
Thesis Proposal

Formalizing Algorithms for Real

Quantifier Elimination

Katherine Cordwell

April 8, 2022

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
André Platzer, Chair

Jeremy Avigad
Frank Pfenning

Dexter Kozen, Cornell University
Lawrence Paulson, University of Cambridge

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Katherine Cordwell

Abstract

This thesis will focus on the dearth of efficient formally verified support for algorithms
for real quantifier elimination. It proposes a two-pronged approach: first, verify a general-
purpose multivariate QE algorithm based on the Ben-Or, Kozen, and Reif decision procedure
and its variant by Renegar; second, verify a suite of highly efficient but limited QE methods,
particularly virtual substitution, on top of the general-purpose algorithm.

Contents

1 Introduction 2

2 Proposed Approach: VS and Preprocessing 3
2.1 What is Virtual Substitution? . 3
2.2 Experimental Results . 4
2.3 Proposed Work . 6

3 Proposed Approach: BKR 6
3.1 Univariate BKR . 7

3.1.1 From Univariate Problems to Sign Determination 7
3.1.2 From Sign Determination to Restricted Sign Determination 8
3.1.3 Solving Restricted Sign Determination with a Matrix Equation 10
3.1.4 Univariate Formalization and Code Export 13

3.2 Multivariate BKR, Challenges, and Fallback Options 14

4 Conclusion 17
4.1 Timeline and Fallback Options . 17

References 18

Funding Acknowledgment. This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1739629, a National Science Foundation Grad-
uate Research Fellowship under Grants Nos. DGE1252522 and DGE1745016, and by the
AFOSR under grant number FA9550-16-1-0288. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation or of AFOSR.

1

1 Introduction

Quantified formulas in the first-order logic of real arithmetic (FOLR) arise in various applica-
tion domains, including the formal verification of cyber-physical systems, geometric theorem
proving, and stability analysis of models of biological systems. The best way of analyzing
these formulas is to reduce them to logically equivalent quantifier-free formulas, through
a process known as quantifier elimination (QE). Alfred Tarski proved that algorithms for
real quantifier elimination exist [39]; thus, in theory, all it takes to rigorously answer any
real arithmetic question is to verify a QE procedure for FOLR. However, in practice, these
QE algorithms are complicated and the fastest known QE algorithm, cylindrical algebraic
decomposition (CAD) [3, 7, 8, 21] is, in the worst case, doubly exponential in the number of
variables.

Given the safety-critical nature of these applications, having correct algorithms for quanti-
fier elimination is crucial. However, the intricate nature of these algorithms makes them
difficult to verify. Although there are a range of verified univariate methods [19,24,25], there
are only two general-purpose verified multivariate QE algorithms [6,22]. Unfortunately, both
are based on algorithms that have non-elementary complexity (that is, their complexity is
not bounded by any tower of powers of two), which makes them impractical.

This impracticality has significant consequences. To more fully understand this, let us
briefly take a detour into the world of cyber-physical systems (CPS) [30], a disparate class
of systems which includes planes, surgical robots, and power grids. CPS are becoming
increasingly ingrained in our daily lives. Unfortunately, experimental testing is not enough
to ensure CPS safety, as the continuous dynamics of CPS introduce uncountable behavior.
Other approaches are needed, like that of deductive verification—first model CPS in logic,
and then prove safety guarantees about the model using rigorous logical proof rules, especially
with the aid of a theorem prover. These proofs very often reduce to complicated quantified
statements [32, 36] which intuitively capture questions such as: “For all possible positions
that my self-driving car is in, does there exist a safe control choice for the car?”

To analyze these questions, QE is needed: and here the dearth of formally verified QE
support forces CPS proofs to outsource QE to unverified systems. For example, the theorem
prover KeYmaera X [16] outsources real arithmetic to Mathematica and Z3. Using these
tools as trusted oracles somewhat undermines trust [15] in the conclusions of formal methods
proofs in the high-stakes world of CPS. Better support is needed.

This thesis proposes a twofold approach to tackle this problem. First, we propose ver-
ifying a general-purpose multivariate QE algorithm based on the Ben-Or, Kozen, and Reif
(BKR) algorithm and its variant by Renegar [2, 33]. Though BKR may not be as efficient
as CAD in the average case, it has good potential for parallelism; further, CAD and BKR
have different efficiency tradeoffs and are complementary. Perhaps most importantly, BKR
seems more amenable to formalization than CAD, and thus appears to fit in a “sweet spot”
within the tradeoff between practicality and ease of formalization.

Second, we propose verifying a suite of preprocessing and special-purpose QE methods,
particularly virtual substitution (VS), on top of the general-purpose algorithm. This is
because in order to achieve efficiency, a strong general-purpose algorithm is not enough:
unverified tools like Mathematica make extensive use of strong special-purpose methods,
preprocessing, and heuristics to achieve efficient QE. Among special-purpose QE methods,

2

VS [42,43] is particularly well-known; it targets problems that contain low-degree polynomial
inequalities or equations. Linear and quadratic VS are of practical significance; they serve
to improve QE [28] and SMT tools and are the basis of the experimentally successful [38]
Redlog solver [14].

Our theorem prover of choice for this work is Isabelle/HOL [27]. Isabelle/HOL is well-
suited for formalizing mathematics and has a large collection of existing proof developments
available in the Archive of Formal Proofs, which are of great benefit to us; further, the built-
in search tool and Sledgehammer [29] provide invaluable automation for discovering existing
theorems and for finishing (easy) subgoals in proofs.

In sum, this thesis aims to advance the state of formally verified support for QE by
proposing practical steps towards verifying (in Isabelle/HOL) a promising general-purpose
QE algorithm in conjunction with strong special-purpose methods.

2 Proposed Approach: VS and Preprocessing

Our progress on formally verifying special-purpose QE methods in Isabelle/HOL has already
been quite encouraging: We have already formalized linear and quadratic virtual substitution
[34]; to our knowledge we are the first to verify the quadratic inequality cases, and our work
takes an experimental approach which was not present in previous formalization efforts.
The rest of this section is heavily based on [34]. For the purposes of this proposal, we elide
intricate technical details and focus more on high-level intuition, motivation, and context.

Remark 1. A note on code export. Within Isabelle/HOL, our algorithms are provably correct
up to Isabelle/HOL’s trusted core. To demonstrate the practical usefulness of our verified
algorithms, we export our code from Isabelle/HOL to SML for experimentation. The code
export removes overhead, so that the exported algorithms run more quickly than internal
algorithms. The exported algorithms additionally rely on the correctness of Isabelle/HOL’s
code export, which ongoing work is attempting to establish [17].

2.1 What is Virtual Substitution?

Informally (and broadly) speaking, VS discretizes the QE problem by solving for the roots of
one or more low-degree (particularly linear or quadratic) polynomials f1(x), . . . , fn(x). VS
focuses on these roots and the intervals around them to identify and substitute appropriate
representative “sample points” for x into the rest of the formula. However, these sample
points may contain fractions, square roots, and/or other extensions of the logical language,
and so they must be substituted “virtually”: That is, VS creates a formula in FOLR proper
that models the behavior of the direct substitution, which would be outside of FOLR. VS
applies in two cases: an equality case and a general case.

Previous formalizations of VS in Isabelle/HOL had considered both of these cases for
linear VS (Nipkow, [26]) and the equality case for quadratic VS (Chaieb, [4]). Nipkow [26]
formalized a VS procedure for linear equations and inequalities. The building blocks of
FOLR formulas, or “atoms,” in his work allow only for linear polynomials, which ensures that
linear QE can always be performed, and simplifies the substitution procedure and associated
proofs. In addition, Nipkow provided a generic framework that can be applied to several

3

different kinds of atoms (each new atom requires implementing several new theorems in order
to create an exportable algorithm). While this is an excellent theoretical framework—we
utilize several similar constructs in our formulation—we create an independent formalization
that is specific to general FOLR formulas, as our main focus is to provide an efficient algorithm
in this domain. Specializing to one type of atom allows us to implement several optimizations
which would be unwieldy to develop in a generic setting.

Chaieb [4] extends Nipkow’s work to quadratic equalities. His formalizations are not
publicly available, but he generously provided us with the code. While this was helpful for
reference, our formalization is independent of his: we chose to build on a newer Isabelle/HOL
polynomial library, and we focus on verified VS as an exportable standalone procedure
(whereas Chaieb intrinsically linked VS with an auxiliary QE procedure).

Our formalization of VS handles all of the most practically significant cases: linear equal-
ity, linear inequality, quadratic equality, and quadratic inequality (which was not handled
by Chaieb or Nipkow). This required significant low-level improvements and extensions to
Isabelle’s multivariate polynomials library. Our work is approximately 23,000 lines in Is-
abelle/HOL and is available on the Archive of Formal Proofs (AFP) [35]. Our framework
is specialized to FOLR formulas and could serve as a basis for developing practical general-
purpose QE algorithms. We include select optimizations for VS, but largely defer these to
future work; significantly, our framework is modularized and easily expandable to facilitate
integrating future optimizations.

2.2 Experimental Results

To better motivate our overall goal of advancing formally verified support for QE, we discuss
our experimental results for the VS formalization, which are quite promising. We develop
(and export to SML for experimentation) several top-level algorithms that use various com-
binations of VS procedures and optimizations. We test these on, in total, 423 benchmarks
from the literature [23,31], comparing to Redlog, SMT-RAT [12], Z3 [13], and Wolfram En-
gine. We do not expect to outperform prior tools at this stage, as many of them have been
optimized over a period of many years.

Figure 1 summarizes the performance on our two suites of benchmarks in terms of the
cumulative time needed to solve (return “true”, “false”, “sat”, or “unsat”) the fastest n prob-
lems with a logarithmic time axis: more problems solved and a flatter curve is better. Our
exported algorithms are depicted in blue. With 304 examples, we solve more examples than
SMT-RAT in quantifier elimination mode (solves 191) and come close to virtual substitution
in Wolfram Engine (solves 322). The remaining tools solve almost all examples; this is to be
expected given that those tools have been optimized and fine-tuned (some for decades) and
use efficient general-purpose fallback QE algorithms when VS does not succeed.

For sanity checking, we also negated the examples fom the CADE09 benchmark suite [31]
and ran all the tools on these negated examples. In Fig. 2, we compare the results of running
the original examples and their negations to highlight contradictions between answers. A
contradiction occurs when a tool clams that both A and ¬A are true or both A and ¬A are
false and is indicated by a red line.

As shown by the figure, Wolfram Engine and Z3 answer consistently on both formula sets,
and solve (almost) all of the examples. Our algorithm (denoted LEG) answers consistently

4

Figure 1: Cumulative time to solve fastest n problems (flatter and more is better)

Figure 2: CADE09 consistency comparison between original and negated formula: color in-
dicates discrepancies within tools (green (): answer on original and negated formula agree,
dark-blue (): only original solved, light-blue (): only negated solved, red+long (): contra-
dictory answers (both formulas unsat/proved or both sat/disproved), empty: both time-
out/unknown)

(but solves fewer examples). Redlog, the main VS implementation, in RE (snapshot 2021-
04-13) did not perform well on the negated formulas and reports 96 contradictory answers.
Testing on previous versions of Redlog revealed that these contradictions date back until at
least mid-2019. The contradictory examples were shared with the developers and triggered
several bug fixes that are now available in RX (snapshot 2021-07-16, no contradictions found
on the benchmark set). SMT-RAT performs better than RE on the negated formulas, but
in satisfiability mode contradicts itself on 41 examples by silently ignoring quantifiers in the
input; in quantifier elimination mode, SMT-RAT supports quantifiers and does not report
contradictions, though this incurs a significant performance loss (S-SATE reports 359 answers
while S-QEX only solves 187). No contradictions were found across tools, i.e., whenever a
tool’s answers were consistent internally, the answers agreed with those of other tools.

In summary, the performance of our verified virtual substitution QE on the benchmark
set is encouraging. The number of solved examples is close to other VS implementations (304
examples by our VSLEG vs. 322 by W-VS) and a more detailed analysis of cumulative solving

5

time reveals that the majority of examples are solved fast. As we found 137 inconsistencies
in other solvers, it is significant that our implementation comes with associated correctness
proofs (assuming the orthogonal challenge of correct code generation [17]).

2.3 Proposed Work

Though the completed VS work could be standalone for the portions of this thesis that are
concerned with verifying efficient limited-purpose QE methods, it is of practical interest to
continue to develop and build upon the VS framework. Certainly our experiments both
reveal the benefits of our current optimizations and indicate room for future improvements:
some of these could be specific to VS, while others could be more general preprocessing
methods. I have previously considered general QE preprocessing methods in the theorem
prover PVS (see the associated technical memorandum: [9]) and found that they introduced
the potential for significant speedup with minimal overhead, demonstrating the potential
utility of such “auxiliary optimizations”.

However, this “proposed work” section is intentionally left open-ended—choosing a set of
optimizations to target is still pending work, and I expect this to be somewhat experimentally
guided. In any case, the bulk and main focus of my proposed work is on verifying a general
multipurpose QE algorithm in Isabelle/HOL, which we now turn to.

3 Proposed Approach: BKR

Recall that linear and quadratic virtual substitution can only succeed or make progress on
a limited fragment of FOLR, because they require the presence of low-degree polynomials1.
To handle QE queries outside of this fragment, a general-purpose QE algorithm is required.
However, considering that the current verified general-purpose QE algorithms both have
non-elementary complexity, and observing the difficulty in verifying the fastest-known QE
algorithm, CAD, there seems to be a tension, or a tradeoff, between algorithmic efficiency
and ease of verification.

We are interested in focusing on an algorithm that fits within a potential “sweet spot”
within this tradeoff: the Ben-Or, Kozen, and Reif (BKR) algorithm [2]. Originally a decision
procedure, BKR was extended to a full QE algorithm by Renegar [33], who also fixed an
error in the complexity analysis. BKR is similar in flavor to Tarski’s original QE algorithm,
but with a built-in reduction step to lower asymptotic complexity.

Formalizing BKR presents a number of challenges: First, it requires not only a deep
understanding of the BKR algorithm itself, but also the ability to “course-correct”: that is,
to fill in gaps in the original algorithm and to modify it in places where it is not amenable
to formalization. So far, this has required making use of supplementary resources, including
Renegar, a foundational algebraic geometry textbook [1], and Cyril Cohen’s thesis [5] (which
is relevant since Tarski’s algorithm shares some theoretical underpinning with BKR). Sec-
ondly, the formalization requires intricate manipulations of mathematical objects, including

1Or of polynomials that have low-degree in essence; for example, x4 + x3 is nominally a polynomial of
degree 4, but it carries the same sign information as x2 + x, and so can be replaced by this lower-degree
polynomial for the purposes of VS so that, e.g. ∃x. x4 + x3 < 0 transforms to ∃x. x2 + x < 0.

6

multivariate polynomials and matrices, in Isabelle/HOL. This is challenging because the
highly logical foundations of a theorem prover significantly complicate a number of small
steps that would appear very simplistic on paper.2 Isabelle/HOL has a number of highly
useful proof developments in the Archive of Formal Proofs [18, 37, 40, 41] from which we
greatly benefit, but significant low-level expansion has already been and is still needed.

We turn to a discussion of the BKR algorithm in two stages: we first detail univariate
BKR, and then discuss the intuition underlying multivariate BKR and the challenges for-
malizing it poses. So far, we have succeeded in formalizing univariate BKR (and univariate
Renegar), and our discussion of this stage is based on [10]. Our discussion of multivariate
BKR—and its challenges—is based on ongoing work.

3.1 Univariate BKR

Throughout this section, we are working with univariate polynomials, which we assume to
have variable x. Our decision procedure works for polynomials with rational coefficients
(type rat poly in Isabelle), though some lemmas are proved more generally for univariate
polynomials with real coefficients (type real poly in Isabelle).

At a high level, the univariate BKR algorithm works in 3 main pieces, which we will
detail in the following subsections:

1. First, univariate QE is reduced to the problem of sign-determination.

2. Second, the general sign-determination problem is restricted to a more computational
(discretized) sign-determination problem.

3. Third, the restricted sign-determination problem is solved by constructing a matrix
equation that stores key sign information.

Let us tackle these pieces in order.

3.1.1 From Univariate Problems to Sign Determination

Formulas of univariate real arithmetic are generated by the following grammar, where p is a
univariate polynomial with rational coefficients:

φ, ψ ::= p > 0 | p ≥ 0 | p = 0 | φ ∨ ψ | φ ∧ ψ

In Isabelle/HOL, we define this grammar in fml, which is our type for formulas.
For formula φ, the universal decision problem is to decide if φ is true for all real values of

x, i.e., validity of the quantified formula ∀xφ. The existential decision problem is to decide
if φ is true for some real value of x, i.e., validity of the quantified formula ∃xφ. For example,
a decision procedure should return false for formula (1) and true for formula (2) below (left).

2As an example of this, in VS we needed a way of isolating the coefficient of a variable within a polynomial
in order to be able to rewrite a multivariate polynomial in R[a1, . . . , an, x] as a univariate polynomial in x
with coefficients that are polynomials in R[a1, . . . , an]. While this is extremely easy to do on paper, defining
this capability in Isabelle/HOL required a large collection of technical, low-level simplification lemmas.

7

∀x (x2 − 2 = 0 ∧ 3x > 0) (1)

∃x (x2 − 2 = 0 ∧ 3x > 0) (2)

Formula Structure: A = 0 ∧ B > 0

Polynomials: A : x2 − 2, B : 3x

The first observation is that both univariate decision problems can be transformed to
the problem of finding the set of consistent sign assignments (also known as realizable sign
assignments [1, Definition 2.34]) of the set of polynomials appearing in the formula φ.

Definition 1. A sign assignment for a set G of polynomials is a mapping σ that assigns
each g ∈ G to either +1, −1, or 0. Given x ∈ R, the sign of g(x) is +1 if g(x) > 0, −1
if g(x) < 0, and 0 if g(x) = 0. A sign assignment σ for G is consistent if there exists an
x ∈ R where, for all g ∈ G, the sign of g(x) matches the sign of σ(g).

For the polynomials x2 − 2 and 3x appearing in formulas (1) and (2), the set of all
consistent sign assignments (written as ordered pairs) is:

{(+1,−1), (0,−1), (−1,−1), (−1, 0), (−1,+1), (0,+1), (+1,+1)}

Formula (1) is not valid because consistency of sign assignment (0,−1) implies there exists
a real value x ∈ R such that conjunct x2 − 2 = 0 is satisfied but not 3x > 0. Conversely,
formula (2) is valid because the consistent sign assignment (0,+1) demonstrates the existence
of an x ∈ R satisfying x2 − 2 = 0 and 3x > 0. The truth-value of formula φ at a given sign
assignment is computed by evaluating the formula after replacing all of its polynomials by
their respective assigned signs. For example, for the sign assignment (0,−1), replacing A

by 0 and B by −1 in the formula structure underlying (1) and (2) shown above (right)
yields 0 = 0 ∧−1 > 0, which evaluates to false. Validity of ∀xφ is decided by checking that
φ evaluates to true at each of its consistent sign assignments. Similarly, validity of ∃xφ is
decided by checking that φ evaluates to true at at least one consistent sign assignment. In
both cases, the exact set of consistent sign assignments is needed to decide the QE problem
correctly.

3.1.2 From Sign Determination to Restricted Sign Determination

The next step restricts the sign determination problem to the following more concrete format:
Find all consistent sign assignments σ for a set of polynomials q1, . . . , qn at the roots of a
nonzero polynomial p, i.e., the signs of q1(x), . . . , qn(x) that occur at the (finitely many) real
values x ∈ R with p(x) = 0. This restriction to determining sign information at the roots of
an auxiliary polynomial is important because it discretizes the QE problem (as polynomials
have finitely many roots). Consider as input a set of polynomials (with rational coefficients)
Q = {q1, . . . , qn} for which we need to find all consistent sign assignments. This can be
transformed into a restricted sign determination problem as follows:

(1) Compute a polynomial p that satisfies the following properties3:

3An explicit choice of p satisfying these properties is p =
(∏

1≤i≤n qi

)
· d
dx

(∏
1≤i≤n qi

)
· (x−B)(x+B),

where B > 0 is the Cauchy root bound of
(∏

1≤i≤n qi

)
(so that B is greater than any root of the qi’s and

−B is smaller than any root of the qi’s).

8

i) Every root of the qi’s is also a root of p,

ii) p has a root in every interval between any two roots of the qi’s,

iii) p has a root that is greater than all of the roots of the qi’s, and

iv) p has a root that is smaller than all of the roots of the qi’s.

The relationship between the roots of p and the roots of qi ∈ Q is visualized in Fig. 3.

Figure 3: The relation between the roots of the added polynomial p and the roots of the qi’s.

(2) Solve the restricted sign determination problem for all consistent sign assignments of
{q1, . . . , qn} at the roots of p.

Returning to Fig. 3, the qi’s are sign-invariant (i.e., do not change sign) in the intervals
between any two roots of the qi’s (black squares) and to the left and right beyond all
roots of the qi’s. Intuitively, this is true because moving along the blue real number line
in Fig. 3, no qi can change sign without first passing through a black square. Thus, all
consistent sign assignments of qi that only have nonzero signs must occur in one of these
intervals and therefore, by sign-invariance, also at one of the roots of p (red points).

There are actually other ways of accomplishing this transformation into a restricted sign
determination problem. What we have presented above (which we have also formalized)
largely follows Renegar’s style of discretization, but with the additional use of the Cauchy
root bound from BKR to capture sign information at the limits.

Significantly, BKR and Renegar differ slightly in how they construct the restricted sign
determination problem, and this small difference has significant consequences. BKR’s re-
stricted sign-determination problem insists that the qi’s be coprime with (i.e. share no com-
mon factors with) p, whereas Renegar’s restricted sign-determination problem does not have
this restriction. This restriction makes BKR’s eventual decision procedure more complicated
than the 2-step procedure presented above, but it considerably simplifies the subsequent con-
struction of the matrix equation and its associated formal proofs, so it was very advantageous
to formalize univariate BKR before formalizing univariate Renegar.

Now, let us turn to solving the restricted sign-determination problem with a matrix
equation. Because the goal of this proposal is to develop a high-level understanding of the
methods employed by the BKR algorithm, we present the simpler BKR-style construction
of the matrix equation (which restricts the q′is to be coprime with p).

9

3.1.3 Solving Restricted Sign Determination with a Matrix Equation

The restricted sign determination problem for polynomials q1, . . . , qn at the roots of a poly-
nomial p 6= 0, where each q1, . . . , qn is coprime with p, can be tackled naively by setting up
and solving a matrix equation. The idea of using a matrix equation for sign determination
dates back to Tarski [39] [1, Section 10.3], and accordingly our formalization shares some
similarity to Cohen and Mahboubi’s formalization [6] of Tarski’s algorithm (see [5, Section
11.2]). BKR’s additional insight is to avoid the prohibitive complexity of enumerating ex-
ponentially many possible sign assignments for q1, . . . , qn by computing the matrix equation
recursively (with a divide and conquer algorithm) and performing a reduction that retains
only the consistent sign assignments at each recursive step. This reduction keeps interme-
diate data sizes manageable because the number of consistent sign assignments is bounded
by the number of roots of p throughout. We first explain the technical underpinnings of the
matrix equation before returning to the recursive construction itself. For brevity, references
to sign assignments for q1, . . . , qn in this section are always at the roots of p.

Matrix Equation: Technical Underpinnings. The inputs to the matrix equation are
a set of candidate (i.e., not necessarily consistent) sign assignments Σ̃ = {σ̃1, . . . , σ̃m} for
the polynomials q1, . . . , qn and a set of subsets S = {I1, . . . , Il}, Ii ⊆ {1, . . . , n} of indices
selecting among those polynomials. The set of all consistent sign assignments Σ for q1, . . . , qn
is assumed to be a subset of Σ̃, i.e., Σ ⊆ Σ̃.

For example, consider p = x3−x and q1 = 3x3 + 2. The set of all possible candidate sign
assignments Σ̃ = {(+1), (−1)} must contain the consistent sign assignments for q1 (sign (0)
is impossible as p, q1 are coprime). The possible subsets of indices are I1 = {} and I2 = {1}.

The main algebraic tool underlying the matrix equation is the Tarski query which pro-
vides semantic information about the number of roots of p with respect to polynomial q.

Definition 2. Given univariate polynomials p, q with p 6= 0, the Tarski query N(p, q) is:

N(p, q) = #{x ∈ R | p(x) = 0, q(x) > 0} −#{x ∈ R | p(x) = 0, q(x) < 0}.

Importantly, the Tarski query N(p, q) can be computed from input polynomials p, q using
Euclidean remainder sequences without explicitly finding the roots of p. This is a consequence
of the Sturm-Tarski theorem which has been formalized in Isabelle/HOL by Li [18]. The key
standard theoretical result can be stated as follows:

Theorem 1. [Generalized Sturm’s theorem [33, Proposition 8.1]] Given coprime univariate
polynomials p, q with p 6= 0, form the Euclidean remainder sequence p1 = p, p2 = p′q,
and pi is the negated remainder of pi−2 divided by pi−1 for i ≥ 3. This terminates at
some pk+1 = 0 because the remainder has lower degree than the divisor at every step. Let
ai be the leading coefficient of pi for 1 ≤ i ≤ k. Consider the two sequences a1, . . . , ak
and (−1)deg p1a1, · · · , (−1)deg pkak. If S+(p, q) is the number of sign changes in a1, . . . , ak
and S−(p, q) is the number of sign changes in (−1)deg p1a1, · · · , (−1)deg pkak, then N(p, q) =
S−(p, q)− S+(p, q).

The theoretical complexity for computing N(p, q) is O(deg p (deg p+ deg q)) [1, Sections
2.2.2 and 8.3]. However, this complexity analysis does not take into account the growth

10

. =1 1
1 -1

2
1

of roots of p where
qs realizes the sign
assignment [+1]

of roots of p where
qs realizes the sign
assignment [-1]

3
1

Tarski query
N({})

Tarski query
N({1})

Key information

Signs list:

[[+1], [-1]]

Subsets list:

[{}, {1}]

INPUTS:
p = x3 - x
qs = [q1]

Figure 4: Matrix equation for p = x3 − x, q1 = 3x3 + 2.

in bitsizes of coefficients in the remainder sequences [1, Section 8.3], so it will not be not
achieved by the current Isabelle/HOL formalization of Tarski queries [18] without further
optimization.

For the matrix equation, we lift Tarski queries to a subset of the input polynomials:

Definition 3. Given a univariate polynomial p 6= 0, univariate polynomials q1, . . . , qn, and
a subset I ⊆ {1, . . . , n}, the Tarski query N(I) with respect to p is:

N(I) = N(p,Πi∈Iqi) = #{x ∈ R | p(x) = 0,Πi∈Iqi(x) > 0}
−#{x ∈ R | p(x) = 0,Πi∈Iqi(x) < 0}.

The matrix equation is the relationship M · w = v between the following three entities:

• M , the l-by-m matrix with entries Mi,j = Πk∈Iiσ̃j(qk) ∈ {−1, 1} for Ii ∈ S and σ̃j ∈ Σ̃,

• w, the length m vector whose entries count the number of roots of p where q1, . . . , qn has
sign assignment σ̃, i.e., wi = #{x ∈ R | p(x) = 0, sgn(qj(x)) = σ̃i(qj) for all 1 ≤ j ≤ n},

• v, the length l vector consisting of Tarski queries for the subsets, i.e., vi = N(Ii).

Observe that the vector w is such that the sign assignment σ̃i is consistent (at a root of
p) iff its corresponding entry wi is nonzero. Thus, the matrix equation can be used to solve
the sign determination problem by solving for w. In particular, the matrix M and the vector
v are both computable from the input (candidate) sign assignments and subsets. Further,
since the subsets will be chosen such that the constructed matrix M is invertible, the matrix
equation uniquely determines w and the nonzero entries of w = M−1 · v.

Matrix Equation: Construction. The simplest (base) case of the algorithm is when
there is a single polynomial [q1]. Here, it suffices to set up a matrix equation M ·w = v from
which we can compute all consistent sign assignments. As hinted at earlier, this can be done
with the list of index subsets [{}, {1}] and the candidate sign assignment list [(+1), (−1)],
where M is computed as in Def. 3. Taking a concrete example, suppose we want to find the
list of consistent sign assignments for ` = [q1] = [3x3 + 2] at the zeros of p = x3 − x. This is
illustrated in Fig. 4.

11

Combine subsets lists,
calculate RHS vector
{}
{1}

{}
{2}

{} U {}
{} U {2}
{1} U {}
{1} U {2}

v =

p = x3 – x
q_list = [3x3 + 2, 2x2 – 1]

Combine the
signs lists

[1]
[-1]

[1, 1]
[1, -1]
[-1, 1]
[-1, -1]

[1]
[-1]

Calculate matrix, solve for LHS vector,
determine consistent sign assignments

1
1
1
0

M-1 v =
1 1
1 -1

1 1
1 -1

1 1
1 -1

-1 -1
-1 1

M =

Consistent sign assignments:
++, + - , - +

N({})= 3
N({2})= 1
N({1})= 1
N({1,2})= -1

Figure 5: Combining two systems.

Now, extending our example, suppose we want to find the list of consistent sign assign-
ments for ` = [q1, q2] = [3x3 + 2, 2x2 − 1] at the zeros of p = x3 − x. We will form the base
case systems for each of `1 = [q1] and `2 = [q2], and then we will need to combine these
systems, which requires combining the subsets and signs lists.

Observe that any consistent sign assignment for ` must have a prefix that is itself a con-
sistent sign assignment to `1 and a suffix that is itself a consistent sign assignment to `2.
Thus, the combined list of sign assignments is obtained by concatenating every possible sign
assignment for `1 with every possible sign assignment for `2. The combined subsets list S is
obtained in an analogous way (where concatenation is now set union), with a slight modifi-
cation: the subset list for `2 indexes polynomials from `2, but those polynomials now have
different indices in `, so we must reindex appropriately. Once we have the combined subsets
list, we can calculate the RHS vector v with Tarski queries, as explained in Section 3.1.3.
The matrix M is computed from the signs and subsets lists as prescribed by Def. 34, and the
LHS vector w is calculated as M−1v. The combination step for our example is visualized in
Fig. 5.

Now, every combination step in BKR is followed by a reduction step to remove incon-
sistent sign assignments. The reduction step for the matrix equation with p = x3 − x and
` = [3x3 +2, 2x2−1] is visualized in Fig. 6. Here, information about the inconsistent sign as-
signment −− is removed from the matrix equation. Although this example only has a small
reduction in matrix size (from 4x4 to 3x3), in the next section, we will see (experimentally)
the positive impact of BKR’s reduction step on some larger examples.

Matrix Equation: Comments on Renegar. Remember that Renegar does not enforce
the restriction that the qi’s are relatively prime to p in the construction of the matrix equa-
tion. To handle the possibility that some qi’s may share roots with p, each entry of Renegar’s
subset list is a pair of subsets I1, I2, and Tarski queries are computed as follows:

N(I1, I2) = #{x ∈ R | p(x) = 0, qi(x) = 0 ∀i ∈ I1,Πi∈I2qi(x) > 0}
−#{x ∈ R | p(x) = 0, qi(x) = 0 ∀i ∈ I1,Πi∈I2qi(x) < 0}.

4Alternately, it holds that the combined matrix M is the Kronecker product of the matrices from the two
systems that are being combined. Formalizing this allowed us to easily derive certain nice properties of M :
for example, we prove the Kronecker product of two invertible matrices is itself invertible; it then follows
that M is invertible as it is the Kronecker product of two invertible matrices.

12

1
1
1
0

1 1
1 -1

1 1
1 -1

1 1
1 -1

-1 -1
-1 1

3
1
1
-1

. =

Step 1: Identify 0’s in LHS vector

=

1
1
1
0

Step 2: Drop those entries and the
corresponding columns in the matrix

1 1
1 -1

1 1
1 -1

1 1
1 -1

-1 -1
-1 1

3
1
1
-1

. =

Step 3: Identify a basis of row vectors

1
1
1

1 1
1 -1

1
1

1 1
1 -1

-1
-1

3
1
1
-1

. =
1 1
1 -1

1
1

1 1 -1

Step 4: Take those row vectors and
corresponding rows in the RHS vector

. 1
1
1

=
3
1
1

Figure 6: Reducing a system.

This generalization requires a slightly larger matrix equation—the base case is 3 × 3
instead of 2 × 2—and slightly more intricacy in the setup, and this is the construction
that we intend to build on in the multivariate case (to avoid the complexity of generalizing
coprimality to multivariate polynomials in Isabelle/HOL).

3.1.4 Univariate Formalization and Code Export

Our formalization of univariate BKR is approximately 7,000 lines in Isabelle/HOL and
is available on the Archive of Formal Proofs (AFP) [11]. Our top-level formalized al-
gorithms are called decide_universal and decide_existential, both with type rat poly

fml ⇒ bool. The definition of decide_existential is as follows (the omitted definition of
decide_universal is similar):

definition decide_existential :: "rat poly fml ⇒ bool"

where "decide_existential fml = (

let (fml_struct,polys) = convert fml in

find (lookup_sem fml_struct) (find_consistent_signs polys) 6= None)"

Here, convert extracts the list of constituent polynomials polys from the input formula
fml along with the formula structure fml_struct, find_consistent_signs returns the list of
all consistent sign assignments conds for polys, and find checks that predicate lookup_sem

fml_struct is true at one of those sign assignments. Given a sign assignment σ, lookup_sem
fml_struct σ evaluates the truth value of fml at σ by recursively evaluating the truth of
its subformulas after replacing polynomials by their sign according to σ using the formula
structure fml_struct. Thus, decide_existential returns true iff fml evaluates to true for
at least one of the consistent sign assignments of its constituent polynomials.

The correctness theorem for decide_universal and decide_existential is shown below,
where fml_sem fml x evaluates the truth of formula fml at the real value x.

theorem decision_procedure:

"(∀ x::real. fml_sem fml x) ←→ decide_universal fml"

"(∃ x::real. fml_sem fml x) ←→ decide_existential fml"

13

This theorem depends crucially on find_consistent_signs correctly finding the exact
set of all consistent sign assignments for polys, i.e., solving the sign determination problem.

We export these decision procedures to Standard ML, compile with mlton, and test on
10 microbenchmarks from [19, Section 8]. While we did not perform extensive experiments
(since our implementation is unoptimized), we compare the performance of our procedure
using BKR sign determination versus an unverified implementation that naively uses the
matrix equation (Section 3.1.3). We also compare to Li et al.’s univ rcf CAD-based decision
procedure [19] which can be directly executed as a proof tactic in Isabelle/HOL (code kindly
provided by Wenda Li). The benchmarks were ran on an Ubuntu 18.04 laptop with 16GB
RAM and 2.70 GHz Intel Core i7-6820HQ CPU. Results are in Table 1.

The most significant bottleneck in our current implementation is the computation of
Tarski queries N(p, q) when solving the matrix equation. Recall for our algorithm (Sec-
tion 3.1.3) the input q to N(p, q) is a product of (subsets of) polynomials appearing in the
inputs. Indeed, Table 1 shows that the algorithm performs well when the factors have low
degrees, e.g., ex1, ex2, ex4, and ex5. Conversely, it performs poorly on problems with many
factors and higher degrees, e.g., ex3, ex6, and ex7. Further, as noted in experiments by Li
and Paulson [20], the Sturm-Tarski theorem in Isabelle/HOL currently uses a straightforward
method for computing remainder sequences which can also lead to significant (exponential)
blowup in the bitsizes of rational coefficients of the involved polynomials. This is especially
apparent for ex6 and ex7, which have large polynomial degrees and high coefficient com-
plexity; these time out without completing even a single Tarski query. From Table 1, the
BKR approach successfully reduces the number of Tarski queries as the number of input
factors grows—the number of queries for BKR is dependent on the polynomial degrees and
the number of consistent sign assignments, while the naive approach always requires exactly
(n
2

+ 1)2n queries for n factors (which are reported in Table 1 whether completed or not).
On the other hand, there is some overhead for smaller problems, e.g., ex1, ex3, that arises
from the recursion in BKR.

The univ rcf tactic relies on an external solver (we used Mathematica 12.1.1) to produce
untrusted certificates which are then formally checked (by reflection) in Isabelle/HOL [19].
This procedure is optimized and efficient: except for ex7 where the tactic timed out, most
of the time (roughly 3 seconds per example) is actually spent to start an instance of the
external solver.

3.2 Multivariate BKR, Challenges, and Fallback Options

Now that we have detailed univariate BKR, we turn to the multivariate algorithm. In
this section, we will explore the intuition underlying this algorithm, the challenges that its
formalization will pose, and the fallback option of formalizing a slightly simpler multivariate
QE algorithm.

Intuitively, the only parts of the construction of the matrix equation that are specific
to univariate polynomials are 1) the computation of the Tarski queries and 2) the use of
the Cauchy root bound. For 2), we can instead compute sign assignments at limit points
directly, as in Renegar. For 1), intuitively the Tarski query can be generalized to multivariate
polynomials because its computation only requires sign information on the coefficients of a
polynomial.

14

Formula #Poly #Factor
#N(p, q)

(Naive)
#N(p, q)

(BKR)
Time

(Naive)
Time

(BKR)
Time

([19])

ex1 4 (12) 3 (1) 20 31 0.003 0.006 3.020
ex2 5 (6) 7 (1) 576 180 5.780 0.442 3.407
ex3 4 (22) 5 (22) 112 120 1794.843 1865.313 3.580
ex4 5 (3) 5 (2) 112 95 0.461 0.261 3.828
ex5 8 (3) 7 (3) 576 219 28.608 8.333 3.806
ex6 22 (9) 22 (8) 50331648 - - - 6.187
ex7 10 (12) 10 (11) 6144 - - - -
ex1 ∧ 2 9 (12) 9 (1) 2816 298 317.432 3.027 3.033
ex1 ∧ 2 ∧ 4 13 (12) 12 (2) 28672 555 - 51.347 3.848
ex1 ∧ 2 ∧ 5 16 (12) 14 (3) 131072 826 - 436.575 3.711

Table 1: Comparison of decision procedures using naive and BKR sign determination and Li
et al.’s univ rcf tactic in Isabelle/HOL [19]. All formulas are labeled following [19, Section
8]; formulas with ∧ indicate conjunctions of the listed examples. Columns: #Poly counts
the number of distinct polynomials appearing in the formula (maximum degree among poly-
nomials in parentheses), #Factor counts the number of distinct factors from (1) in Sec-
tion 3.1.2 (maximum degree among factors in parentheses), #N(p, q) counts the number of
Tarski queries made by each approach, and Time reports time taken (seconds, 3 d.p.) for
each decision procedure to run to completion. Cells with - indicate a timeout after 1 hour.

Let us expand on this point a little more closely. Recalling Theorem 1, we intend to
treat multivariate polynomials in n variables as univariate polynomials (whose coefficients
are polynomials in n−1 variables) and so compute remainder sequences of polynomials with
attention to a single variable. These remainder sequences will be sequences of polynomials in
n−1 variables rather than integers, but we only need to know the signs of those polynomials
(rather than their values). That reduces the problem of sign determination for polynomials
in n variables to a sign determination problem for polynomials in n−1 variables. In this way
we intend to successively reduce multivariate computations to a series of (already formalized)
univariate computations.

Consider the following concrete example: let p = x2y + 1 and q = xy + 1. Suppose
we choose to first eliminate y. If x is 0, then the analysis for the remaining p = q = 1 is
simple. Otherwise, both x and x2 are nonzero. Now, we calculate the remainder sequence
from Theorem 1: p1 = x2y + 1, p2 = x3y + x2, and p3 = −(1 − x). To find p3, we calculate
x2y + 1 = 1

x
(x3y + x2) + (1− x), where 1

x
is well-defined since x 6= 0.

The leading coefficients of p1, p2, and p3 as polynomials in y are a1 = x2, a2 = x3, and
a3 = −(1 − x). Here, we must use our univariate algorithm to fix some consistent sign
assignment in x on the ai’s, taking into account our earlier stipulation that x and x2 are
nonzero. Say that we choose, for example, x positive, x3 positive, and −(1−x) negative. (A
full QE procedure would need to consider all possible consistent sign assignments.) Because
of our chosen sign assignment, a1 is positive, a2 is positive, and a3 is negative. Still following
Theorem 1, S+(p, q) = 1 and S−(p, q) = 0. The Tarski query N({1}) is then computed as
N({1}) = N(p, q) = S−(p, q)− S+(p, q) = −1.

15

Following this intuition, multivariate BKR works inductively on the number of variables
in the polynomial—thus treating multivariate polynomials as univariate polynomials with co-
efficients that are themselves multivariate polynomials, but in one fewer variable. Fortunately,
it is highly likely that certain steps from the univariate BKR algorithm—particularly the uni-
variate reduction step, which was the most challenging part of the univariate formalization—
will essentially automatically generalize to the multivariate case. Intuitively, the reduction
step requires no specific manipulations of polynomials, just manipulations of matrices, which
can be treated the same way regardless of whether they are capturing sign-information for
univariate polynomials or for multivariate polynomials.

However, despite this significant hope, formalizing multivariate BKR in Isabelle/HOL
will pose significant technical challenges. First, working with multivariate polynomials in a
theorem prover is considerably more challenging than working with univariate polynomials.
Even, for example, treating a multivariate polynomial as a univariate polynomial becomes
intricate in a type-theoretic setting (these two objects have different types in Isabelle/HOL).
Some of the groundwork that we developed for manipulating multivariate polynomials in
our formalization of virtual substitution will make these challenges more surmountable, but
there is more work to be done.

Additionally, the multivariate BKR algorithm itself is somewhat nebulous, which makes
translating it into a theorem prover more challenging: gaps will need to be filled in, and
imprecisions must be rigorized. Additionally, certain steps that may sound simple at first
glance will require considerable formalization effort. For example, the idea of computing sign
assignments at limit points for multivariate polynomials sounds simple, but is somewhat in-
tricate in the context of formalization. Say we want to find the consistent sign assignments
of some list of multivariate polynomials at positive infinity with respect to a single variable.
First, we must transform the list of multivariate polynomial into a list of univariate poly-
nomials (in our variable of interest) with multivariate coefficients. Then we must perform a
recursive call on all coefficients of that list of polynomials. Then, in each resulting consis-
tent sign assignment, we must pick out the first nonzero coefficient for every polynomial and
record its sign.5 Each consistent sign assignment (CSA) from our recursive call corresponds
to a valuation that realizes that sign assignment, and then the list of the signs of the first
nonzero coefficients with respect to a particular CSA is the limit at positive infinity of the
list of multivariate polynomials in the valuation that corresponds to the CSA. So one may
observe how even conceptually simple steps necessitate intricate detail in the formalization.

Finally, the algorithm is highly recursive—even any step requiring a Tarski query requires
a recursive call. This will make it difficult to modularize the formalization of the full BKR
algorithm. Here, however, there is a fallback option: If formalizing the full multivariate
BKR algorithm ends up being overly ambitious, a fallback option would be to formalize a
naive multivariate QE algorithm. This algorithm would be more similar to Tarski’s original
algorithm in flavor, and thus quite theoretically similar to Cyril Cohen’s formalization of
Tarski’s algorithm in the theorem prover Coq [5], and it would not be as efficient as the
true BKR algorithm, as such an algorithm would trade in some efficiency in favor of ease of
formalization.

5Note that it is not enough to do the recursive call on the leading coefficients precisely because some of
those leading coefficients might be evaluated to zero in the resulting consistent sign assignments.

16

However, even this is an ambitious and technically challenging goal. The difficulties of
working with multivariate polynomials in a theorem prover remain, and the naive algorithm
shares considerable conceptual overlap with BKR, including a number of the deceptively
simple steps (like computing sign assignments at limit points). Remember that there are
currently only two fully formally verified multivariate QE algorithms, and neither is in Is-
abelle/HOL. Further, even a more naive algorithm can be augmented with limited reduction
and other optimizations, and can be linked with virtual substitution and other preprocess-
ing methods (see Section 2). This algorithm could also serve as a further stepping stone to
verifying BKR in Isabelle/HOL.

4 Conclusion

The goal of the proposed thesis is to advance the state of formally verified support for QE
by verifying a general-purpose multivariate QE algorithm based on the BKR algorithm (and
its variant by Renegar) in Isabelle/HOL and linking this with efficient formalized special-
purpose QE methods, notably VS. The bulk of the remaining work is in the formalization
of the general-purpose multivariate algorithm.

4.1 Timeline and Fallback Options

I am hoping to graduate within the summer of 2023. I believe this can be accomplished by
splitting the upcoming year into the following timeblocks:

1. Summer 2022 (approx 3 months). Virtual substitution could be considered com-
pleted for the purposes of this thesis. However, I have the opportunity to mentor an
undergraduate student this upcoming summer, and I am planning to use that time to
work with him on implementing limited and special-purpose QE methods, with the
hope that we will be able to successfully identify and formalize a number of heavy-
hitting optimizations. If we achieve practically significant speedup over the existing
version of VS, we could submit to a conference (e.g. FM or ITP) in the spring; however,
this is not an essential component of this thesis, as VS could be used as-is.

2. Fall 2022 and Early Spring 2023 (approx 8 months). I plan to use this time to
finish formalizing a full multivariate QE algorithm, and to link this with VS. If all goes
well, this algorithm will be somewhat BKR-like, in that it will implement reasonably
aggressive reduction (for better efficiency). Given the ambitious and inherently uncer-
tain nature of this, the fallback option is to formalize a more naive, somewhat more
Tarski-like algorithm that implements more limited reduction (for better ease of forma-
lization). There are a number of conferences in the fall and winter that would be good
targets for this work; for example, the deadline for TACAS is usually in mid-October,
and the deadline for LICS typically falls in January.

3. Late Spring and Summer 2023 (approx 3 months). Thesis writing, followed by
thesis defense.

17

References

[1] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Alge-
braic Geometry. Springer, Berlin, Heidelberg, second edition, 2006. doi:10.1007/

3-540-33099-2.

[2] Michael Ben-Or, Dexter Kozen, and John H. Reif. The complexity of elementary
algebra and geometry. J. Comput. Syst. Sci., 32(2):251–264, 1986. doi:10.1016/

0022-0000(86)90029-2.

[3] Christopher W. Brown. Improved projection for cylindrical algebraic decomposition. J.
Symb. Comput., 32(5):447–465, 2001. doi:10.1006/jsco.2001.0463.

[4] Amine Chaieb. Automated methods for formal proofs in simple arithmetics and algebra.
PhD thesis, Technische Universität München, 2008.

[5] Cyril Cohen. Formalized algebraic numbers: construction and first-order theory. PhD
thesis, École polytechnique, Nov 2012.

[6] Cyril Cohen and Assia Mahboubi. Formal proofs in real algebraic geometry: from
ordered fields to quantifier elimination. Log. Methods Comput. Sci., 8(1), 2012. doi:

10.2168/LMCS-8(1:2)2012.

[7] George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In H. Barkhage, editor, Automata Theory and Formal Languages, vol-
ume 33 of LNCS, pages 134–183. Springer, 1975. doi:10.1007/3-540-07407-4_17.

[8] George E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput., 12(3):299–328, 1991. doi:10.1016/S0747-7171(08)

80152-6.

[9] Katherine Cordwell, César A. Muñoz, and Aaron Dutle. Improving automated strategies
for univariate quantifier elimination. Technical report, NASA, 2021. URL: https:

//shemesh.larc.nasa.gov/fm/papers/NASA-TM-20205010644.pdf.

[10] Katherine Cordwell, Yong Kiam Tan, and André Platzer. A verified decision procedure
for univariate real arithmetic with the BKR algorithm. In Liron Cohen and Cezary
Kaliszyk, editors, ITP, volume 193 of LIPIcs, pages 14:1–14:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITP.2021.14.

[11] Katherine Cordwell, Yong Kiam Tan, and André Platzer. The BKR decision procedure
for univariate real arithmetic. Archive of Formal Proofs, April 2021. https://www.

isa-afp.org/entries/BenOr_Kozen_Reif.html, Formal proof development.

[12] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika
Ábrahám. SMT-RAT: an open source C++ toolbox for strategic and parallel SMT
solving. In Marijn Heule and Sean A. Weaver, editors, SAT, volume 9340 of LNCS,
pages 360–368. Springer, 2015. doi:10.1007/978-3-319-24318-4_26.

18

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1016/0022-0000(86)90029-2
https://doi.org/10.1016/0022-0000(86)90029-2
https://doi.org/10.1006/jsco.2001.0463
https://doi.org/10.2168/LMCS-8(1:2)2012
https://doi.org/10.2168/LMCS-8(1:2)2012
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1016/S0747-7171(08)80152-6
https://shemesh.larc.nasa.gov/fm/papers/NASA-TM-20205010644.pdf
https://shemesh.larc.nasa.gov/fm/papers/NASA-TM-20205010644.pdf
https://doi.org/10.4230/LIPIcs.ITP.2021.14
https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html
https://www.isa-afp.org/entries/BenOr_Kozen_Reif.html
https://doi.org/10.1007/978-3-319-24318-4_26

[13] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume 4963 of LNCS, pages
337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

[14] Andreas Dolzmann and Thomas Sturm. REDLOG: computer algebra meets computer
logic. SIGSAM Bull., 31(2):2–9, 1997. doi:10.1145/261320.261324.

[15] Antonio J. Durán, Mario Pérez, and Juan L. Varona. The misfortunes of a trio of
mathematicians using computer algebra systems. can we trust in them? Notices of the
AMS, 61(10):1249–1252, 2014. doi:10.1090/noti1173.

[16] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer.
KeYmaera X: An axiomatic tactical theorem prover for hybrid systems. In Amy P.
Felty and Aart Middeldorp, editors, CADE, volume 9195 of LNCS, pages 527–538.
Springer, 2015. doi:10.1007/978-3-319-21401-6_36.

[17] Lars Hupel and Tobias Nipkow. A verified compiler from Isabelle/HOL to CakeML. In
Amal Ahmed, editor, ESOP, volume 10801 of LNCS, pages 999–1026. Springer, 2018.
doi:10.1007/978-3-319-89884-1_35.

[18] Wenda Li. The Sturm-Tarski theorem. Archive of Formal Proofs, September 2014.
https://isa-afp.org/entries/Sturm_Tarski.html, Formal proof development.

[19] Wenda Li, Grant Olney Passmore, and Lawrence C. Paulson. Deciding univariate
polynomial problems using untrusted certificates in Isabelle/HOL. J. Autom. Reason.,
62(1):69–91, 2019. doi:10.1007/s10817-017-9424-6.

[20] Wenda Li and Lawrence C. Paulson. Counting polynomial roots in Isabelle/HOL: A
formal proof of the Budan-Fourier theorem. In CPP, page 52–64, New York, NY, USA,
2019. ACM. doi:10.1145/3293880.3294092.

[21] Scott McCallum. An improved projection operation for cylindrical algebraic decom-
position. In B. F. Caviness, editor, EUROCAL, volume 204 of LNCS, pages 277–278.
Springer, 1985. doi:10.1007/3-540-15984-3_277.

[22] Sean McLaughlin and John Harrison. A proof-producing decision procedure for real
arithmetic. In Robert Nieuwenhuis, editor, CADE, volume 3632 of LNCS, pages 295–
314. Springer, 2005. doi:10.1007/11532231_22.

[23] Casey B. Mulligan, Russell J. Bradford, James H. Davenport, Matthew England, and
Zak Tonks. Quantifier elimination for reasoning in economics. CoRR, abs/1804.10037,
2018. URL: http://arxiv.org/abs/1804.10037, arXiv:1804.10037.

[24] César A. Muñoz, Anthony J. Narkawicz, and Aaron Dutle. A decision procedure for
univariate polynomial systems based on root counting and interval subdivision. J.
Formaliz. Reason., 11(1):19–41, 2018. doi:10.6092/issn.1972-5787/8212.

19

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/261320.261324
https://doi.org/10.1090/noti1173
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-89884-1_35
https://isa-afp.org/entries/Sturm_Tarski.html
https://doi.org/10.1007/s10817-017-9424-6
https://doi.org/10.1145/3293880.3294092
https://doi.org/10.1007/3-540-15984-3_277
https://doi.org/10.1007/11532231_22
http://arxiv.org/abs/1804.10037
http://arxiv.org/abs/1804.10037
https://doi.org/10.6092/issn.1972-5787/8212

[25] Anthony Narkawicz, César A. Muñoz, and Aaron Dutle. Formally-verified decision pro-
cedures for univariate polynomial computation based on Sturm’s and Tarski’s theorems.
J. Autom. Reason., 54(4):285–326, 2015. doi:10.1007/s10817-015-9320-x.

[26] Tobias Nipkow. Linear quantifier elimination. J. Autom. Reason., 45(2):189–212, 2010.
doi:10.1007/s10817-010-9183-0.

[27] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. doi:10.

1007/3-540-45949-9.

[28] Grant Olney Passmore. Combined Decision Procedures for Nonlinear Arithmetics, Real
and Complex. PhD thesis, School of Informatics, University of Edinburgh, 2011.

[29] Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience with
Sledgehammer, a practical link between automatic and interactive theorem provers. In
Geoff Sutcliffe, Stephan Schulz, and Eugenia Ternovska, editors, IWIL, volume 2 of
EPiC Series in Computing, pages 1–11. EasyChair, 2010.

[30] André Platzer. Logical Foundations of Cyber-Physical Systems. Springer, Cham, 2018.
doi:10.1007/978-3-319-63588-0.

[31] André Platzer, Jan-David Quesel, and Philipp Rümmer. Real world verification. In
Renate A. Schmidt, editor, CADE, volume 5663 of LNCS, pages 485–501. Springer,
2009. doi:10.1007/978-3-642-02959-2_35.

[32] André Platzer and Yong Kiam Tan. Differential equation invariance axiomatization. J.
ACM, 67(1):6:1–6:66, 2020. doi:10.1145/3380825.

[33] James Renegar. On the computational complexity and geometry of the first-order theory
of the reals, part III: quantifier elimination. J. Symb. Comput., 13(3):329–352, 1992.
doi:10.1016/S0747-7171(10)80005-7.

[34] Matias Scharager, Katherine Cordwell, Stefan Mitsch, and André Platzer. Verified
quadratic virtual substitution for real arithmetic. In Marieke Huisman, Corina S. Pasare-
anu, and Naijun Zhan, editors, FM, volume 13047 of LNCS, pages 200–217. Springer,
2021. doi:10.1007/978-3-030-90870-6_11.

[35] Matias Scharager, Katherine Cordwell, Stefan Mitsch, and André Platzer. Verified
quadratic virtual substitution for real arithmetic. Archive of Formal Proofs, Au-
gust 2021. https://www.isa-afp.org/entries/Virtual_Substitution.html, For-
mal proof development.

[36] Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell, and André
Platzer. Pegasus: Sound continuous invariant generation. Form. Methods Syst.
Des., 2021. Special issue for selected papers from FM’19. doi:10.1007/

s10703-020-00355-z.

20

https://doi.org/10.1007/s10817-015-9320-x
https://doi.org/10.1007/s10817-010-9183-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.1007/978-3-642-02959-2_35
https://doi.org/10.1145/3380825
https://doi.org/10.1016/S0747-7171(10)80005-7
https://doi.org/10.1007/978-3-030-90870-6_11
https://www.isa-afp.org/entries/Virtual_Substitution.html
https://doi.org/10.1007/s10703-020-00355-z
https://doi.org/10.1007/s10703-020-00355-z

[37] Christian Sternagel and René Thiemann. Executable multivariate polynomials. Archive
of Formal Proofs, August 2010. https://www.isa-afp.org/entries/Polynomials.

html, Formal proof development.

[38] Thomas Sturm. Thirty years of virtual substitution: Foundations, techniques, applica-
tions. In Manuel Kauers, Alexey Ovchinnikov, and Éric Schost, editors, ISSAC, pages
11–16. ACM, 2018. doi:10.1145/3208976.3209030.

[39] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. RAND Cor-
poration, Santa Monica, CA, 1951. Prepared for publication with the assistance of
J.C.C. McKinsey.

[40] René Thiemann and Akihisa Yamada. Matrices, Jordan normal forms, and spectral ra-
dius theory. Archive of Formal Proofs, August 2015. https://isa-afp.org/entries/
Jordan_Normal_Form.html, Formal proof development.

[41] René Thiemann, Akihisa Yamada, and Sebastiaan Joosten. Algebraic numbers in
Isabelle/HOL. Archive of Formal Proofs, December 2015. https://isa-afp.org/

entries/Algebraic_Numbers.html, Formal proof development.

[42] Volker Weispfenning. The complexity of linear problems in fields. J. Symb. Comput.,
5(1/2):3–27, 1988. doi:10.1016/S0747-7171(88)80003-8.

[43] Volker Weispfenning. Quantifier elimination for real algebra - the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput., 8(2):85–101, 1997. doi:10.1007/

s002000050055.

21

https://www.isa-afp.org/entries/Polynomials.html
https://www.isa-afp.org/entries/Polynomials.html
https://doi.org/10.1145/3208976.3209030
https://isa-afp.org/entries/Jordan_Normal_Form.html
https://isa-afp.org/entries/Jordan_Normal_Form.html
https://isa-afp.org/entries/Algebraic_Numbers.html
https://isa-afp.org/entries/Algebraic_Numbers.html
https://doi.org/10.1016/S0747-7171(88)80003-8
https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/s002000050055

	Introduction
	Proposed Approach: VS and Preprocessing
	What is Virtual Substitution?
	Experimental Results
	Proposed Work

	Proposed Approach: BKR
	Univariate BKR
	From Univariate Problems to Sign Determination
	From Sign Determination to Restricted Sign Determination
	Solving Restricted Sign Determination with a Matrix Equation
	Univariate Formalization and Code Export

	Multivariate BKR, Challenges, and Fallback Options

	Conclusion
	Timeline and Fallback Options

	References

