection has been modeled as a
Markov decision process (MDP) (e.g., [20, 21, 39, 41, 49]).
Generally, these methods consider the set of features
acquired thus far to be the states of the MDP, the decision
of which feature to acquire next as the action, with a reward
function that reflects how much the inclusion of the next
feature improves the prediction (potentially with a penalty
on feature cost). They then learn a policy that chooses
which action to take (i.e., feature to add) based on the

current state (i.e., current known set of features), from a set
of training data (e.g., [20, 21, 39, 49]).

This is a fairly general approach that has been used quite
widely. For example, Shi et al. [41] take a similar approach
to the problem of constructing heterogeneous sampling
algorithms, by considering reward as the improvement in
conditional log-likelihood of the label given the sample.
Similarly, in the domain of recommender systems, the so-
called “cold start problem” [26] is improved by eliciting the
most relevant preferences from the user to minimize burden
(e.g., [18, 43]). This is often done by learning a decision
tree from training data that can be used at prediction time to
decide what sequence of ratings to request (e.g. [18]). A
limitation of such approaches is that they use training data
to determine how to ask questions (even if the sequence of
features depends on previously provided answers); this
approach can be inappropriate for a test sample with
behavior very different from the training set.

Cost & # & order at test time

Finally, there are methods that determine a feature order at
test time, using the expected quality of the subsequent
prediction to decide which feature to acquire next. For
example, Pattuk et al. [33] formulate a privacy-aware
dynamic feature selection algorithm for classification that
sequentially chooses features for a test instance, according
to which will most increase the expected confidence of the
next prediction, as long as including that feature does not
violate a privacy constraint. This work is most responsive to
the test time situation. However, it does not address
regression, and because its cost metric is defined
mathematically by the currently-known features (i.e.,
conditional entropy), the method cannot take context-
dependent costs into account.

This paper presents a generalization of preliminary work
focused on adaptive survey design, particularly for
personalized predictions [12]. The dynamic question
ordering (DQO) algorithm presented in that work is
designed to minimize the prediction interval width in the
context of regression and was applied to the energy use
dataset also presented in this paper. This publication
presents FOCUS (Feature Ordering with Cost and
Uncertainty Score), an extension of DQO that (1) uses
metrics for cost rather than just assigning a binary value
(low or high), (2) accounts for costs that may change
dynamically based on context, (3) supports a wider variety
of supervised machine learning algorithms, and (4)
validates the approach in multiple datasets rather than just
one.

Summary of key attributes

Table 1 summarizes these related works and highlights
desired qualities in a test time feature acquisition algorithm.
A full consideration of the issues would accommodate a
variety of prediction algorithms.

= 2) =
£ 5 E E 25 g
23 = g £ 35 g
5 T2 % % S5 g
g ol 3 = R~
FOCUS Ubicomp/
CR FS C/O/# U Mobile/
Energy
[20] C FS X M —
[21] C X X A NLP
[42] C X # M NLP
[41] C X X A Structured
prediction
[49] c FS 4 A Structured
prediction
[51] C FS X A LTR, MNIST
[39] c FS O/t M Knowledge-on-
Demand
[33] C Fs o U Information
disclosure
[36] C FS # A —
[18,43] c X X A Recommender
Systems

Table 1 A summary of previous work in test time feature
acquisition and our method (FOCUS, top row). The aspects of test
time feature selection we compare are: whether the type of
prediction problem is classification (C) or regression (R); whether
the cost metric for features is Feature-Specific (i.e., different
features can have different costs; X means no cost metric); what is
determined at test time (Cost, Order, # of features); the utility
function used (Accuracy or Uncertainty or Margin from next
closest class); in what domains the algorithm has been applied.

Table 1’s Column 1 (Prediction Problem) shows that
algorithms may predict discrete values (classification) or
continuous values (regression); the majority of past work
has focused on classification alone. In the Cost Metric
column, we see that algorithms may assume that all features
have equal cost, or they may allow different features to
have different costs, which we refer to as feature-specific
costs. Next, algorithms vary on what is done at Test Time
rather than training time. The optimal number of features
needed, the order of features, and the cost of features may
all be determined at test time. If cost is determined at test
time, algorithms may be able to consider context-dependent
costs. For example, in a system that makes medical
diagnoses and can request tests (e.g., [16]), it will be less
costly to request an invasive biopsy if a surgery is already
scheduled in that area. None of the related works we
identified support context-dependent cost metrics. The
Utility Function used to determine the value of a feature

also varies. Examples for feature “quality” include
subsequent prediction accuracy (e.g., [21, 41, 49, 51]) and
subsequent prediction uncertainty (e.g., [33]). Finally, the
Domain column shows where each relevant approach was
applied.

An ideal solution would accommodate a variety of
prediction algorithms, allow for feature-specific and
context-dependent costs, and support multiple options for
prediction utility when requesting information to refine a
prediction. Delaying the order determination until test time
(rather than learning it from training data) is a requirement
for context-dependent costs (since they are not known until
test time).

OVERVIEW OF FOCUS

We present an algorithm, FOCUS, that has all of these key
properties. We build on the DQO algorithm [12] and extend
it to include classification and richer metrics for feature
costs, including context-dependent costs which are not
evaluated until test time. A basic assumption of our
approach is that it is being applied in the context of
supervised machine learning. In addition, we assume that
feature cost is only an issue at test (or more generally
deployment) time—at training time, the complete set of
features associated with each label is assumed to be
available. Finally, although not required, our approach
benefits from a prediction algorithm that is robust to
making predictions when not all features are available
(predictions on partial information).

As shown in Figure 1, FOCUS operates iteratively at test
time. Given an instance with known (dark green) and
unknown (white) features, it first calculates the expected
value of a feature (Step 1) for all features that are not
known. Next it calculates the best next feature by
optimizing a function that combines the prediction value of
each feature with its cost (Step 2). The new feature is
acquired (Step 3) and the process repeats. At any iteration, a
prediction can be made.

Whether or not the prediction at each step is shown to the
user will depend on the application. For example, if the
application is gathering information from sensors with no
user input, it does not make sense to display the sequential
predictions to the user. In this case the algorithm may stop
when costs become too high, all features are acquired, or
accuracy achieves a certain threshold. This can be
determined on an application-by-application basis. On the
other hand, if the user is answering questions to get a
personalized prediction, then showing them the partial
predictions can keep them engaged in answering questions
and help them to decide if continuing to answer questions is
valuable to their goals.

K (known features)

f

[I .

Calculate weighted average of outcomes for all values of f

Jptimize to find best combination of
arediction value and cost (4c¢,) using

f*eargmin(*E[U(f)]Jr/in)

Acquire new feature

MRS O T |

Figure 1 FOCUS iteratively increases the set of known features. Step 1: Given a set of known features, it first calculates the expected
prediction value and cost of acquiring each unknown feature. This is repeated for all unknown features. Step 2: FOCUS optimizes for
the best combination of prediction value (as calculated in Steps 1 and 2) and cost. Step 3: The best next feature is acquired. Now a
prediction can be made, or FOCUS can repeat this process.

The FOCUS Algorithm

FOCUS assumes that a model trained on all feature values
is available and that, for a new test point, we want to
provide the best (and lowest cost) prediction possible, given
that feature values are costly to acquire. As shown in Figure
1, FOCUS sequentially estimates the value of each feature
(Step 1) and selects a next feature to ask (Steps 2 and 3).

Calculating the Utility of a Feature f

In Step 1 of FOCUS, the expected utility of a feature is
calculated. Since the true next prediction uncertainty
depends on the actual value for the next feature that is
acquired, we cannot directly calculate E[U(f)]. However,
we can break this down into two parts.

Calculating U(f), the prediction utility for a specific
possible value of feature f, depends on the exact nature of
the prediction problem. U(f) takes as input a feature vector
containing the known features plus a hypothetical value
for feature f. Typically, utility is calculated by making a
partial prediction using those values and estimating
prediction accuracy, uncertainty, efc.

This is repeated for all values r that are in the range of
potential values R for f (Step 1 of Figure 1). If a feature is
continuous, we pick bins appropriate for the values that
appear in the training set, and then the midpoint for each
bin for feature f'is used as the set of values f can take on.

There have been several approaches to making predictions
under partial information, and FOCUS is compatible with
any of them. Reduced-feature models use only features
whose values are known in making predictions; these
models may be calculated at training time (e.g., [51]) or
dynamically constructed at test time (e.g., [17]). Another
option is to impute missing values and use the full-feature
model on the combination of known and estimated features
to make a prediction. Hybrid approaches combine reduced-
feature modeling with imputation (e.g., [38]). However, in
the end, FOCUS is agnostic about how predictions are
made and how U is defined.

Calculating the Expected Prediction Utility of a Feature f

Given a way to calculate U(f), E[U(f)] can easily be
defined. We calculate the expected utility of a prediction
that includes feature f by taking a weighted average of the
utility calculated for each possible value of f

E[U(f)] = Xrer P(Zf = T)U(Zf;:r), Equation 1

where p(z; = r), the probability that the f~th feature’s value
is 7, is calculated empirically from the training set, and the
notation z;-. means that the fth component of feature
vector z is replaced with the value r.

This process is then repeated for all unknown features.

Optimizing for the Best Next Feature

In its middle step (for each iteration), FOCUS optimizes for
utility of the next feature, penalized by the cost of that
feature. Our selection rule, illustrated in Step 2 of Figure 1,
trades off the expected utility of the next prediction, for
each candidate feature, with the cost of that feature:

f* = argminggg(—-E[U(P] + Acy), Equation 2
where E[U(f)] is the expected utility calculated in Step 1
of FOCUS, and /4 controls how much weight we give to the
cost ¢ for each feature.

As with utility, cost is calculated in a problem-specific
fashion, based on the feature vector of currently known
features. This allows the cost function to consider context-
dependent information such as the values of other features
that are already known. Cost could be measured in time
necessary to acquire a feature, either computationally or
due to dependencies; direct impact on the user such as
interrupting her to ask a question; or indirect impact on the
user such as drawing down the battery life of her phone.

VALIDATION

To demonstrate the usefulness of FOCUS for cost-effective
interactive predictions, we implement it for several
prediction algorithms and applications. First, we consider
the case of providing personalized energy estimates for
prospective tenants, where feature cost reflects how much
effort a user must exert to provide answers about their
energy-consuming habits and their new potential home.
Next, we use FOCUS to make momentary predictions of
stress in college students, where feature cost includes
battery drain from turning on mobile sensors and the cost of
interrupting the user to ask for feature values. In this
example, we also consider context-dependent costs (the cost
of turning on a sensor at the expense of draining the battery
is not an issue when the phone is charging). Finally, we
apply FOCUS to the classification problem of identifying
devices in photos to support opportunistic interactions with
low user burden.

Cost Savings as A grows, given n=4 features, compared to baseline

Cost increase as additional features are added for A=.001

e====RECS FOCUS

8 RECS Baseline
== Student Life FOCUS

Student Life Baseline

6 === Device |[D FOCUS
2 Device ID Baseline
o
[s 3
o
4
=]
8
7]
u :
3 1 T T
S e
2
]\\L
1 - s
1 =
0
0 0.00001 0.0001 0.001 0.01 0.1 1

Lambda (penalty on cost)

5 6 7 8 9 10 11 1
Number of Features

Figure 2 Charts showing impact on cost (y axis) of 1 and number of features. (Leff) As 4 increases, cost savings from FOCUS increase,
without significant loss of accuracy. Dashed lines show baseline cost performance. (Right) FOCUS (solid lines) ensures that cost increases
more slowly than the baseline algorithm, with 4 =.001. Note that the Student Life and Device ID sets converge because there are only 8 and

12 total features; RECS converges at 30 features (not shown).

For each of these applications, we compare the quality of
successive predictions obtained with FOCUS, with a variety
of cost penalties 4, to that of a fixed-order baseline, which
we call Fixed Selection. This baseline acquires features in
the order of forward selection [45] on the training data
(resulting in an identical ordering for all samples). Finally,
we implement an Oracle that chooses the next best feature
to acquire according to the minimum frue utility of the next
prediction, rather than the expected utility, as in Equation 2.

In all three applications, we use imputation to predict with
partial features as follows: Using ANN [8], restricted to the
features that are already known, we find the & points in the
training set that are nearest to the test point. We estimate
the value for each unknown feature in the test point as the
mean or mode of that feature in the & nearest neighbors.

We optimize for prediction certainty in each of our
validation datasets due to past work demonstrating the
importance of providing people with certainty of
predictions to help them make decisions (e.g., [22]).
Prediction certainty is available in most prediction
algorithms and reflects how likely the true value is to
coincide with the estimated value. For example, in
regression, a prediction interval width indicates the range of
values the true value is likely to fall within [48]. A narrower
prediction interval corresponds to a more certain prediction.
For classification, certainty can often be formulated as
distance from the decision boundary. Other example
metrics for prediction certainty are discussed in more detail
in the applications in the next section. Using this metric, we
can estimate certainty of the next prediction, if a feature
were available. In our equation for test-time feature
ordering (Equation 2), certainty is easily replaced with
other metrics (e.g., prediction error).

Metrics for Prediction Quality

Our validation considers prediction certainty, error, and
cost. Certainty and cost are defined as part of our
optimization problem. For error, we use mean absolute
error for regression and zero-one loss for classification (i.e.,
a sample incurs an error of 0 if its predicted value matches
the true value and 1 otherwise) to compare our successive
predictions to the true values. This is a conservative metric
for error since it compares only a single predicted value to
the true value (rather than taking into account the
uncertainty associated with the prediction); for example,
this metric will incur error when the true value is not the
exact midpoint of a prediction interval, even when the true
value does lie within the prediction interval.

Figure 2 illustrates the cost savings of FOCUS (solid lines)
over the baseline (dashed lines) when various numbers of
additional features have been provided for each of our three
validation applications. The left plot shows that, as the cost
penalty A increases, the cost savings of FOCUS over the
baseline also increases. As expected, increasing the cost
tradeoff parameter 4 favors asking inexpensive features near
the beginning of the test time feature acquisition process.
The right plot in Figure 2 shows that, for a fixed 4 and with
increasing numbers of additional features, FOCUS also
maintains its cost advantage over the baselines, for all three
applications.

To summarize the trajectories of prediction cost,
uncertainty, and error, we calculate areas under the curve
for each of the metrics as each feature is added. Smaller
values are better because they mean the algorithm spent less
time in high cost, uncertainty, and error. Table 2 lists these
values for FOCUS with seven different values of cost
penalty 4, ranging from zero to one, and for the baseline. As

Method RECS StudentLife Device ID
Cost Uncert. Error Cost Uncert. Error Cost Uncert. Error
0 13402517 41.376 12457 71.182° 22.897 5.770 94.788" 1935 4815
00001 | 1175.420° 41.375 12.444 70.924° 22.898 5.769 87.647° 1.939° 5241
r'le .0001 936.338" 41.371° 12.649° 70.030° 22.898 5.771 87.601° 1.940" 5.259
L o0l 891.130° 41.430° 12578 66.704" 22.899 5775 87.638° 1936 5296
8 01 885.000° 41.446 127047 63.303° 22929 5795 82.001° 1936 5463
= 1 885.000° 41.446 127047 61.303" 22.958 5.800° 80.547 1936 5574
1 885.000° 41.446 12.704" 61.303" 22,958 5.800° 80.000" 1926 5333
Baseline 1250.000 41.447 11.722 81.000 22.898 5.705 105.000 1928 4.796

Table 2 Areas under the curve for the cost, uncertainty, and error metrics from FOCUS, with a variety of cost penalties 4, and the Baseline
(Fixed Selection). 1deally, FOCUS will have lower cost and similar uncertainty as Baseline. This is shown in black. Bold numbers (marked
with *) show where FOCUS was significantly lower than baseline at the o = 0.05 level. Red numbers (marked with) indicate where
FOCUS did significantly worse than baseline (higher cost, uncertainty, or error) at the o = 0.05 level.

expected, due to the two terms in the selection rule
(uncertainty and cost), cost decreases as the penalty on cost
increases, and uncertainty tends to increase as the cost
penalty increases. There is no pattern in how error changes
as A increases. The baseline (Fixed Selection) error is often
lower than FOCUS; this result is not surprising, due to the
error-minimizing criterion of forward selection. FOCUS
with a nonzero A always has significantly lower cost than
the baseline. Prediction uncertainty is sometimes lower with
FOCUS than baseline (particularly for low values of 1). The
metric that suffers the most with FOCUS, relative to the
baseline, is error because it was not included in the
optimization.

Personalized Energy Estimates for Prospective Tenants
Selecting energy-efficient homes is important for renters,
because in many climates energy costs can be a significant
burden, and the choice of infrastructure influences energy
consumption far more than in-home behavior [10].
However, there is a paucity of information available about
expected energy costs pre-lease signing. Calling a utility to
ask about prior costs may give incomplete or misleading
information (since occupant behavior can influence energy
usage as much as 100% [35]), and a carbon calculator
typically requires users to answer (prohibitively) many
questions that may require considerable research to answer.
We can lower user burden by (1) learning the relationship
between household features (home infrastructure and
occupant behavior) and energy use from established
datasets, such as the Residential Energy Consumption
Survey (RECS) [46], and then (2) using FOCUS to
strategically select which instance-specific features are
needed to make a confident prediction for a new household.

Background

Bottom-up methods for modeling residential energy
consumption use features of individual households [44].
Household features may include macroeconomic indicators,
as well as occupant-specific features (e.g., [11, 25]). For

example, Douthitt [11] examines fuel consumption for
space heating in Canada, using household-specific values
for occupant demographics, the housing structure, and fuel
cost. Kaza [25] uses the Residential Energy Consumption
Survey (RECS) to estimate energy usage from low-level
housing characteristics, with a quantile regression approach
to separate the effects of variables on homes with different
patterns of energy consumption.

The RECS dataset is our focus as well. RECS consists of
data from 12,000 households across the United States, with
energy consumption by fuel type (e.g., electricity, natural
gas) and around 500 features of each home and its
occupants. We restrict our use of RECS to electricity
prediction in a single climate zone where energy
consumption is variable due to cold weather, giving us a
subset of 2470 homes.

Cost Metric

In Early et al. [12], we assign cost using a three point scale:
some features are free (available in rental advertisements),
while the remainder are either low cost (e.g., number of

Reason Example Feature

0 Extractable from listing Number of bedrooms

If someone stays home
during the day

1 User probably already knows

2 Might have to check current home Size of TV

3 Could find in listing or call for easy =~ Washing machine in home
answer

4 Look up online Year housing unit was built

5 Easily visible during visit High ceilings

6 Requires effort to find out during visit ~ Type of glass in windows

7 Requires visit + look something up Age of heating equipment

Table 3 Cost categories for RECS dataset.

occupants) or high cost (e.g., age of heating equipment).
Free features are included in all predictions since they have
no cost. Here, we use a more nuanced eight-point feature
cost scale based on difficulty of acquiring a feature. Zero-
cost features are “free;” (i.e., extractable from a rental
listing); 1-2 are occupant-related; and 3-7 are unit-related
(may require a site visit and/or research). Table 3 lists the
cost categories and an example feature in each.

Experimental Setup

We first divide RECS into training (90%) and testing (10%)
sets. At training time, we use forward selection [45] on a
randomly-selected subset of 20% of the training data to
choose 30 higher-cost features to add to the free features for
prediction. We use ten-fold cross validation on the
remainder of the training data to learn regression weights.

At test time, the goal is to make a prediction on a new test
point and acquire costly features as needed to improve the
prediction. We simulate progressive addition of features by
hiding values for “unknown” features, using FOCUS to
choose a feature to acquire at each step, and unveiling that
feature’s value once it is “asked” and “answered.”

Results

The regression model using FOCUS had significantly lower
costs than the baseline for all values of 4 except 0 with
equivalent or better uncertainty (Table 2). For A=.001,
FOCUS yielded an average of 45% savings in cost
compared to the baseline as features were added to the
prediction. As expected, FOCUS performed worse in terms
of error, since FOCUS optimizes prediction uncertainty,
rather than error, when determining a test-specific feature
order; the baseline was chosen by optimizing prediction
error on the training set. However, for this application in
particular, it is more important that predicted energy costs
fall inside the window of uncertainty (which the definition
of a prediction interval ensures) than that they have an
accurate dollar value [22].

Momentary Stress Predictions in College Students
Knowing a user’s stress level at an upcoming point in time
allows for automatic suggestions or reminders to help them
manage stressful situations. We want to predict momentary
stress reports from college students, given an assortment of
data such as demographic information, depression, sleep
habits, and deadlines [47]. This task has redundant features
with various costs. For example, we can ask a student to fill
out a survey to measure their anxiety, or we can use phone
sensors to measure length of sleep; the first method incurs
the cost of interrupting the person (potentially at a bad
time), the second the cost of draining the phone battery. Our
goal is to arrive at a “good” (low-uncertainty) prediction for
stress levels without exhausting too many resources by
strategically selecting which features to obtain.

This application differs from the (simpler) personalized
energy problem in the previous section in several key ways:
(1) We want to predict momentary stress levels, rather than

a single value constant across time, as in the energy
prediction example; (2) We include a new type of cost:
battery life; (3) We consider context-dependent costs: for
example, when a user’s phone is charging, turning on
sensors is no longer prohibitively expensive.

Background

Biologically meant as a mechanism for survival, stress can
become harmful if sustained for long periods of time [32],
with individual-level health and societal-level economic
consequences [24]. College students face a unique and
significant type of stress, partly because of their transition
between dependent child and independent adult (e.g., [37]).

It is possible to estimate stress from physiological and
physical signals, like skin conductance, brain activity, and
pupil dilation (e.g., [40]); however, these measurements
often require unwieldy, task-specific instrumentation.
However, more accessible signals that could be measured in
a lightweight fashion (from mobile phone data) are also
associated with stress, like movement, heart rate, sleep
length, and social activity (e.g., [15, 23, 31]).

For example, Affective Health [15] senses bodily reactions
(such as movement and heart rate) and visualizes them in
real time, giving users the opportunity to connect their
activities to their mental state. The StudentLife project [47]
collected smartphone data from 48 graduate and
undergraduate students over the course of an academic term
and included self-reported stress, which was correlated with
other factors such as GPA. Participants in the Student Life
project provided nearly 1600 self-reports of stress levels,
with individuals providing between 3 and 269 responses.
Figure 3 illustrates the number of stress reports and average
stress levels for each participant.

The StudentLife dataset is our focus as well, but we restrict
our analysis to predicting stress. Our goal is to reduce the
burden on wusers of answering experience sampling
questions (the current approach to measuring stress in the

® No response

® 1.5<=Stress <25
2.5<=5tress < 3.5

250 3.5<=Stress <4.5

® 4.5<=Stress<5.5

0}

s0l-

Number of responses

0}

0 0 60

Figure 3 StudentLife participants’ number of stress reports (v
axis) and average stress (color, marker size).

Feature Regression weight p-value
Intercept -0.5401 0.1471
Time of day -0.0295 0.7950
Sleep 0.6187 0.2281
Exercise -0.1151 0.2912
Time to deadline -0.0401 0.8559
of deadlines 0.2625 0.1137
Currently moving? -0.0226 0.8868
Currently silent? 0.0479 0.6125
Currently dark? -0.0864 0.2117
Currently charging? 0.0492 0.5649

Table 4 Regression weights from our linear model to predict stress
from sensed and user-provided data in StudentLife.

StudentLife project) by substituting other features when the
impact on prediction would be minimal. Thus, we use self-
reports of stress at various time points as our response
variable.

Cost Metrics

The cost of acquiring features depends on battery drain
(low for sensors like detecting light or if the phone is
charging; high for sensors like the accelerometer and
microphone (e.g., [14, 29])) and costly interruption of the
user (asking for amount of sleep or upcoming deadlines).
Some of these costs are context-dependent: e.g., if a phone
is charging, battery drain from turning on mobile sensors is
no longer an impediment to gathering those features.

Experimental Setup

As in the energy application, we used linear regression to
predict stress reports. However, rather than using feature
selection to choose a subset of features from a larger set, we
used previous research findings to extract features relevant
to stress (e.g., [23, 31]), along with some current context:
time of day, sleep length, exercise length, length of time
until next deadline, number of upcoming deadlines, current
activity (stationary or in motion), current audio (silent or
noisy), if the phone is currently in a dark environment, and
if the phone is currently charging. We assume that time of
day is freely available. We assign three additional cost
categories: lower-cost sensors (i.e., light detection and
charging); higher-cost sensors (i.e., accelerometer to
measure activity and microphone to measure audio); and
highest-cost user interruption (to ask questions about
lengths of sleep and exercise and upcoming deadlines).

We restricted our dataset to users who provided stress,
deadline, and exercise information, resulting in a total of
660 individual stress reports. We used 80% of these stress
self-reports for training (i.e., learning regression weights)
and the remaining 20% for testing with FOCUS.

Chargin

Not charging

100%

100%

I
=
2
s
]

Feature order
suanbauy

Feature order
Juanbaiy

,_
o
73
—
@
7]

o
User- High-cost Low-cost 0% 0%
providedF sensor sensor

eature

User- High-cost Low-cost
provided sensor sensor
Feature

Figure 4 Context-dependent costs, with A = 1. Color indicates
frequency; x axis indicates feature type; y axis represents feature
order.

(Left) When the phone is charging, acquiring sensor features is no
longer expensive, and so sensed features (last four columns) are
requested more uniformly (top right corner).

(Right) When phone is not charging, sensed features are more
likely to be added in order of increasing cost (the low-cost sensor
features are added before the high-cost sensor features, shown by
the block structure in the top right corner).

Results

The regression model confirms several well-known
properties of stress. For example, exercise is negatively
correlated with stress, and number of deadlines is positively
correlated with stress. Table 4 summarizes the predictor
learned on the training set. As with the prior dataset, our
approach results in predictions that are more certain (i.e.,
have narrower prediction interval widths) than the baseline,
Fixed Selection, while being similarly accurate. Stress
prediction is shown with red lines in Figure 2 (which shows
cost improvement of FOCUS over baseline). Accuracy
levels did not differ significantly for stress predictions for
any of the combinations of values shown in Figure 2.
Prediction certainty decreased slightly for A=.001 after n=>5.
On average, FOCUS yielded 23% savings in cost compared
to the baseline as features were added to the prediction.

An important question is whether context-dependent feature
costs have an impact on feature ordering. To answer this,
we divided the test data into stress reports that were given
when the phone was charging (20% of the reports) and
those that were given when it was not plugged in. Feature
order should differ in those cases, since sensor feature cost
is zero when the phone is charging. Figure 4 shows how
frequently each feature was chosen in each position, for the
charging and noncharging contexts, when cost penalty
parameter A equals 1. The battery-draining sensors are in
the last four columns. When the phone is charging (left), the
sensed features tend to be added before the user-answered
features and without regard for the relative cost of acquiring
sensed features (top right 4x4 corner). When the phone is
not charging (right), features tend to be asked in order of
increasing cost—most inexpensive sensed features first (top
right 2x2 corner), followed by more expensive sensed
features (middle 2x2 section), and finally by the most
expensive user-provided features.

Image Classification for Opportunistic Interactions
Correctly identifying a device (e.g., printer, projector) in an
image can support opportunistic mobile interaction with
that device by automatically installing the necessary drivers
without forcing the user into a manual setup. Real-time
interaction speeds are crucial in this setting to make the
opportunistic interaction seem truly seamless, but often
image classification algorithms require computing
expensive (i.e., time-consuming) features that can slow
down the classification. The device identification problem
can take advantage of other, less time-consuming features,
like location and camera orientation to assist in prediction.
User input (e.g., desired use of a device, such as printing or
projecting) can also inform the prediction, at the cost of
user inconvenience and time.

We use a dataset of images, camera orientations, photo
locations, and device capabilities (i.e., “can print,” “can
scan”, “can copy,” “can fax,” and “can laser-cut,” for this
dataset) to classify new images as particular devices [8].
We illustrate the usefulness of FOCUS for this device
classification task with decision trees and show that using
FOCUS to select a dynamic subset of features to acquire at
test time results in fewer expensive feature acquisitions

while still correctly classifying devices.

Background

Multiple groups have considered how smartphones can be
used to control physical devices, with a variety of device
identification and control mechanisms. Examples include
laser pointers (e.g., [3]), external cameras (e.g., [5] with
Kinect), and magnetometers (e.g., [50]). For the case of
smartphone-taken images, past work explores directly
identifying appliances labeled with fiducial markers (e.g.,
[27]) or using image recognition to identify a pictured
device (e.g., [6]). Snap-To-It [9] allows users to interact
with new devices by taking a picture with their phones and
using both the content and context of the image to identify
the pictured device and connect to it.

Snap-To-It is our focus as well, and we also use image
content and context (location and camera orientation) to
classify devices, as well as user input about intended device
use. As in Snap-To-It, we use the Scale-Invariant Feature
Transform (SIFT) algorithm to extract features from images
and compare SIFT features from two images for matches—
a higher number of matches means that the images are more
similar [28]. It is possible to compute the SIFT features for
the 90 reference images ahead of time, but at prediction
time, the SIFT features for the image the user takes must be
calculated and then compared to the reference images to
check for the highest match. Our experiments show that
calculating SIFT matches for a new image, against
precomputed SIFT features for all 90 reference images
takes, on average, 2.80 seconds, which can destroy the
“real-time” feel of a service like Snap-To-It. Asking for
user input is also expensive. Therefore, our goal is to give
confident device predictions for images with few time-

consuming SIFT match operations and overall low
inconvenience on the user.

Cost Metric

We assume that image location and orientation are freely
available when the picture is taken. We assign two
additional cost categories: medium (SIFT matching) and
high (asking the user about their desired use for the device).
Although additional context could be relevant (such as
whether PowerPoint is running and a projector is in the
room), the SnapTolt dataset did not include this.

Experimental Setup

The Snap-To-It dataset is pre-divided into “reference” and
“testing” subsets. The reference dataset contains five
images for each of 18 appliances, taken from different
angles. These appliances have printing, scanning, copying,
faxing, and laser-cutting capabilities. There are 108 images
(six of each appliance) in the testing set. We used the
reference set to construct a decision tree for image
classification. Then we used this decision tree to classify
test images, computing the SIFT matches and user
questioning as determined to be necessary with FOCUS.

Results

We first constructed a decision tree on the Snap-To-It
reference set, using MATLAB’s implementation of the
Classification and Regression Tree (CART) algorithm.
CART is a top-down algorithm that repeatedly splits nodes
of the tree (starting with all samples at the root), according
to whichever binary split most decreases the “mixture”
among classes in the leaves, measured by the Gini impurity
[4]. The decision tree learned was able to optimally classify
the reference set using only 7 of the 90 reference images, so
we discarded the rest.

Device identification performance is shown with blue lines
in Figure 2 (which shows cost improvement of FOCUS
over baseline). On average, FOCUS yielded 29% savings in
cost compared to the baseline as features were added to the
prediction. In comparison to the baseline, accuracy was
significantly worse only at n=10-11 for 4=.001.

These experiments illustrate two valuable ways of cutting
down time-consuming test time image comparisons. First,
using a decision tree to classify instances reduced the
potential image comparison space from 90 to 7; de Freitas
et al. [9] used heuristics from image location and
orientation to reduce the space of potential matches, but an
algorithmic approach can expand the impact of such
filtering beyond human-extractable patterns. Second, using
test time feature acquisition can further reduce the number
of costly feature acquisitions on test instances that can be
confidently classified without obtaining all features.

DISCUSSION & CONCLUSIONS

Making real-time, personalized predictions is an important
opportunity for ubiquitous computing applications;
however, gathering information from users at test time can
be costly, especially when not all pieces of information may

be relevant for a particular user at a particular time. We
have demonstrated the cost-saving value of dynamically
acquiring features for test time prediction on a variety of
applications and algorithms. On all three validation
datasets, FOCUS effectively lowered prediction costs (by
reducing the number of additional, costly features to
acquire), without sacrificing prediction quality for most
values of n and A. The FOCUS framework’s ability to
support context-dependent costs (illustrated in the stress
prediction example on the StudentLife dataset) allows for
richer, more realistic interpretations of feature cost, which
may not be fixed for all test instances.

A limitation of our work is our simplistic measure of costs
for all of our predictions. A more detailed look at cost could
account for real users’ perception of question cost
(estimated via item response times or response rates) or the
exact battery drain of various sensors on the particular
model of phone being used. Furthermore, future work
should explore how to connect the end-user experience to
choosing a value for the cost penalty 4; this tradeoff is
likely application-specific.

Additionally, in the stress prediction example, we
considered battery charging state (i.e., whether or not the
phone was currently charging) as a simple binary influencer
for context-dependent costs (with cost set to 0 when the
phone was charging). However, more nuanced contexts
could take into account the current percentage of remaining
battery power, the current drain on the battery based on
what applications are currently running (e.g., [13, 30]), or
the expected time-to-next-charge (e.g., [2, 34]). It would
also make sense for this application to consider the
influence of user context on the cost of asking them a
question—e.g., if a user’s calendar indicates they are
currently in a meeting, it may not be a good time to acquire
a feature that requires user input.

Similarly, some cost metrics might take into account
whether features are “shared” for multiple needs—e.g., if
someone answers a stress EMA multiple times in one day,
the “day-level” features can be shared across predictions.

Another aspect worth considering in test time feature
acquisition is feature confidence, especially when the same
value can be obtained through different methods, with
different costs and accuracies. For example, in the
StudentLife case we used user-provided sleep lengths as
one of the predictors for stress, but it is also possible to
estimate sleep length and quality by sensing. By
incorporating feature confidence into the selection criterion,
we could decide whether we are confident “enough” about
a value for a less costly feature to avoid acquiring a more
expensive estimation of the same value.

Finally, it might be interesting to explore user- and context-
specific metrics for prediction quality. Thus, the current
needs of a user (in terms of accuracy) might be factored in
to choices about which features are worth acquiring.

ACKNOWLEDGMENTS
This work was supported by NSF grants 1IS-1217929 and
SES-1130706, as well as the Siebel Foundation.

REFERENCES

1. Miguel Ballesteros & Bernd Bohnet. (2014).
Automatic feature selection for agenda-based
dependency parsing. In COLING (pp. 794-805).

2. Nilanjan Banerjee, Ahmad Rahmati, Mark D. Corner,
Sami Rollins, & Lin Zhong. (2007). Users and
Batteries: Interactions and Adaptive Energy
Management in Mobile Systems (pp. 217-234).
Springer Berlin Heidelberg.

3. Michael Beigl. (1999). Point & click-interaction in
smart environments. In Handheld and Ubiquitous
Computing (pp. 311-313). Springer Berlin Heidelberg.

4. Leo Breiman, Jerome Friedman, Charles J. Stone, &
R.A. Olshen. (1984). Classification and Regression
Trees. CRC press.

5. Matthias Budde, Matthias Berning, Christopher
Baumgirtner, Florian Kinn, Timo Kopf, Sven Ochs,
Frederik Reiche, Till Riedel, & Michael Beigl. (2013).
Point & control—interaction in smart environments:
you only click twice. In Proceedings of the 2013 ACM
Conference on Pervasive and Ubiquitous Computing
Adjunct Publication (pp. 303-306). ACM.

6. Tsung-Hsiang Chang & Yang Li. (2011). Deep shot: a
framework for migrating tasks across devices using
mobile phone cameras. In Proceedings of the SIGCHI
conference on Human Factors in Computing
Systems (pp. 2163-2172). ACM.

7. David A. Cohn, Zoubin Ghahramani, & Michael I.
Jordan. (1996). Active learning with statistical
models. Journal of Artificial Intelligence Research, 4,
129-145.

8. Thomas M. Cover & Peter E. Hart. (1967). Nearest
neighbor pattern classification. IEEE Transactions on
Information Theory, 13(1), 21-27.

9. Adrian A. de Freitas, Michael Nebeling, Xiang
“Anthony” Chen, Junrui Yang, Akshaye Ranithangam,
& Anind K. Dey. (2016). Snap-To-It: a user-inspired
platform for opportunistic device interactions. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, (pp. 5909-5920).

10. Thomas Dietz, Gerald T. Gardner, Jonathan Gilligan,
Paul C. Stern, & Michael P. Vandenbergh. (2009).
Household actions can provide a behavioral wedge to
rapidly reduce US carbon emissions. In Proceedings of
the National Academy of Sciences, 106(44), 18452-
18456.

11. Robin A. Douthitt. (1989). An economic analysis of the
demand for residential space heating fuel in
Canada. Energy, 14(4), 187-197.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Kirstin Early, Stephen E. Fienberg, & Jennifer
Mankoff. (2016). Dynamic question ordering in online
surveys. arXiv preprint arXiv: 1607.04209.

Denzil Ferreira, Eija Ferreira, Jorge Goncalves,
Vassilis Kostakos, & Anind K. Dey. (2013). Revisiting
human-battery interaction with an interactive battery
interface. In Proceedings of the 2013 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing (pp. 563-572). ACM.

Denzil Ferreira, Vassilis Kostakos, & Anind K. Dey.
(2015). AWARE: Mobile context instrumentation
framework. Frontiers in ICT, 2(6), 1-9.

Pedro Ferreira, Pedro Sanches, Kristina Hook, & Tove
Jaensson. (2008). License to chill! How to empower
users to cope with stress. In Proceedings of the Fifth
Nordic Conference on Human-Computer Interaction:
Building Bridges (pp. 123-132). ACM.

David Ferrucci, Anthony Levas, Sugato Bagchi, David
Gondek, & Erik T. Mueller. (2013). Watson: Beyond
Jeopardy!. Artificial Intelligence, 199, 93-105.

Jerome H. Friedman, Ron Kohavi, & Yeogirl Yun.
(1996). Lazy decision trees. In Proceedings of the 1st
International Conference on Artificial Intelligence (pp.
717-724). AAAI Press.

Nadav Golbandi, Yehuda Koren, & Ronny Lempel.
(2011). Adaptive bootstrapping of recommender
systems using decision trees. In Proceedings of the
Fourth ACM International Conference on Web Search
and Data Mining (pp. 595-604). ACM.

Isabelle Guyon & André Elisseeft. (2003). An
introduction to variable and feature selection. The
Journal of Machine Learning Research, 3, 1157-1182.

He He, Hal Daumé 111, & Jason Eisner. (2012). Cost-
sensitive dynamic feature selection. In ICML Inferning
Workshop.

He He, Hal Daumé 111, & Jason Eisner. (2013).
Dynamic feature selection for dependency parsing.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (pp. 1455-
1464).

Paul A. Hirschberg, Elliot Abrams, Andrea Bleistein,
William Bua, Luca Delle Monache, Thomas W.
Dulong, John E. Gaynor, Bob Glahn, Thomas M.
Hamill, James A. Hansen, Douglas C. Hilderbrand,
Ross N. Hoffman, Betty Hearn Morrow, Brenda
Philips, John Sokich, & Neil Stuart. (2011). A weather
and climate enterprise strategic implementation plan
for generating and communicating forecast uncertainty
information. Bulletin of the American Meteorological
Society, 92(12), 1651-1666.

Suzanne S. Hudd, Jennifer Dumlao, Diane Erdmann-
Sager, Daniel Murray, Emily Phan, Nicholas Soukas,
& Nori Yokozuka. (2000). Stress at college: Effects on

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

health habits, health status and self-esteem. College
Student Journal, 34(2), 217—-227.

Madhu Kalia. (2002). Assessing the economic impact
of stress—the modern-day hidden epidemic.
Metabolism, 51(6), 49-53.

Nikhil Kaza. (2010). Understanding the spectrum of
residential energy consumption: a quantile regression
approach. Energy Policy, 38(11), 6574-6585.

Blerina Lika, Kostas Kolomvatsos, & Stathes
Hadjiefthymiades. (2014). Facing the cold start
problem in recommender systems. Expert Systems with
Applications, 41(4), 2065-2073.

Qiong Liu, Paul McEvoy, Don Kimber, Patrick Chiu,
& Hanningn Zhou. (2006). On redirecting documents
with a mobile camera. In 8th IEEE Workshop

on Multimedia Signal Processing (pp. 467-470). IEEE.

David G. Lowe. (1999). Object recognition from local
scale-invariant features. In Proceedings of the 7th
IEEE International Conference on Computer Vision
(pp- 1150-1157).

Hong Lu, Jun Yang, Zhigang Liu, Nicholas D. Lane,
Tanzeem Choudhury, & Andrew T. Campbell. (2010).
The Jigsaw continuous sensing engine for mobile
phone applications. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor

Systems (pp. 71-84). ACM.

Chulhong Min, Chungkuk Yoo, Inseok Hwang,
Seungwoo Kang, Youngki Lee, Seungchul Lee,
Pillsoon Park, Changhun Lee, Seungpyo Choi, &
Junehwa Song. (2015). Sandra helps you learn: The
more you walk, the more battery your phone drains.
In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous
Computing (pp. 421-432). ACM.

Ranjita Misra & Michelle McKean. (2000). College
students’ academic stress and its relation to their
anxiety, time management, and leisure

satisfaction. American Journal of Health

Studies, 16(1),41-51.

Gary P. Moberg. (2000). Biological response to stress:
implications for animal welfare. In Gary P. Moberg &
Joy A. Mench (Eds.), The Biology of Animal Stress:
Basic Principles and Implications for Animal Welfare
(1-21). New York: CABI Publishing.

Erman Pattuk, Murat Kantarcioglu, Huseyin Ulusoy, &
Bradley Malin. (2015). Privacy-aware dynamic feature
selection. In 31st IEEFE International Conference

on Data Engineering (pp. 78-88). IEEE.

Nishkam Ravi, James Scott, & Liviu Iftode. (2008).
Context-aware battery management for mobile phones.
In Sixth Annual IEEE International Conference

on Pervasive Computing and Communications (pp.
224-233). IEEE.

35.

36.

37.

38.

39.

40.

41.

42.

43.

John Seryak & Kelly Kissock. (2003). Occupancy and
behavioral effects on residential energy use. In
Proceedings of the Solar Conference (pp. 717-722).

Kirill Trapeznikov & Venkatesh Saligrama. (2013).
Supervised sequential classification under budget
constraints. In Proceedings of the Sixteenth
International Conference on Artificial Intelligence and
Statistics (pp. 581-589).

Shannon E. Ross, Bradley C. Niebling, & Teresa M.
Heckert. (1999). Sources of stress among college
students. College Student Journal, 33(2),312-317.

Maytal Saar-Tsechansky & Foster Provost. (2007).
Handling missing values when applying classification
models. The Journal of Machine Learning Research, 8,
1625-1657.

Mehdi Samadi, Partha Talukdar, Manuela Veloso, &
Tom Mitchell. (2015). AskWorld: Budget-sensitive
query evaluation for knowledge-on-demand.

In Proceedings of the 24th International Conference on
Artificial Intelligence (pp. 837-843). AAAI Press.

Nandita Sharma & Tom Gedeon. (2012). Objective
measures, sensors and computational techniques for
stress recognition and classification: A survey.

Computer Methods and Programs in
Biomedicine, 108(3), 1287-1301.

Tianlin Shi, Jacob Steinhardt, & Percy Liang. (2015).
Learning where to sample in structured prediction. In
Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS) (pp.
875-884).

Emma Strubell, Luke Vilnis, Kate Silverstein, &
Andrew McCallum. (2015). Learning dynamic feature
selection for fast sequential prediction. arXiv preprint
arXiv:1505.06169.

Mingxuan Sun, Fuxin Li, Joonseok Lee, Ke Zhou, Guy
Lebanon, & Hongyuan Zha. (2013). Learning multiple-
question decision trees for cold-start recommendation.

44,

45.

46.

47.

48.

49.

50.

51.

In Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining (pp. 445-
454).

Lukas G. Swan & V. Ismet Ugursal. (2009). Modeling
of end-use energy consumption in the residential
sector: A review of modeling techniques. Renewable
and Sustainable Energy Reviews, 13(8), 1819-1835.

Joel A. Tropp. (2004). Greed is good: algorithmic
results for sparse approximation. /EEE Transactions on
Information Theory, 50(10), 2231-2242.

U.S. Energy Information Administration. (2009).
Residential Energy Consumption Survey 2009.
www.eia.gov/consumption/residential/data/2009/.

Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li,
Gabriella Harari, Stefanie Tignor, Xia Zhou, Dror Ben-
Zeev, & Andrew T. Campbell. (2014). StudentLife:
Assessing mental health, academic performance, and
behavioral trends of college students using
smartphones. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and
Ubiquitous Computing (pp. 3-14).

Sanford Weisberg. (2014). Applied Linear Regression
(4th ed.). New York: Wiley.

David J. Weiss & Ben Taskar. (2013). Learning
adaptive value of information for structured prediction.
In Advances in Neural Information Processing
Systems (pp. 953-961).

Jiahui Wu, Gang Pan, Daqing Zhang, Shijian Li, &
Zhaohui Wu. (2010). MagicPhone: pointing &
interacting. In Proceedings of the 2010 ACM
Conference on Pervasive and Ubiquitous Computing
Adjunct Publication (pp. 451-452). ACM.

Zhixiang (Eddie) Xu, Matt J. Kusner, Killian Q.
Weinberger, Minmin Chen, & Olivier Chapelle.
(2014). Classifier cascades and trees for minimizing
feature evaluation cost. The Journal of Machine
Learning Research, 15(1), 2113-2144.

