
 

 

Test Time Feature Ordering with FOCUS:  
Interactive Predictions with Minimal User Burden 

Kirstin Early
1
, Stephen E. Fienberg

1,2
, Jennifer Mankoff

1’3
  

1Machine Learning Department, 2Department of Statistics, 3Human-Computer Interaction Institute 
Carnegie Mellon University, Pittsburgh, USA  

{kearly, fienberg, jmankoff}@andrew.cmu.edu 
 

ABSTRACT 

Predictive algorithms are a critical part of the ubiquitous 
computing vision, enabling appropriate action on behalf of 
users. A common class of algorithms, which has seen 
uptake in ubiquitous computing, is supervised machine 
learning algorithms. Such algorithms are trained to make 
predictions based on a set of features (selected at training 
time). However, features needed at prediction time (such as 
mobile information that impacts battery life, or information 
collected from users via experience sampling) may be 
costly to collect. In addition, both cost and value of a 
feature may change dynamically based on real-world 
context (such as battery life or user location) and prediction 
context (what features are already known, and what their 
values are). We contribute a framework for dynamically 
trading off feature cost against prediction quality at 

prediction time. We demonstrate this work in the context of 
three prediction tasks: providing prospective tenants 
estimates for energy costs in potential homes, estimating 
momentary stress levels from both sensed and user-
provided mobile data, and classifying images to facilitate 
opportunistic device interactions. Our results show that 
while our approach to cost-sensitive feature selection is up 
to 45% less costly than competing approaches, error rates 
are equivalent or better. 

Author Keywords 

Online data collection; interactive machine learning; cost-
based dynamic question ordering 

ACM Classification Keywords 

I.5.2. Pattern recognition: Design methodology: Feature 
evaluation and selection. 

INTRODUCTION 
Online data collection from individuals can provide them 
with personalized, timely predictions at scale and at low 

cost to the data collectors. However, users do not have the 
resources to provide all the information we seek—they 
cannot answer too many questions that may be difficult to 
get answers for, and their mobile devices do not have 
sufficient battery life to provide constant streams of high-
fidelity sensed data. Strategically choosing which feature to 
obtain next from a particular user, depending on previous 
responses, can lower these costs while still making useful 
predictions. We develop an approach to test time Feature 
Ordering with Cost and Uncertainty Score (FOCUS) that 
trades off the expected utility of the next prediction, were 
we to have any of the yet-unanswered feature values, with 
the cost of acquiring that feature. FOCUS sequentially 
requests feature values to make useful, confident 
predictions with the resources users are willing and able to 
provide. 

We validate our approach in the context of three datasets 
drawn from related existing work. The first is a U.S. 
Government-collected dataset about household energy use 
[46]. The second is a research dataset that collected both 
sensed and user-provided data from college students over 
the course of one ten-week academic term, including self-
reports on stress levels [47]. The third is a dataset used to 
validate a mobile application that can identify devices (e.g., 
printers, projectors) in photographs to support lightweight 
opportunistic interaction without forcing users to manually 
install drivers [9]. On all three, we demonstrate that 
prediction quality is not significantly worse than a standard 
fixed-order baseline, while costs are decreased.  

BACKGROUND 

In standard supervised machine learning approaches, a 
predictor is learned from training data and used to make a 
prediction on a test point. It is assumed that the training 
data and test points share a common set of features, but 
labels are provided for only the training data. 

Because labels can be costly to acquire at training time, a 
large body of related work has focused on active learning, 
which strategically selects which unlabeled data to acquire 
labels for, so as to maximize a model’s performance while 
minimizing the cost of data collection [7].  

Alternatively, it may be features that are costly to acquire at 
test time (or, equivalently, prediction time, for deployed 
systems). For application areas where feature computation 
time is a bottleneck at test time (e.g., natural language 
processing (NLP), computer vision), the primary goal of 

Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. Copyrights for 
components of this work owned by others than ACM must be honored. 
Abstracting with credit is permitted. To copy otherwise, to republish, to 
post on servers, or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from permissions@acm.org. 

UbiComp ‘16, September 12-16, 2016, Heidelberg, Germany 

© 2016 ACM. ISBN 978-1-4503-4461-6/16/09 $15.00  

DOI: http://dx.doi.org/10.1145/2971648.2971748 



 

 

test time feature acquisition is to speed up prediction (e.g., 
[21, 42, 49]). In other domains, there is an allowable test 
time budget of costs other than time, such as user burden of 
providing information (e.g., [12]) or the resulting loss in 
privacy from disclosing information (e.g., [33]).  

Feature selection—i.e., choosing at training time a relevant 
subset of features to include in a model [19]—can 
implicitly cut down on the number of features that must be 
acquired to make a prediction on a new instance at test 
time. However, typically, the main motivations for feature 
selection are (1) avoiding overfitting to the training set in 
high-dimensional problems and (2) generating interpretable 
models. Some past work (e.g., [1]) has approached training-
time feature selection with the goal of reducing test time 
prediction costs. Other researchers have pointed out that the 
optimal budget-constrained set and/or number of features to 
acquire likely depends on each particular instance. Thus, 
there is a need for test time, dynamic feature selection.  

Cost & order at training time; # at test time 

One approach to test time feature selection is learning 
sequences of features to add. For example, Strubell et al. 
[42] learn an ordering of features at training time through 
the use of prefix scores that capture the prediction margin 
(i.e., how much more confident the classifier is in the 
correct prediction than any other). At test time, they then 
acquire features in this order, computing prefix scores at 
each stage until some label is predicted above all others by 
a specified margin. They apply this technique to several 
problems in NLP (part-of-speech tagging, dependency 
parsing, and named-entity recognition). A related method is 
classifier cascades and trees [51], which learn at training 
time cost-sensitive trees or cascades, where each node is a 
classifier. At test time each instance is passed through the 
tree or cascade, evaluating additional features as 
necessitated by the tree structure.  

While these approaches dynamically decide how many 

features to acquire in an instance-specific fashion at test 
time, they do not determine an instance-specific order in 
which features are acquired at test time. As a result, such 
methods may have to obtain more features than would be 
necessary to adequately predict any given instance, just to 
get the relevant features for that particular instance.  

Cost at training time; # & order at test time  

A more flexible approach is to decide both order and 

number of features to acquire at test time. Across several 
domains, test time feature selection has been modeled as a 
Markov decision process (MDP) (e.g., [20, 21, 39, 41, 49]). 
Generally, these methods consider the set of features 
acquired thus far to be the states of the MDP, the decision 
of which feature to acquire next as the action, with a reward 
function that reflects how much the inclusion of the next 
feature improves the prediction (potentially with a penalty 
on feature cost). They then learn a policy that chooses 
which action to take (i.e., feature to add) based on the 

current state (i.e., current known set of features), from a set 
of training data (e.g., [20, 21, 39, 49]).  

This is a fairly general approach that has been used quite 
widely. For example, Shi et al. [41] take a similar approach 
to the problem of constructing heterogeneous sampling 
algorithms, by considering reward as the improvement in 
conditional log-likelihood of the label given the sample. 
Similarly, in the domain of recommender systems, the so-
called “cold start problem” [26] is improved by eliciting the 
most relevant preferences from the user to minimize burden 
(e.g., [18, 43]). This is often done by learning a decision 
tree from training data that can be used at prediction time to 
decide what sequence of ratings to request (e.g. [18]). A 
limitation of such approaches is that they use training data 
to determine how to ask questions (even if the sequence of 
features depends on previously provided answers); this 
approach can be inappropriate for a test sample with 
behavior very different from the training set. 

Cost & # & order at test time  

Finally, there are methods that determine a feature order at 
test time, using the expected quality of the subsequent 
prediction to decide which feature to acquire next. For 
example, Pattuk et al. [33] formulate a privacy-aware 
dynamic feature selection algorithm for classification that 
sequentially chooses features for a test instance, according 
to which will most increase the expected confidence of the 
next prediction, as long as including that feature does not 
violate a privacy constraint. This work is most responsive to 
the test time situation. However, it does not address 
regression, and because its cost metric is defined 
mathematically by the currently-known features (i.e., 
conditional entropy), the method cannot take context-
dependent costs into account. 

This paper presents a generalization of preliminary work 
focused on adaptive survey design, particularly for 
personalized predictions [12]. The dynamic question 
ordering (DQO) algorithm presented in that work is 
designed to minimize the prediction interval width in the 
context of regression and was applied to the energy use 
dataset also presented in this paper. This publication 
presents FOCUS (Feature Ordering with Cost and 
Uncertainty Score), an extension of DQO that (1) uses 
metrics for cost rather than just assigning a binary value 
(low or high), (2) accounts for costs that may change 
dynamically based on context, (3) supports a wider variety 
of supervised machine learning algorithms, and (4) 
validates the approach in multiple datasets rather than just 
one.  

Summary of key attributes 

Table 1 summarizes these related works and highlights 
desired qualities in a test time feature acquisition algorithm. 
A full consideration of the issues would accommodate a 
variety of prediction algorithms. 



 

 

Table 1’s Column 1 (Prediction Problem) shows that 
algorithms may predict discrete values (classification) or 
continuous values (regression); the majority of past work 
has focused on classification alone. In the Cost Metric 
column, we see that algorithms may assume that all features 
have equal cost, or they may allow different features to 
have different costs, which we refer to as feature-specific 

costs. Next, algorithms vary on what is done at Test Time 
rather than training time. The optimal number of features 
needed, the order of features, and the cost of features may 
all be determined at test time. If cost is determined at test 
time, algorithms may be able to consider context-dependent 

costs. For example, in a system that makes medical 
diagnoses and can request tests (e.g., [16]), it will be less 
costly to request an invasive biopsy if a surgery is already 
scheduled in that area. None of the related works we 
identified support context-dependent cost metrics. The 
Utility Function used to determine the value of a feature 

also varies. Examples for feature “quality” include 
subsequent prediction accuracy (e.g., [21, 41, 49, 51]) and 
subsequent prediction uncertainty (e.g., [33]). Finally, the 
Domain column shows where each relevant approach was 
applied. 

An ideal solution would accommodate a variety of 
prediction algorithms, allow for feature-specific and 
context-dependent costs, and support multiple options for 
prediction utility when requesting information to refine a 
prediction. Delaying the order determination until test time 
(rather than learning it from training data) is a requirement 
for context-dependent costs (since they are not known until 
test time). 

OVERVIEW OF FOCUS 

We present an algorithm, FOCUS, that has all of these key 
properties. We build on the DQO algorithm [12] and extend 
it to include classification and richer metrics for feature 
costs, including context-dependent costs which are not 
evaluated until test time. A basic assumption of our 
approach is that it is being applied in the context of 
supervised machine learning. In addition, we assume that 
feature cost is only an issue at test (or more generally 
deployment) time—at training time, the complete set of 
features associated with each label is assumed to be 
available. Finally, although not required, our approach 
benefits from a prediction algorithm that is robust to 
making predictions when not all features are available 
(predictions on partial information).  

As shown in Figure 1, FOCUS operates iteratively at test 
time. Given an instance with known (dark green) and 
unknown (white) features, it first calculates the expected 
value of a feature (Step 1) for all features that are not 
known. Next it calculates the best next feature by 
optimizing a function that combines the prediction value of 
each feature with its cost (Step 2). The new feature is 
acquired (Step 3) and the process repeats. At any iteration, a 
prediction can be made. 

Whether or not the prediction at each step is shown to the 
user will depend on the application. For example, if the 
application is gathering information from sensors with no 
user input, it does not make sense to display the sequential 
predictions to the user. In this case the algorithm may stop 
when costs become too high, all features are acquired, or 
accuracy achieves a certain threshold. This can be 
determined on an application-by-application basis. On the 
other hand, if the user is answering questions to get a 
personalized prediction, then showing them the partial 
predictions can keep them engaged in answering questions 
and help them to decide if continuing to answer questions is 
valuable to their goals. 

P
a

p
er

 

P
r
e
d

ic
ti

o
n

 

P
r
o

b
le

m
 

C
o

st
 M

e
tr

ic
 

T
e
st

-T
im

e 

U
ti

li
ty

 

F
u

n
c
ti

o
n

 

D
o

m
a

in
 

FOCUS 

C,R FS C/O/# U 
Ubicomp/ 
Mobile/ 
Energy 

[20] C FS X M — 

[21] C X X A NLP 

[42] C X # M NLP 

[41] 
C X X A 

Structured 
prediction 

[49] 
C FS # A 

Structured 
prediction 

[51] C FS X A LTR, MNIST 

[39] 
C FS O/# M 

Knowledge-on-
Demand 

[33] 
C FS O/# U 

Information 
disclosure 

[36] C FS # A — 

[18,43] 
C X X A 

Recommender 
Systems 

Table 1 A summary of previous work in test time feature 
acquisition and our method (FOCUS, top row). The aspects of test 
time feature selection we compare are: whether the type of 
prediction problem is classification (C) or regression (R); whether 
the cost metric for features is Feature-Specific (i.e., different 
features can have different costs; X means no cost metric); what is 
determined at test time (Cost, Order, # of features); the utility 
function used (Accuracy or Uncertainty or Margin from next 
closest class); in what domains the algorithm has been applied. 

 



 

 

The FOCUS Algorithm 

FOCUS assumes that a model trained on all feature values 
is available and that, for a new test point, we want to 
provide the best (and lowest cost) prediction possible, given 
that feature values are costly to acquire. As shown in Figure 
1, FOCUS sequentially estimates the value of each feature 
(Step 1) and selects a next feature to ask (Steps 2 and 3).  

Calculating the Utility of a Feature f 

In Step 1 of FOCUS, the expected utility of a feature is 
calculated. Since the true next prediction uncertainty 
depends on the actual value for the next feature that is 

acquired, we cannot directly calculate �������. However, 
we can break this down into two parts.  

Calculating	����, the prediction utility for a specific 
possible value of feature f, depends on the exact nature of 

the prediction problem. ����	takes as input a feature vector 
containing the known features plus a hypothetical value r 

for feature f. Typically, utility is calculated by making a 
partial prediction using those values and estimating 
prediction accuracy, uncertainty, etc.  

This is repeated for all values r that are in the range of 
potential values R for f (Step 1 of Figure 1). If a feature is 
continuous, we pick bins appropriate for the values that 
appear in the training set, and then the midpoint for each 
bin for feature f is used as the set of values f can take on.  

There have been several approaches to making predictions 
under partial information, and FOCUS is compatible with 
any of them. Reduced-feature models use only features 
whose values are known in making predictions; these 
models may be calculated at training time (e.g., [51]) or 
dynamically constructed at test time (e.g., [17]). Another 
option is to impute missing values and use the full-feature 
model on the combination of known and estimated features 
to make a prediction. Hybrid approaches combine reduced-
feature modeling with imputation (e.g., [38]). However, in 
the end, FOCUS is agnostic about how predictions are 
made and how U is defined. 

Calculating the Expected Prediction Utility of a Feature f 

Given a way to calculate	����, ������� can easily be 
defined. We calculate the expected utility of a prediction 
that includes feature f by taking a weighted average of the 
utility calculated for each possible value of f: 

 

where p(zf = r), the probability that the f-th feature’s value 
is r, is calculated empirically from the training set, and the 
notation zf:=r means that the f-th component of feature 
vector z is replaced with the value r. 

This process is then repeated for all unknown features. 

Optimizing for the Best Next Feature 

In its middle step (for each iteration), FOCUS optimizes for 
utility of the next feature, penalized by the cost of that 
feature. Our selection rule, illustrated in Step 2 of Figure 1, 
trades off the expected utility of the next prediction, for 
each candidate feature, with the cost of that feature: 

where ������� is the expected utility calculated in Step 1 
of FOCUS, and λ controls how much weight we give to the 
cost c for each feature.  

As with utility, cost is calculated in a problem-specific 
fashion, based on the feature vector of currently known 
features. This allows the cost function to consider context-
dependent information such as the values of other features 
that are already known. Cost could be measured in time 
necessary to acquire a feature, either computationally or 
due to dependencies; direct impact on the user such as 
interrupting her to ask a question; or indirect impact on the 
user such as drawing down the battery life of her phone.  

VALIDATION 

To demonstrate the usefulness of FOCUS for cost-effective 
interactive predictions, we implement it for several 
prediction algorithms and applications. First, we consider 
the case of providing personalized energy estimates for 
prospective tenants, where feature cost reflects how much 
effort a user must exert to provide answers about their 
energy-consuming habits and their new potential home. 
Next, we use FOCUS to make momentary predictions of 
stress in college students, where feature cost includes 
battery drain from turning on mobile sensors and the cost of 
interrupting the user to ask for feature values. In this 
example, we also consider context-dependent costs (the cost 
of turning on a sensor at the expense of draining the battery 
is not an issue when the phone is charging). Finally, we 
apply FOCUS to the classification problem of identifying 
devices in photos to support opportunistic interactions with 
low user burden. 					��	�
�� = 	∑ 
��
 = ��	��
≔���∈� ,             Equation 1 

   

Figure 1 FOCUS iteratively increases the set of known features. Step 1: Given a set of known features, it first calculates the expected 
prediction value and cost of acquiring each unknown feature. This is repeated for all unknown features. Step 2: FOCUS optimizes for 

the best combination of prediction value (as calculated in Steps 1 and 2) and cost. Step 3: The best next feature is acquired. Now a 
prediction can be made, or FOCUS can repeat this process. 

K (known features) 

··· ··· 
Acquire new feature 

··· ··· 
1 

))]([(argmin*
f

cfUf
Kf

λ+Ε−←
∉

··· ··· 
··· ··· Ε[U( f )]

Calculate weighted average of outcomes for all values of f 

Op mize to find best combina on of 

predic on value and cost (      ) using 
2 3 

f 

λc
f

					
⋆ =	���	���
∉��−��	�
�� + !"
�,													Equation 2 

 



 

 

For each of these applications, we compare the quality of 
successive predictions obtained with FOCUS, with a variety 
of cost penalties λ, to that of a fixed-order baseline, which 
we call Fixed Selection. This baseline acquires features in 
the order of forward selection [45] on the training data 
(resulting in an identical ordering for all samples). Finally, 
we implement an Oracle that chooses the next best feature 
to acquire according to the minimum true utility of the next 
prediction, rather than the expected utility, as in Equation 2.  

In all three applications, we use imputation to predict with 
partial features as follows: Using kNN [8], restricted to the 
features that are already known, we find the k points in the 
training set that are nearest to the test point. We estimate 
the value for each unknown feature in the test point as the 
mean or mode of that feature in the k nearest neighbors.  

We optimize for prediction certainty in each of our 
validation datasets due to past work demonstrating the 
importance of providing people with certainty of 
predictions to help them make decisions (e.g., [22]). 
Prediction certainty is available in most prediction 
algorithms and reflects how likely the true value is to 
coincide with the estimated value. For example, in 
regression, a prediction interval width indicates the range of 
values the true value is likely to fall within [48]. A narrower 
prediction interval corresponds to a more certain prediction. 
For classification, certainty can often be formulated as 
distance from the decision boundary. Other example 
metrics for prediction certainty are discussed in more detail 
in the applications in the next section. Using this metric, we 
can estimate certainty of the next prediction, if a feature 
were available. In our equation for test-time feature 
ordering (Equation 2), certainty is easily replaced with 
other metrics (e.g., prediction error).  

Metrics for Prediction Quality 

Our validation considers prediction certainty, error, and 
cost. Certainty and cost are defined as part of our 
optimization problem. For error, we use mean absolute 
error for regression and zero-one loss for classification (i.e., 
a sample incurs an error of 0 if its predicted value matches 
the true value and 1 otherwise) to compare our successive 
predictions to the true values. This is a conservative metric 
for error since it compares only a single predicted value to 
the true value (rather than taking into account the 
uncertainty associated with the prediction); for example, 
this metric will incur error when the true value is not the 
exact midpoint of a prediction interval, even when the true 
value does lie within the prediction interval. 

Figure 2 illustrates the cost savings of FOCUS (solid lines) 
over the baseline (dashed lines) when various numbers of 
additional features have been provided for each of our three 
validation applications. The left plot shows that, as the cost 
penalty λ increases, the cost savings of FOCUS over the 
baseline also increases. As expected, increasing the cost 
tradeoff parameter λ favors asking inexpensive features near 
the beginning of the test time feature acquisition process. 
The right plot in Figure 2 shows that, for a fixed λ and with 
increasing numbers of additional features, FOCUS also 
maintains its cost advantage over the baselines, for all three 
applications.  

To summarize the trajectories of prediction cost, 
uncertainty, and error, we calculate areas under the curve 
for each of the metrics as each feature is added. Smaller 
values are better because they mean the algorithm spent less 
time in high cost, uncertainty, and error. Table 2 lists these 
values for FOCUS with seven different values of cost 
penalty λ, ranging from zero to one, and for the baseline. As 

  

Figure 2 Charts showing impact on cost (y axis) of λ and number of features. (Left) As λ increases, cost savings from FOCUS increase, 
without significant loss of accuracy. Dashed lines show baseline cost performance. (Right) FOCUS (solid lines) ensures that cost increases 

more slowly than the baseline algorithm, with λ =.001. Note that the Student Life and Device ID sets converge because there are only 8 and 
12 total features; RECS converges at 30 features (not shown).  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 0.00001 0.0001 0.001 0.01 0.1 1 

F
e
ta
u
re

 C
o
st

 

Lambda (penalty on cost) 

Cost Savings as λ grows, given n=4 features, compared to baseline 

RECS FOCUS 

RECS Baseline 

Student Life FOCUS 

Student Life Baseline  

Device ID FOCUS 

Device ID Baseline 



 

 

expected, due to the two terms in the selection rule 
(uncertainty and cost), cost decreases as the penalty on cost 
increases, and uncertainty tends to increase as the cost 
penalty increases. There is no pattern in how error changes 

as λ  increases. The baseline (Fixed Selection) error is often 
lower than FOCUS; this result is not surprising, due to the 
error-minimizing criterion of forward selection. FOCUS 
with a nonzero λ always has significantly lower cost than 
the baseline. Prediction uncertainty is sometimes lower with 
FOCUS than baseline (particularly for low values of λ). The 
metric that suffers the most with FOCUS, relative to the 
baseline, is error because it was not included in the 
optimization.  

Personalized Energy Estimates for Prospective Tenants 

Selecting energy-efficient homes is important for renters, 
because in many climates energy costs can be a significant 
burden, and the choice of infrastructure influences energy 
consumption far more than in-home behavior [10]. 
However, there is a paucity of information available about 
expected energy costs pre-lease signing. Calling a utility to 
ask about prior costs may give incomplete or misleading 
information (since occupant behavior can influence energy 
usage as much as 100% [35]), and a carbon calculator 
typically requires users to answer (prohibitively) many 
questions that may require considerable research to answer. 
We can lower user burden by (1) learning the relationship 
between household features (home infrastructure and 
occupant behavior) and energy use from established 
datasets, such as the Residential Energy Consumption 
Survey (RECS) [46], and then (2) using FOCUS to 
strategically select which instance-specific features are 
needed to make a confident prediction for a new household.  

Background 

Bottom-up methods for modeling residential energy 
consumption use features of individual households [44]. 
Household features may include macroeconomic indicators, 
as well as occupant-specific features (e.g., [11, 25]). For 

example, Douthitt [11] examines fuel consumption for 
space heating in Canada, using household-specific values 
for occupant demographics, the housing structure, and fuel 
cost. Kaza [25] uses the Residential Energy Consumption 
Survey (RECS) to estimate energy usage from low-level 
housing characteristics, with a quantile regression approach 
to separate the effects of variables on homes with different 
patterns of energy consumption. 

The RECS dataset is our focus as well. RECS consists of 
data from 12,000 households across the United States, with 
energy consumption by fuel type (e.g., electricity, natural 
gas) and around 500 features of each home and its 
occupants. We restrict our use of RECS to electricity 
prediction in a single climate zone where energy 
consumption is variable due to cold weather, giving us a 
subset of 2470 homes.  

Cost Metric  

In Early et al. [12], we assign cost using a three point scale: 
some features are free (available in rental advertisements), 
while the remainder are either low cost (e.g., number of 

 Reason Example Feature 

0 Extractable from listing Number of bedrooms 

1 User probably already knows If someone stays home 
during the day 

2 Might have to check current home Size of TV 

3 Could find in listing or call for easy 
answer 

Washing machine in home 

4 Look up online Year housing unit was built 

5 Easily visible during visit High ceilings 

6 Requires effort to find out during visit Type of glass in windows 

7 Requires visit + look something up Age of heating equipment 

Table 3 Cost categories for RECS dataset. 

Method RECS StudentLife Device ID 

 Cost Uncert. Error Cost Uncert. Error Cost Uncert. Error 

F
O

C
U

S
, 
λ
 =

 

0 1340.251† 41.376
*
 12.457 71.182

*
 22.897 5.770 94.788

*
 1.935 4.815 

.00001 1175.420
*
 41.375

*
 12.444 70.924

*
 22.898 5.769 87.647

*
 1.939† 5.241 

.0001 936.338
*
 41.371

*
 12.649† 70.030

*
 22.898 5.771 87.601

*
 1.940† 5.259 

.001 891.130
*
 41.430

*
 12.578† 66.704

*
 22.899 5.775† 87.638

*
 1.936 5.296† 

.01 885.000
*
 41.446 12.704† 63.303

*
 22.929 5.795† 82.001

*
 1.936 5.463† 

.1 885.000
*
 41.446 12.704† 61.303

*
 22.958 5.800† 80.547

*
 1.936 5.574† 

1 885.000
*
 41.446 12.704† 61.303

*
 22.958 5.800† 80.000

*
 1.926 5.333† 

Baseline 1250.000 41.447 11.722 81.000 22.898 5.705 105.000 1.928 4.796 

Table 2 Areas under the curve for the cost, uncertainty, and error metrics from FOCUS, with a variety of cost penalties λ, and the Baseline 

(Fixed Selection). Ideally, FOCUS will have lower cost and similar uncertainty as Baseline. This is shown in black. Bold numbers (marked 
with *) show where FOCUS was significantly lower than baseline at the α = 0.05 level. Red numbers (marked with †) indicate where 

FOCUS did significantly worse than baseline (higher cost, uncertainty, or error) at the α = 0.05 level. 

 



 

 

occupants) or high cost (e.g., age of heating equipment). 
Free features are included in all predictions since they have 
no cost. Here, we use a more nuanced eight-point feature 
cost scale based on difficulty of acquiring a feature. Zero-
cost features are “free;” (i.e., extractable from a rental 
listing); 1-2 are occupant-related; and 3-7 are unit-related 
(may require a site visit and/or research). Table 3 lists the 
cost categories and an example feature in each.  

Experimental Setup 

We first divide RECS into training (90%) and testing (10%) 
sets. At training time, we use forward selection [45] on a 
randomly-selected subset of 20% of the training data to 
choose 30 higher-cost features to add to the free features for 
prediction. We use ten-fold cross validation on the 
remainder of the training data to learn regression weights.  

At test time, the goal is to make a prediction on a new test 
point and acquire costly features as needed to improve the 
prediction. We simulate progressive addition of features by 
hiding values for “unknown” features, using FOCUS to 
choose a feature to acquire at each step, and unveiling that 
feature’s value once it is “asked” and “answered.” 

Results 

The regression model using FOCUS had significantly lower 
costs than the baseline for all values of λ except 0 with 
equivalent or better uncertainty (Table 2). For λ=.001, 
FOCUS yielded an average of 45% savings in cost 
compared to the baseline as features were added to the 
prediction. As expected, FOCUS performed worse in terms 
of error, since FOCUS optimizes prediction uncertainty, 
rather than error, when determining a test-specific feature 
order; the baseline was chosen by optimizing prediction 
error on the training set. However, for this application in 
particular, it is more important that predicted energy costs 
fall inside the window of uncertainty (which the definition 
of a prediction interval ensures) than that they have an 
accurate dollar value [22].  

Momentary Stress Predictions in College Students 

Knowing a user’s stress level at an upcoming point in time 
allows for automatic suggestions or reminders to help them 
manage stressful situations. We want to predict momentary 
stress reports from college students, given an assortment of 
data such as demographic information, depression, sleep 
habits, and deadlines [47]. This task has redundant features 
with various costs. For example, we can ask a student to fill 
out a survey to measure their anxiety, or we can use phone 
sensors to measure length of sleep; the first method incurs 
the cost of interrupting the person (potentially at a bad 
time), the second the cost of draining the phone battery. Our 
goal is to arrive at a “good” (low-uncertainty) prediction for 
stress levels without exhausting too many resources by 
strategically selecting which features to obtain.  

This application differs from the (simpler) personalized 
energy problem in the previous section in several key ways: 
(1) We want to predict momentary stress levels, rather than 

a single value constant across time, as in the energy 
prediction example; (2) We include a new type of cost: 
battery life; (3) We consider context-dependent costs: for 
example, when a user’s phone is charging, turning on 
sensors is no longer prohibitively expensive. 

Background 

Biologically meant as a mechanism for survival, stress can 
become harmful if sustained for long periods of time [32], 
with individual-level health and societal-level economic 
consequences [24]. College students face a unique and 
significant type of stress, partly because of their transition 
between dependent child and independent adult (e.g., [37]). 

It is possible to estimate stress from physiological and 
physical signals, like skin conductance, brain activity, and 
pupil dilation (e.g., [40]); however, these measurements 
often require unwieldy, task-specific instrumentation. 
However, more accessible signals that could be measured in 
a lightweight fashion (from mobile phone data) are also 
associated with stress, like movement, heart rate, sleep 
length, and social activity (e.g., [15, 23, 31]). 

For example, Affective Health [15] senses bodily reactions 
(such as movement and heart rate) and visualizes them in 
real time, giving users the opportunity to connect their 
activities to their mental state. The StudentLife project [47] 
collected smartphone data from 48 graduate and 
undergraduate students over the course of an academic term 
and included self-reported stress, which was correlated with 
other factors such as GPA. Participants in the Student Life 
project provided nearly 1600 self-reports of stress levels, 
with individuals providing between 3 and 269 responses. 
Figure 3 illustrates the number of stress reports and average 
stress levels for each participant.  

The StudentLife dataset is our focus as well, but we restrict 
our analysis to predicting stress. Our goal is to reduce the 
burden on users of answering experience sampling 
questions (the current approach to measuring stress in the 

 

Figure 3 StudentLife participants’ number of stress reports (y 
axis) and average stress (color, marker size).  



 

 

StudentLife project) by substituting other features when the 
impact on prediction would be minimal. Thus, we use self-
reports of stress at various time points as our response 
variable.  

Cost Metrics  

The cost of acquiring features depends on battery drain 
(low for sensors like detecting light or if the phone is 
charging; high for sensors like the accelerometer and 
microphone (e.g., [14, 29])) and costly interruption of the 
user (asking for amount of sleep or upcoming deadlines). 
Some of these costs are context-dependent: e.g., if a phone 
is charging, battery drain from turning on mobile sensors is 
no longer an impediment to gathering those features.  

Experimental Setup 

As in the energy application, we used linear regression to 
predict stress reports. However, rather than using feature 
selection to choose a subset of features from a larger set, we 
used previous research findings to extract features relevant 
to stress (e.g., [23, 31]), along with some current context: 
time of day, sleep length, exercise length, length of time 
until next deadline, number of upcoming deadlines, current 
activity (stationary or in motion), current audio (silent or 
noisy), if the phone is currently in a dark environment, and 
if the phone is currently charging. We assume that time of 
day is freely available. We assign three additional cost 
categories: lower-cost sensors (i.e., light detection and 
charging); higher-cost sensors (i.e., accelerometer to 
measure activity and microphone to measure audio); and 
highest-cost user interruption (to ask questions about 
lengths of sleep and exercise and upcoming deadlines). 

We restricted our dataset to users who provided stress, 
deadline, and exercise information, resulting in a total of 
660 individual stress reports. We used 80% of these stress 
self-reports for training (i.e., learning regression weights) 
and the remaining 20% for testing with FOCUS.  

Results 

The regression model confirms several well-known 
properties of stress. For example, exercise is negatively 
correlated with stress, and number of deadlines is positively 
correlated with stress. Table 4 summarizes the predictor 
learned on the training set. As with the prior dataset, our 
approach results in predictions that are more certain (i.e., 
have narrower prediction interval widths) than the baseline, 
Fixed Selection, while being similarly accurate. Stress 
prediction is shown with red lines in Figure 2 (which shows 
cost improvement of FOCUS over baseline). Accuracy 
levels did not differ significantly for stress predictions for 
any of the combinations of values shown in Figure 2. 

Prediction certainty decreased slightly for λ=.001 after n=5. 
On average, FOCUS yielded 23% savings in cost compared 
to the baseline as features were added to the prediction. 

An important question is whether context-dependent feature 
costs have an impact on feature ordering. To answer this, 
we divided the test data into stress reports that were given 
when the phone was charging (20% of the reports) and 
those that were given when it was not plugged in. Feature 
order should differ in those cases, since sensor feature cost 
is zero when the phone is charging.  Figure 4 shows how 
frequently each feature was chosen in each position, for the 
charging and noncharging contexts, when cost penalty 
parameter λ equals 1. The battery-draining sensors are in 
the last four columns. When the phone is charging (left), the 
sensed features tend to be added before the user-answered 
features and without regard for the relative cost of acquiring 
sensed features (top right 4x4 corner). When the phone is 
not charging (right), features tend to be asked in order of 
increasing cost—most inexpensive sensed features first (top 
right 2x2 corner), followed by more expensive sensed 
features (middle 2x2 section), and finally by the most 
expensive user-provided features.  

  

 

Figure 4 Context-dependent costs, with λ = 1. Color indicates 
frequency; x axis indicates feature type; y axis represents feature 
order.  
(Left) When the phone is charging, acquiring sensor features is no 
longer expensive, and so sensed features (last four columns) are 
requested more uniformly (top right corner).  
(Right) When phone is not charging, sensed features are more 
likely to be added in order of increasing cost (the low-cost sensor 
features are added before the high-cost sensor features, shown by 
the block structure in the top right corner).  

 

F
re
q
u
e
n
cy

 

0% 

100% 

Feature 

User-

provided 

High-cost  

sensor 

Low-cost  

sensor 

F
e
a
tu
re

 o
rd
e
r  

First 

Last 

F
re
q
u
e
n
cy

 

0% 

100% 

F
e
a
tu
re

 o
rd
e
r  

First 

Last 

Feature 

User-

provided 

High-cost  

sensor 

Low-cost  

sensor 

Charging Not charging 
Feature Regression weight p-value 

Intercept -0.5401 0.1471 

Time of day -0.0295 0.7950 

Sleep 0.6187 0.2281 

Exercise -0.1151 0.2912 

Time to deadline -0.0401 0.8559 

# of deadlines 0.2625 0.1137 

Currently moving? -0.0226 0.8868 

Currently silent? 0.0479 0.6125 

Currently dark? -0.0864 0.2117 

Currently charging? 0.0492 0.5649 

Table 4 Regression weights from our linear model to predict stress 
from sensed and user-provided data in StudentLife. 

 



 

 

Image Classification for Opportunistic Interactions 

Correctly identifying a device (e.g., printer, projector) in an 
image can support opportunistic mobile interaction with 
that device by automatically installing the necessary drivers 
without forcing the user into a manual setup. Real-time 
interaction speeds are crucial in this setting to make the 
opportunistic interaction seem truly seamless, but often 
image classification algorithms require computing 
expensive (i.e., time-consuming) features that can slow 
down the classification. The device identification problem 
can take advantage of other, less time-consuming features, 
like location and camera orientation to assist in prediction. 
User input (e.g., desired use of a device, such as printing or 
projecting) can also inform the prediction, at the cost of 
user inconvenience and time. 

We use a dataset of images, camera orientations, photo 
locations, and device capabilities (i.e., “can print,” “can 
scan”, “can copy,” “can fax,” and “can laser-cut,” for this 
dataset) to classify new images as particular devices [8]. 
We illustrate the usefulness of FOCUS for this device 
classification task with decision trees and show that using 
FOCUS to select a dynamic subset of features to acquire at 
test time results in fewer expensive feature acquisitions 
while still correctly classifying devices. 

Background 

Multiple groups have considered how smartphones can be 
used to control physical devices, with a variety of device 
identification and control mechanisms. Examples include 
laser pointers (e.g., [3]), external cameras (e.g., [5] with 
Kinect), and magnetometers (e.g., [50]). For the case of 
smartphone-taken images, past work explores directly 
identifying appliances labeled with fiducial markers (e.g., 
[27]) or using image recognition to identify a pictured 
device (e.g., [6]). Snap-To-It [9] allows users to interact 
with new devices by taking a picture with their phones and 
using both the content and context of the image to identify 
the pictured device and connect to it. 

Snap-To-It is our focus as well, and we also use image 
content and context (location and camera orientation) to 
classify devices, as well as user input about intended device 
use. As in Snap-To-It, we use the Scale-Invariant Feature 
Transform (SIFT) algorithm to extract features from images 
and compare SIFT features from two images for matches—
a higher number of matches means that the images are more 
similar [28]. It is possible to compute the SIFT features for 
the 90 reference images ahead of time, but at prediction 
time, the SIFT features for the image the user takes must be 
calculated and then compared to the reference images to 
check for the highest match. Our experiments show that 
calculating SIFT matches for a new image, against 
precomputed SIFT features for all 90 reference images 
takes, on average, 2.80 seconds, which can destroy the 
“real-time” feel of a service like Snap-To-It. Asking for 
user input is also expensive. Therefore, our goal is to give 
confident device predictions for images with few time-

consuming SIFT match operations and overall low 
inconvenience on the user. 

Cost Metric 

We assume that image location and orientation are freely 
available when the picture is taken. We assign two 
additional cost categories: medium (SIFT matching) and 
high (asking the user about their desired use for the device). 
Although additional context could be relevant (such as 
whether PowerPoint is running and a projector is in the 
room), the SnapToIt dataset did not include this.  

Experimental Setup 

The Snap-To-It dataset is pre-divided into “reference” and 
“testing” subsets. The reference dataset contains five 
images for each of 18 appliances, taken from different 
angles. These appliances have printing, scanning, copying, 
faxing, and laser-cutting capabilities. There are 108 images 
(six of each appliance) in the testing set. We used the 
reference set to construct a decision tree for image 
classification. Then we used this decision tree to classify 
test images, computing the SIFT matches and user 
questioning as determined to be necessary with FOCUS. 

Results 

We first constructed a decision tree on the Snap-To-It 
reference set, using MATLAB’s implementation of the 
Classification and Regression Tree (CART) algorithm. 
CART is a top-down algorithm that repeatedly splits nodes 
of the tree (starting with all samples at the root), according 
to whichever binary split most decreases the “mixture” 
among classes in the leaves, measured by the Gini impurity 
[4]. The decision tree learned was able to optimally classify 
the reference set using only 7 of the 90 reference images, so 
we discarded the rest. 

Device identification performance is shown with blue lines 
in Figure 2 (which shows cost improvement of FOCUS 
over baseline). On average, FOCUS yielded 29% savings in 
cost compared to the baseline as features were added to the 
prediction. In comparison to the baseline, accuracy was 
significantly worse only at n=10-11 for λ=.001. 

These experiments illustrate two valuable ways of cutting 
down time-consuming test time image comparisons. First, 
using a decision tree to classify instances reduced the 
potential image comparison space from 90 to 7; de Freitas 
et al. [9] used heuristics from image location and 
orientation to reduce the space of potential matches, but an 
algorithmic approach can expand the impact of such 
filtering beyond human-extractable patterns. Second, using 
test time feature acquisition can further reduce the number 
of costly feature acquisitions on test instances that can be 
confidently classified without obtaining all features.  

DISCUSSION & CONCLUSIONS 

Making real-time, personalized predictions is an important 
opportunity for ubiquitous computing applications; 
however, gathering information from users at test time can 
be costly, especially when not all pieces of information may 



 

 

be relevant for a particular user at a particular time. We 
have demonstrated the cost-saving value of dynamically 
acquiring features for test time prediction on a variety of 
applications and algorithms. On all three validation 
datasets, FOCUS effectively lowered prediction costs (by 
reducing the number of additional, costly features to 
acquire), without sacrificing prediction quality for most 
values of n and λ. The FOCUS framework’s ability to 
support context-dependent costs (illustrated in the stress 
prediction example on the StudentLife dataset) allows for 
richer, more realistic interpretations of feature cost, which 
may not be fixed for all test instances. 

A limitation of our work is our simplistic measure of costs 
for all of our predictions. A more detailed look at cost could 
account for real users’ perception of question cost 
(estimated via item response times or response rates) or the 
exact battery drain of various sensors on the particular 
model of phone being used. Furthermore, future work 
should explore how to connect the end-user experience to 
choosing a value for the cost penalty λ; this tradeoff is 
likely application-specific. 

Additionally, in the stress prediction example, we 
considered battery charging state (i.e., whether or not the 
phone was currently charging) as a simple binary influencer 
for context-dependent costs (with cost set to 0 when the 
phone was charging). However, more nuanced contexts 
could take into account the current percentage of remaining 
battery power, the current drain on the battery based on 
what applications are currently running (e.g., [13, 30]), or 
the expected time-to-next-charge (e.g., [2, 34]). It would 
also make sense for this application to consider the 
influence of user context on the cost of asking them a 
question—e.g., if a user’s calendar indicates they are 
currently in a meeting, it may not be a good time to acquire 
a feature that requires user input. 

Similarly, some cost metrics might take into account 
whether features are “shared” for multiple needs—e.g., if 
someone answers a stress EMA multiple times in one day, 
the “day-level” features can be shared across predictions. 

Another aspect worth considering in test time feature 
acquisition is feature confidence, especially when the same 
value can be obtained through different methods, with 
different costs and accuracies. For example, in the 
StudentLife case we used user-provided sleep lengths as 
one of the predictors for stress, but it is also possible to 
estimate sleep length and quality by sensing. By 
incorporating feature confidence into the selection criterion, 
we could decide whether we are confident “enough” about 
a value for a less costly feature to avoid acquiring a more 
expensive estimation of the same value. 

Finally, it might be interesting to explore user- and context-
specific metrics for prediction quality. Thus, the current 
needs of a user (in terms of accuracy) might be factored in 
to choices about which features are worth acquiring. 

ACKNOWLEDGMENTS 

This work was supported by NSF grants IIS-1217929 and 
SES-1130706, as well as the Siebel Foundation. 

REFERENCES 

1. Miguel Ballesteros & Bernd Bohnet. (2014). 
Automatic feature selection for agenda-based 

dependency parsing. In COLING (pp. 794-805). 

2. Nilanjan Banerjee, Ahmad Rahmati, Mark D. Corner, 
Sami Rollins, & Lin Zhong. (2007). Users and 

Batteries: Interactions and Adaptive Energy 

Management in Mobile Systems (pp. 217-234). 

Springer Berlin Heidelberg. 

3. Michael Beigl. (1999). Point & click-interaction in 
smart environments. In Handheld and Ubiquitous 

Computing (pp. 311-313). Springer Berlin Heidelberg. 

4. Leo Breiman, Jerome Friedman, Charles J. Stone, & 
R.A. Olshen. (1984). Classification and Regression 

Trees. CRC press. 

5. Matthias Budde, Matthias Berning, Christopher 
Baumgärtner, Florian Kinn, Timo Kopf, Sven Ochs, 
Frederik Reiche, Till Riedel, & Michael Beigl. (2013). 
Point & control—interaction in smart environments: 
you only click twice. In Proceedings of the 2013 ACM 

Conference on Pervasive and Ubiquitous Computing 

Adjunct Publication (pp. 303-306). ACM. 

6. Tsung-Hsiang Chang & Yang Li. (2011). Deep shot: a 
framework for migrating tasks across devices using 
mobile phone cameras. In Proceedings of the SIGCHI 

conference on Human Factors in Computing 

Systems (pp. 2163-2172). ACM. 

7. David A. Cohn, Zoubin Ghahramani, & Michael I. 
Jordan. (1996). Active learning with statistical 
models. Journal of Artificial Intelligence Research, 4, 

129-145. 

8. Thomas M. Cover & Peter E. Hart. (1967). Nearest 
neighbor pattern classification. IEEE Transactions on 

Information Theory, 13(1), 21-27.  

9. Adrian A. de Freitas, Michael Nebeling, Xiang 
“Anthony” Chen, Junrui Yang, Akshaye Ranithangam, 
& Anind K. Dey. (2016). Snap-To-It: a user-inspired 
platform for opportunistic device interactions. In 
Proceedings of the SIGCHI Conference on Human 

Factors in Computing Systems, (pp. 5909-5920). 

10. Thomas Dietz, Gerald T. Gardner, Jonathan Gilligan, 
Paul C. Stern, & Michael P. Vandenbergh. (2009). 
Household actions can provide a behavioral wedge to 
rapidly reduce US carbon emissions. In Proceedings of 

the National Academy of Sciences, 106(44), 18452-
18456. 

11. Robin A. Douthitt. (1989). An economic analysis of the 
demand for residential space heating fuel in 

Canada. Energy, 14(4), 187-197. 



 

 

12. Kirstin Early, Stephen E. Fienberg, & Jennifer 
Mankoff. (2016). Dynamic question ordering in online 

surveys. arXiv preprint arXiv: 1607.04209. 

13. Denzil Ferreira, Eija Ferreira, Jorge Goncalves, 
Vassilis Kostakos, & Anind K. Dey. (2013). Revisiting 
human-battery interaction with an interactive battery 
interface. In Proceedings of the 2013 ACM 

International Joint Conference on Pervasive and 

Ubiquitous Computing (pp. 563-572). ACM. 

14. Denzil Ferreira, Vassilis Kostakos, & Anind K. Dey. 
(2015). AWARE: Mobile context instrumentation 

framework. Frontiers in ICT, 2(6), 1-9. 

15. Pedro Ferreira, Pedro Sanches, Kristina Höök, & Tove 
Jaensson. (2008). License to chill! How to empower 
users to cope with stress. In Proceedings of the Fifth 

Nordic Conference on Human-Computer Interaction: 

Building Bridges (pp. 123-132). ACM. 

16. David Ferrucci, Anthony Levas, Sugato Bagchi, David 
Gondek, & Erik T. Mueller. (2013). Watson: Beyond 

Jeopardy!. Artificial Intelligence, 199, 93-105. 

17. Jerome H. Friedman, Ron Kohavi, & Yeogirl Yun. 
(1996). Lazy decision trees. In Proceedings of the 1st 

International Conference on Artificial Intelligence (pp. 

717-724). AAAI Press. 

18. Nadav Golbandi, Yehuda Koren, & Ronny Lempel. 
(2011). Adaptive bootstrapping of recommender 
systems using decision trees. In Proceedings of the 

Fourth ACM International Conference on Web Search 

and Data Mining (pp. 595-604). ACM. 

19. Isabelle Guyon & André Elisseeff. (2003). An 
introduction to variable and feature selection. The 

Journal of Machine Learning Research, 3, 1157-1182. 

20. He He, Hal Daumé III, & Jason Eisner. (2012). Cost-
sensitive dynamic feature selection. In ICML Inferning 

Workshop. 

21. He He, Hal Daumé III, & Jason Eisner. (2013). 
Dynamic feature selection for dependency parsing. 
In Proceedings of the 2013 Conference on Empirical 

Methods in Natural Language Processing (pp. 1455-

1464). 

22. Paul A. Hirschberg, Elliot Abrams, Andrea Bleistein, 
William Bua, Luca Delle Monache, Thomas W. 
Dulong, John E. Gaynor, Bob Glahn, Thomas M. 
Hamill, James A. Hansen, Douglas C. Hilderbrand, 
Ross N. Hoffman, Betty Hearn Morrow, Brenda 
Philips, John Sokich, & Neil Stuart. (2011). A weather 
and climate enterprise strategic implementation plan 
for generating and communicating forecast uncertainty 
information. Bulletin of the American Meteorological 

Society, 92(12), 1651-1666. 

23. Suzanne S. Hudd, Jennifer Dumlao, Diane Erdmann-
Sager, Daniel Murray, Emily Phan, Nicholas Soukas, 
& Nori Yokozuka. (2000). Stress at college: Effects on 

health habits, health status and self-esteem. College 

Student Journal, 34(2), 217– 227. 

24. Madhu Kalia. (2002). Assessing the economic impact 
of stress—the modern-day hidden epidemic. 

Metabolism, 51(6), 49-53. 

25. Nikhil Kaza. (2010). Understanding the spectrum of 
residential energy consumption: a quantile regression 
approach. Energy Policy, 38(11), 6574-6585. 

26. Blerina Lika, Kostas Kolomvatsos, & Stathes 
Hadjiefthymiades. (2014). Facing the cold start 
problem in recommender systems. Expert Systems with 

Applications, 41(4), 2065-2073. 

27. Qiong Liu, Paul McEvoy, Don Kimber, Patrick Chiu, 
& Hanningn Zhou. (2006). On redirecting documents 
with a mobile camera. In 8th IEEE Workshop 

on Multimedia Signal Processing (pp. 467-470). IEEE. 

28. David G. Lowe. (1999). Object recognition from local 
scale-invariant features. In Proceedings of the 7th 

IEEE International Conference on Computer Vision 
(pp. 1150-1157). 

29. Hong Lu, Jun Yang, Zhigang Liu, Nicholas D. Lane, 
Tanzeem Choudhury, & Andrew T. Campbell. (2010). 
The Jigsaw continuous sensing engine for mobile 
phone applications. In Proceedings of the 8th ACM 

Conference on Embedded Networked Sensor 

Systems (pp. 71-84). ACM. 

30. Chulhong Min, Chungkuk Yoo, Inseok Hwang, 
Seungwoo Kang, Youngki Lee, Seungchul Lee, 
Pillsoon Park, Changhun Lee, Seungpyo Choi, & 
Junehwa Song. (2015). Sandra helps you learn: The 
more you walk, the more battery your phone drains. 
In Proceedings of the 2015 ACM International Joint 

Conference on Pervasive and Ubiquitous 

Computing (pp. 421-432). ACM. 

31. Ranjita Misra & Michelle McKean. (2000). College 
students’ academic stress and its relation to their 
anxiety, time management, and leisure 
satisfaction. American Journal of Health 

Studies, 16(1), 41-51. 

32. Gary P. Moberg. (2000). Biological response to stress: 
implications for animal welfare. In Gary P. Moberg & 
Joy A. Mench (Eds.), The Biology of Animal Stress: 

Basic Principles and Implications for Animal Welfare 
(1-21). New York: CABI Publishing. 

33. Erman Pattuk, Murat Kantarcioglu, Huseyin Ulusoy, & 
Bradley Malin. (2015). Privacy-aware dynamic feature 
selection. In  31st IEEE International Conference 

on Data Engineering (pp. 78-88). IEEE. 

34. Nishkam Ravi, James Scott, & Liviu Iftode. (2008). 
Context-aware battery management for mobile phones. 
In Sixth Annual IEEE International Conference 

on Pervasive Computing and Communications (pp. 

224-233). IEEE. 



 

 

35. John Seryak & Kelly Kissock. (2003). Occupancy and 
behavioral effects on residential energy use. In 

Proceedings of the Solar Conference (pp. 717-722). 

36. Kirill Trapeznikov & Venkatesh Saligrama. (2013). 
Supervised sequential classification under budget 
constraints. In Proceedings of the Sixteenth 

International Conference on Artificial Intelligence and 

Statistics (pp. 581-589). 

37. Shannon E. Ross, Bradley C. Niebling, & Teresa M. 
Heckert. (1999). Sources of stress among college 

students. College Student Journal, 33(2), 312-317. 

38. Maytal Saar-Tsechansky & Foster Provost. (2007). 
Handling missing values when applying classification 
models. The Journal of Machine Learning Research, 8, 

1625-1657. 

39. Mehdi Samadi, Partha Talukdar, Manuela Veloso, & 
Tom Mitchell. (2015). AskWorld: Budget-sensitive 
query evaluation for knowledge-on-demand. 
In Proceedings of the 24th International Conference on 

Artificial Intelligence (pp. 837-843). AAAI Press. 

40. Nandita Sharma & Tom Gedeon. (2012). Objective 
measures, sensors and computational techniques for 
stress recognition and classification: A survey. 
Computer Methods and Programs in 

Biomedicine, 108(3), 1287-1301. 

41. Tianlin Shi, Jacob Steinhardt, & Percy Liang. (2015). 
Learning where to sample in structured prediction. In 
Proceedings of the 18th International Conference on 

Artificial Intelligence and Statistics (AISTATS) (pp. 

875-884). 

42. Emma Strubell, Luke Vilnis, Kate Silverstein, & 
Andrew McCallum. (2015). Learning dynamic feature 
selection for fast sequential prediction. arXiv preprint 

arXiv:1505.06169. 

43. Mingxuan Sun, Fuxin Li, Joonseok Lee, Ke Zhou, Guy 
Lebanon, & Hongyuan Zha. (2013). Learning multiple-
question decision trees for cold-start recommendation. 

In Proceedings of the Sixth ACM International 

Conference on Web Search and Data Mining (pp. 445-

454). 

44. Lukas G. Swan & V. Ismet Ugursal. (2009). Modeling 
of end-use energy consumption in the residential 
sector: A review of modeling techniques. Renewable 

and Sustainable Energy Reviews, 13(8), 1819-1835. 

45. Joel A. Tropp. (2004). Greed is good: algorithmic 
results for sparse approximation. IEEE Transactions on 

Information Theory, 50(10), 2231-2242. 

46. U.S. Energy Information Administration. (2009). 
Residential Energy Consumption Survey 2009. 

www.eia.gov/consumption/residential/data/2009/. 

47. Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, 
Gabriella Harari, Stefanie Tignor, Xia Zhou, Dror Ben-
Zeev, & Andrew T. Campbell. (2014). StudentLife: 
Assessing mental health, academic performance, and 
behavioral trends of college students using 
smartphones. In Proceedings of the 2014 ACM 

International Joint Conference on Pervasive and 

Ubiquitous Computing (pp. 3-14). 

48. Sanford Weisberg. (2014). Applied Linear Regression 

(4th ed.). New York: Wiley. 

49. David J. Weiss & Ben Taskar. (2013). Learning 
adaptive value of information for structured prediction. 
In Advances in Neural Information Processing 

Systems (pp. 953-961). 

50. Jiahui Wu, Gang Pan, Daqing Zhang, Shijian Li, & 
Zhaohui Wu. (2010). MagicPhone: pointing & 
interacting. In  Proceedings of the 2010 ACM 

Conference on Pervasive and Ubiquitous Computing 

Adjunct Publication (pp. 451-452). ACM. 

51. Zhixiang (Eddie) Xu, Matt J. Kusner, Killian Q. 
Weinberger, Minmin Chen, & Olivier Chapelle. 
(2014). Classifier cascades and trees for minimizing 
feature evaluation cost. The Journal of Machine 

Learning Research, 15(1), 2113-2144.


