Architectural Mismatch in Service-Oriented Architectures

Kevin Bierhoff Mark Grechanik and Edy S. Liongosari
Institute for Software Research, Carnegie Mellon University Systems Integration Group, Accenture Technology Labs
5000 Forbes Avenue, Pittsburgh, PA 15213 161 North Clark Street, Chicago, IL 60601
kevin.bierhoff @ cs.cmu.edu {mark.grechanik, edy.s.liongosari} @accenture.com
Abstract the two components interoperable. The conversion routines

represented a significant engineering effort and seriously af-

Architectural mismatch results from implicit and con- fected the performance of the resulting system [9]. This pa-
flicting assumptions that designers of components makeper will show that this and other problems of architectural
about the environments in which these components shouldnismatch are still and sometimes more relevant in develop-
operate. While architectural mismatch was extensively ing Service-Oriented Architectures.
studied in monolithic and distributed applications, it has Service-Oriented Architectures (SOAfine how soft-
not been applied to Service-Oriented Architectures (SOAs).ware components calleservicesare organized into struc-

A major contribution of this paper is the analysis of how tures to support business requirements [12]. Web services
architectural mismatch affects SOAs. We study how implicitare software components that exchange information (i.e.,
and conflicting assumptions that designers make about wekinteroperate [2]) in heterogenous environments including
services and their compositions affect the quality of result- the Internet. They currently gain widespread acceptance
ing SOA-based systems. We support our analysis with empartly because of the business demand for applications to
pirical data that we collected from a large-scale SOA-based exchange information [8]. SOAs and web services enable
project within Accenture and other smaller projects. organizations to automate business processes by increasing
the speed and effectiveness of information exchange.

Architectural mismatch offers a taxonomic framework
for understanding challenges in building applications out
of re-usable components. This framework was extensively
,) o studied for monolithic and distributed applications; how-

_ Architectural mismatchresults from implicit and con- gyer it has not been applied to SOAs. A major contribution
flicting assumptions that designers of components makegs this paper is our analysis of how architectural mismatch
about the enwronment m_whlch these components WI|| OP- affects SOAs. We study how implicit and conflicting as-
erate [9]. Architectural mismatch impedes constructing ap- symptions that designers make about web services and their
plications from third-party reusable components that, on ¢ompositions affect the quality of resulting SOA-based sys-
a superficial level, appear compatible. Even if compo- \ems. We support our analysis with empirical data that we

nents are written in the same programming language, runco|jected as part of Tarpon, a large-scale SOA-based project
on the same platform, and are intended for reuse, soft-\ithin Accenture. and other smaller projects.

ware engineers can encounter significqnt problems in get- \y\e show that architectural mismatch is not only help-
ting components to work together. Engineers may have t0¢ | in categorizing and understanding practical challenges
re-implement existing functionality, provide glue code 10, pyiding SOAs. It turns out that all originally described

mediate between components, or even change component,ngiityents of architectural mismatch are still relevant in

implementations in order to overcome mismatch. The re- yq context of SOA. Two primary concerns for architectural

sulting systems can be intolerably large and slow [9]. mismatch in SOAs are messaging overhead and incompati-
As a concrete example, Garlan et al observed a mismatchyjjities between SOA platform vendors.

between message data models of two components they used

in constructing an interactive modeling environment. One .) .

component assumed that messages would be passed as hedp Categories of Architectural Mismatch

data structures while another component expected character

strings. Even though this mismatch was discovered early, Architectural mismatch provides a taxonomic frame-
non-trivial message conversions were necessary to makevork for understanding how conflicting assumptions arise.

1. Introduction

The following categorization of causes for architectural 3. The Nature of Services
mismatch is based on Garlan et al's original taxonomy [9].
From an architectural point of view, a service provides a
1. Assumptions about theature of componentscan be |ogically coherent piece of functionality to its clients. Mis-
divided into four sub-categories. match can occur when designers of services define their na-
ture in ways that make it difficult to use these services.
e Functionality supplyComponents provide func-
tionality that may not be needed in the final as- 3.1. Functionality Supply
sembly, leading to excessive code size of result-

ing applications. Problems with functionality supply exist in SOA both for
e Infrastructure expectations_COmponents may individual services and because of the employed SOA in-
assume the presence of certain resources (e.g., lifrastructure. Individual services are designed to be reusable
braries or hardware) that may not be available, and will therefore provide a certain flexibility in the way
rendering these components non-usable. they can be used. This can lead to oversized services with
, i bloated interfaces. For example, an interest payment calcu-
» Control model Designers assume that their COm- |44j0n service could be used for home mortgages, auto and
ponents will own the main thread of control that it card loans. The rules of calculation are somewhat
contains an infinite event processing loop. Coor- igerent for different loan-types. Thus, the service's incom-
dlnat_lng these event loops is n_on-trIVIaI an(_i MaY ing and outgoing messages now have to include the type of
require change to component implementations. oo a5 well as different regulatory and location parame-
e Data manipulation. Designers make assump- ters needed for interest calculations, regardless of whether
tions about how clients manipulate component clients actually exercise this flexibility. Thus mismatch in
data structures. functionality supply can lead to oversized messages.
Another source of mismatch in functionality of individ-
ual services is the level of service granularity of an SOA.
While many SOA experts advocate using business pro-
cesses to define the scope and granularity of the underlying
services, the problem of granularity mismatch does not go
away because business processes can often be decomposed
into smaller process steps. If processes are too fine-grained
then messaging overhead becomes overwhelming. If ser-
vices are too large then messages can become big and cause
e Message data model.Incompatibilities in the services to respond slowly.
formats of messages that components exchange This messaging overhead directly impacts the perfor-
can lead to massive performance overhead due tomance of the service. Studies have shown that XML mes-
costly message conversions. sages are typically 10 to 50 times larger than their binary
counterparts and that XML-related tasks such as parsing,
3. Global architecture structure. Designers assume transformation and serialization consumed over 93% of to-
that different clients of a component operate indepen- tal processing of typical XML documents [4]. Thus, a single
dently. However, clients may delegate tasks to eachhighly used service with oversized messages can impact an
other, violating the independence assumption. Suchentire SOA infrastructure.
dependencies may be subtle, for example, when two Additionally, SOA middleware commonly addresses
components access the same resource. non-functional concerns such as security. In order to ad-
dress these concerns, the middleware commonly expects
4. Construction process. Designers assume an order that services expose certain interfaces. However, despite
in which components should be constructed and how having standards like WS-Security, these interfaces may
these components are combined into the system. Con-iffer between middleware vendors, leading to vendor lock-
flicting construction order assumptions can complicate in or mismatches in critical areas such as security or relia-
the application’s construction process. bility (see section 7.1.1). While mismatches between indi-
vidual services could potentially be corrected by changing
The following four section discuss how these categories service implementations, mismatches between SOA mid-
of architectural mismatch affect SOAs. Afterwards we sum- dleware implementations from different vendors cannot be
marize empirical evidence for our findings. addressed directly.

2. Assumptions abouwtommunication between compo-
nentscan be divided into two sub-categories.

e Asynchronous communication.Asynchronous
messaging can force conceptually single-
threaded applications to be implemented with
multiple threads.

3.2. Infrastructure Expectation In carelessly implemented services, unexpected manipula-
tions of conversational state by clients could lead to incon-

Many traditional component technologies use late bind- SiStent data and ultimately service malfunctioning. Thus

ing, i.e. components are not connected until they are eXe_mlsmatc_h due to restrictions on data manipulation by c.I|ents_,

cuted. Essentially, lately bound components only depend ondoe; exist and can lead to various problems as described in

the interfaces of other components and not on their imple- S€ction 7.2.

mentation. This introduces additional flexibility, in particu-

lar the ability to change the implementation of one compo- 4. Communication Between Services

nent without the need to re-compile other components. On

the other hand, late binding causes brittleness if a compo- Communication between applications and services par-

nent disappears that other components depend on. ticipating in an SOA is typically handled by messaging
In traditional component development, early binding is a middleware. Messages are commonly exchanged in XML

prevalent way to couple components at compile time. Be- format and routed through a message bus that connects to

cause independence of services is highlighted in the con-all applications and services. Messaging follows an asyn-

text of SOA we suspect that changing service interfaces andchronous model and some services will even publish no-

service disappearance may be a more common phenomenification messages without knowing which other services

in SOAs. Loose coupling between services is one of the receive these notifications.

promises and advantages of SOA but it requires more work

in controlling the dependencies between services and acrosg.1. Asynchronous Communication

versions of a service. Service directories currently begin to

address this issue. In theory, services in SOA should be autonomous and
communicate asynchronously. Asynchronous communica-
3.3. Control Model tion can be a significant complication because seemingly

single-threaded applications are forced into multi-threaded
implementations. On the positive side, service orchestra-
tion engines are specifically designed to facilitate taking
advantage of asynchronous communication without burden-
ing developers with traditional problems of multi-threaded
software. Unfortunately, services are rarely completely
autonomous and they do not communicate solely through
. . . W asynchronous means. Such deviations from the “norm”
gine. The orchestration engine owns the “logical” thread of L .)

; o can lead to significant problems in properly orchestrating
control that drives the overall application. Control model o . . :

services: orchestration engines and other services have to

mismatches can occur when multiple orchestration enginesb ; . :
. : . e prepared for service dependencies and occasional syn-
have to cooperate. In particular, orchestration engines may

. ._“chronous communication.

have to cooperate in a peer-to-peer manner across organiza-

tional boundaries to accomplish a task (see section 7.1.2).

Similar problems can occur in SOAs with a federated topol- 4.2. Message Data Model
ogy where orchestrated services are exposed as “logical”

services to other orchestration engines, thus creating a hier-h Sefrwces ty_p|cally comfmunlcate _througg XM!‘ ?”‘?'
archy of orchestrations. therefore require support for accessing and manipulating

XML. XML messages are difficult to parse and relatively
X . verbose. Thus messaging overhead is a considerable factor
3.4. Data Manipulation in designing an SOA even if no mismatch occurs [7].
Mismatch in message data models essentially means that
On the surface, data manipulation problems are lessmessages from one service do not fit the expectations of an-
problematic in SOA than with traditional components. Ser- other service. Consider the case where output of one service
vices typically cannot expose internal data to clients andis used as part of the input to another service. If the two ser-
therefore clients cannot manipulate this data directly. How- vices use different message formats then the first service’s
ever, if services are stateless, the entire conversational stateutput needs to be converted so that it meets the second ser-
may be required to be sent back and forth between client andvice’s expectations (see section 7.2).
service, thereby effectively exposing internal data to exter- It has been pointed out that such conversions quickly be-
nal clients. Clients may only be allowed to modify certain come a performance bottleneck in SOAs [7]. This is be-
parts of the conversational state received from the service.cause XML is not only difficult to parse and therefore dif-

In SOASs, services operate autonomously and typically
run in independent processes. Therefore, competition for
a main thread of control (as found to be a problem with
traditional components) is not a significant issue for ser-
vices in SOAs. However, SOAs typically orchestrate ser-
vices in a workflow-like manner using an orchestration en-

ficult to convert (see section 3.1) but also because the state7.1. Tarpon
less model of services requires messages to carry the entire

conversational State, Ieading to Very Iarge messages. There- Project Tarpon is an SOA R&D initiative within Accen-
fore it appears that mismatch in message data models cafyre to explore the promises and pitfalls of SOA. The initia-
become a serious problem in SOA-based infrastructures. tjve will test everything from security to performance, de-
livering a realistic evaluation of the feasibility and benefits
of separating cross-enterprise processes from applications

5. Global Architecture Assumptions ;
that implement the processes.

Services, like traditional components, likely assume that
their clients are independent from each other. But if a ser-
vice delegates part of its work to another service and bothAs the first step in this evaluation process, Tarpon per-
access a third service then that third service’s independencéormed a series of basic messaging interoperability tests
assumption is violated. Such dependencies can be subtleicross select SOA platforms from vendors like Microsoft,
because they might be encoded in the orchestration mechaBM and Oracle. The tests we performed are a superset of
nism rather than the participating services. In this case serwhat was published by the WS-Interoperability organiza-
vices do not even know which other services work on taskstion [1]. The idea is to measure the effectiveness of various
they delegated. web services standards such as SOAP, XML and WSDL
in alleviating the differences of communication protocols
across multiple platforms [14].

We found that even with these established standards,
cross-platform interoperability continues to be a challenge.

At first glance it appears that mismatching component Specifically, we found that:
assumptions about the construction process are eliminated
in SOA. This is because services are developed and builtin- ® different vendors are adopting standards at different
dependently. By “building” we mean compiling and linking pace;
the service implementation. While the situation is certainly
much better than with traditional components it appears that
managing the build process can still be difficult because ser-
vices can depend on the interface of other services.

Consider the case where service A depends on service
B. One way of building service A is to obtain B’s interface
definition and use it for generating glue code for communi- Speed of adopting standards Because standardization
cating with B. If B (directly or indirectly) happens to depend s typically a multi-year process, by the time a specifica-
on As interface as well then it can be challenging to build tion becomes a standard, that standard may be succeeded
A and B fully automatically. by a new and better specification. That is exactly what hap-

In SOA there is another complication: Services also have pened to WS-Reliability, a reliable messaging standard that
to be deployed to on a SOA middleware in order to make is published by OASIS. By the time it became a standard
them available. This can complicate testing of indepen- it was already superseded by a new—and by many measures
dently constructed services when an expected service is nosuperior-specification: WS-ReliableMessaging (WS-RM).
(yet) available. Technigues similar to unit testing are needed The vendors are left with a dilemma of which one to
that essentially simulate the presence of other services withadopt: a published standard or a better specification. To
“mock services”. make things worse, the two are completely incompatible.
While it is not surprising that some vendors chose to im-
plement the published standard, those that chose the better
specification worked hard to ensure that the specification
becomes a standard. In the meanwhile, this left users baf-

In this section, we provide empirical evidence and show fled as they had to absorb this incompatibility at their own
models that describe how architectural mismatch surfacesexpense.
in SOAs. We review the issues of architectural mismatch Partial adoption of standards. WS-Security is another
in an Accenture project and in message exchanges betweestandard from OASIS that addresses, among other concerns,
services. The section primarily illustrates mismatches in the encryption and authentication of messages. As a fairly com-
nature of services and in communication. plicated standard it contains multiple parts, some of which

7.1.1 Basic Messaging

6. Construction Process

o different vendors are adopting different parts of a stan-
dard, and

e complex dependencies among standards further exac-
erbate confusion in implementation.

7. Empirical Evidence

are optional. For example, WS-Security specifies a hum-tion (or event-driven architecture) [6]. The idea is to move
ber of authentication protocols such as username-passwordrom a static control flow structure—similar to what is typ-
pair, X.509, Kerberos and SAML. Except for the username- ically found in a console program—to an event-based flow
password pair, it is up to the vendor to choose which other as found in many GUI environments. We found that many
protocols to implement. SOA platforms today do not support this type of control
This implies that while two products can claim that they model.
support one standard, WS-Security, they may implement
two different sets of protocols. For example, one vendor 7.2. Errors In Exchanging XML Data
supports Kerberos and the other supports SAML. This com-
plicates cross-platform interoperability. Users have to be It is conservatively estimated that the cost of program-
aware of these variations and are often times left with the ming errors in component interoperability just in the capital
least common denominator. facilities industry in the U.S. alone is $15.8 billion per year.
Complex dependencies among standard$lany stan- A primary driver for this high cost is fixing flaws in incor-
dards do not stand alone. They depend on other existingrect data exchanges between interoperating components [3].
standards. Take for example X.509, a decade-old stan-An instance of this problem is described in a case study of
dard for public key infrastructure published by International a large-scale project conducted at KLA-Tencor Corp. [10].
Telecommunication Union (ITU). One of its essential com- ~ We use the model shown in Figure 1 to describe how ser-
ponents is the key certificate. The format of this certifi- vices interoperate. In this moddl,andC are services that
cate is defined by other standards such as RSA Data Secunteract using XML dateD,. ServiceJ reads in datd,,
rity’s Public Key Cryptography Standard (PKCS). There are modifies it, and passes it as dé&ato C. ServiceCreads in
many versions of PKCS—-most notably PKCS #8 and #12. the dateD, expecting it to be an instance of some sché&na
While it is possible to convert one certificate format to an- SinceJ outputs datdD, beforeC accesses it, concurrency
other, the process is non-trivial [11]. is not relevant. However, because of design or program-
As each standard evolves independently, keeping track ofming errors, servicé outputs the dat®, as an instance of
the dependencies and compatibilities is a serious and time-a different schem&' , which is not explicitly stated in any
consuming exercise. The situation is worsened by the factdesign documents. Sin& is different fromS, a runtime
that the number of standards organizations involved in this error may be issued whedreads inD;.
area continues to grow due to the popularity of web services

and SOA. For example, the World Wide Web Consortium, g e

OASIS, Liberty Alliance, Internet Engineering Task Force, m m’
Data Management Task Force are all involved in standard- D 1 D2

izing security and identity management. As such, it is in-

evitable that they will create multiple conflicting standards. Figure 1. A model of service interoperability.

There are different reasons why programmers make such
mistakes when they write the servickandC. Based on our
Business process orchestration is a key component of SOAparticipation in large-scale projects, we observe that pro-
that distinguishes SOA from JBOWS (just a bunch of grammers often make wrong assumptions about schemas.
web services). The idea is that each service in SOA is Given that many industrial schemas contain thousands of
autonomous and message exchanges across services agéements and types, itis easy to make mistakes about names
handled through one or more orchestration engines in aof elements and their locations in schemas. The other
workflow-like manner. This way, service invocation is en- source of errors lies in the complexity of platform API calls
tirely controlled by orchestration engines. that programmers use to access and manipulate XML data.

We found that this control model is too constraining for XML parsers export dozens of different API calls, and mas-
cross-enterprise scenarios. Take for example electronic prefering them requires a steep learning curve.
scribing: a doctor creates an electronic prescription. Before ~ Programmers often lack the knowledge of the impact
a prescription can be forwarded to a pharmacy, it has to gocaused by changing the code of some component on other
through several organizations including the insurance com-components that interoperate using XML data. This lack of
pany that checks for drug coverage under an insurance planknowledge is an effect of Curtis’ law that states that appli-
Since there are many independent organizations involved, itcation and domain knowledge is thinly spread and only one
is not clear where service orchestration should reside and®" two team members may possess the full knowledge of a
how the invocation of services should be strung together. 1A capital facility is a structure or equipment which generally costs at

This calls for an event-driven business process orchestrateast $10,000 and has a useful life of ten years or more.

7.1.2 Control Model

software system [5]. The effect of this law combined with pirical evidence for some of the identified causes for ar-

the difficulty of comprehending large-scale XML schemas chitectural mismatch. Future work includes at least three

and high complexity of platform API calls result in compo- directions. (1) Identification of additional causes for archi-

nents producing XML data that is incompatible for use by tectural mismatch in SOAs. (2) More complete empirical

other components. evidence to understand when mismatch occurs in practice.
The other source of errors is the disparity in evolving (3) Mitigating individual causes for architectural mismatch.

XML schemas and components. Database administratordVe mentioned a humber of immediate research possibili-

usually maintain schemas, and programmers maintain com4ies throughout the paper. More long-term we hope that

ponents that interoperate using XML data that should be understanding the causes for architectural mismatch helps

instances of these schemas. If a database administratoguiding SOA research and practice in their efforts.

modifies a schema and does not inform all programmers

whose services are affected by this change then some serAcknowledgements The first author was supported in part by

vices will keep modifying XML data according to the obso- NASA cooperative agreement NNAO5CS30A, NSF grant CCF-

lete schema. 0546550, and Army Research Office grant number DAAD19-02-
The problem of mismatch between XML data and 1-0389 entitled “Perpetually Available and Secure Information

schemas is typically addressed by using schema validator$YStems”

that are parts of many XML parsers. In our model shown

in Figure 1, an XML parser can validate that the dBds References

an instance of the schen®awhenJ produces this data. If

the data is not an instance of this schema, then the parser[l] Web services interoperability organization website.

throws a runtime exception. Obviously, it is better to pre- http:/www.ws-i.org/

. . L ~[2] IEEE Standard Computer Dictionary: A Compilation of
dict possible errors at compile time rather than to deal with IEEE Standard Computer Glossariesstitute of Electrical

them atruntime. _ and Electronics Engineers, January 1991.

In reality, the situation is even more complicated. Us- [3] Cos@ Analy_s_|§ of Inadequate Interoperability in theS.
ing schemas for validating XML data is often not attempted Caf)l_tal Facilities Industry, GCR 04-86NIST, Aug. 2004.

. [4] Solving the Very Large Messaging Problem in the Enter-

because it degrades components performance [15, 13] and . . S
. . prise. www.zapthink.com/report.html?id=WP-0137, Febru-
it leads to exceptions when there may not be any problems ary 2005.
when processing the data. It is important to know what data [5] B. Curtis, H. Krasner, and N. Iscoe. A field study of the
elements servicekandCaccess and modify, and if no data software design process for large syster@@mmun. ACM
element accessed Iyis modified byJ, thenJ andC may 31(11):1268-1287, 1988.

s : : - [6] V.Dheap and P. A. S. Ward. Event-driven response architec-
frtlil ;\i’:‘giﬁ:ﬁg even if the dat, is not an instance of ture for event-based computing. GASCON pages 70-82,

2005.
[7] T. Erl. Service-Oriented Architecture: A Field Guide to Inte-

; grating XML and Web ServicePrentice Hall, 2004.
8. Conclusions [8] C.Ferrisand J. A. Farrell. What are web servic€fnmun.

ACM, 46(6):31, 2003.])
This paper systematically analyzes how the different cat- [9] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-

egories of architectural mismatch affects Service Oriented m"’l‘tggé’r ";hﬁsit;hgarfgg blugilgssystems out of existing parts.
Architectures (SOAs). We study how implicit and conflict- (10} . Grechparﬁk, D. S. Batory, and D. E. Perry. Design of large-

ing assumptions that designers make about web services scale polylingual systems. I€SE pages 357—366, 2004.
and their compositions affect the quality of resulting SOA- [11] A. K. Lenstra and B. de Weger. On the possibility of con-
based systems. We support our analysis with empirical data structing meaningful hash collisions for public keys. In
that we collected as part of Tarpon, a large-scale SOA-baseq, ACISE pages 267279, 2005.

X L . J. McGovern, O. Sims, A. Jain, and M. LittleEnterprise
project within Accenture and other smaller projects. We Service Oriented Architectures: Concepts, Challenges, Rec-

show that architectural mismatch is not only helpful in cate- ommendationssection 1, pages 1-11. The Enterprise Series.
gorizing and understanding practical challenges in building Springer, first edition, 2006.
SOAs. It turns out that all originally described constituents [13] J. Meier, S. Vasireddy, A. Babbar, and A. Mackman. Improv-
of architectural mismatch are still relevant in the context ing NET application performance and scalabilificrosoft
of SOA. Two primary concerns for architectural mismatch ;4 E?&pe%%g%]efﬁ%érstanding Web ServiceXML . WSDL,
in SOAs are messaging overhead and incompatibilities be- * soap, and UDDI. Addison-Wesley Professional, May
tween SOA middleware vendors. 2002.

This paper suggests that architectural mismatch is al15] R. Schmelzer. BreakingkML to optimize performance.
promising framework for categorizing and understanding ZapThink LLC - special to SearchWebServices.codtt.

challenges around building SOAs. It provided initial em- 2002.

