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Abstract

Architectural mismatch results from implicit and con-
flicting assumptions that designers of components make
about the environments in which these components should
operate. While architectural mismatch was extensively
studied in monolithic and distributed applications, it has
not been applied to Service-Oriented Architectures (SOAs).

A major contribution of this paper is the analysis of how
architectural mismatch affects SOAs. We study how implicit
and conflicting assumptions that designers make about web
services and their compositions affect the quality of result-
ing SOA-based systems. We support our analysis with em-
pirical data that we collected from a large-scale SOA-based
project within Accenture and other smaller projects.

1. Introduction

Architectural mismatchresults from implicit and con-
flicting assumptions that designers of components make
about the environment in which these components will op-
erate [9]. Architectural mismatch impedes constructing ap-
plications from third-party reusable components that, on
a superficial level, appear compatible. Even if compo-
nents are written in the same programming language, run
on the same platform, and are intended for reuse, soft-
ware engineers can encounter significant problems in get-
ting components to work together. Engineers may have to
re-implement existing functionality, provide glue code to
mediate between components, or even change component
implementations in order to overcome mismatch. The re-
sulting systems can be intolerably large and slow [9].

As a concrete example, Garlan et al observed a mismatch
between message data models of two components they used
in constructing an interactive modeling environment. One
component assumed that messages would be passed as heap
data structures while another component expected character
strings. Even though this mismatch was discovered early,
non-trivial message conversions were necessary to make

the two components interoperable. The conversion routines
represented a significant engineering effort and seriously af-
fected the performance of the resulting system [9]. This pa-
per will show that this and other problems of architectural
mismatch are still and sometimes more relevant in develop-
ing Service-Oriented Architectures.

Service-Oriented Architectures (SOAs)define how soft-
ware components calledservicesare organized into struc-
tures to support business requirements [12]. Web services
are software components that exchange information (i.e.,
interoperate [2]) in heterogenous environments including
the Internet. They currently gain widespread acceptance
partly because of the business demand for applications to
exchange information [8]. SOAs and web services enable
organizations to automate business processes by increasing
the speed and effectiveness of information exchange.

Architectural mismatch offers a taxonomic framework
for understanding challenges in building applications out
of re-usable components. This framework was extensively
studied for monolithic and distributed applications; how-
ever, it has not been applied to SOAs. A major contribution
of this paper is our analysis of how architectural mismatch
affects SOAs. We study how implicit and conflicting as-
sumptions that designers make about web services and their
compositions affect the quality of resulting SOA-based sys-
tems. We support our analysis with empirical data that we
collected as part of Tarpon, a large-scale SOA-based project
within Accenture, and other smaller projects.

We show that architectural mismatch is not only help-
ful in categorizing and understanding practical challenges
in building SOAs. It turns out that all originally described
constituents of architectural mismatch are still relevant in
the context of SOA. Two primary concerns for architectural
mismatch in SOAs are messaging overhead and incompati-
bilities between SOA platform vendors.

2. Categories of Architectural Mismatch

Architectural mismatch provides a taxonomic frame-
work for understanding how conflicting assumptions arise.



The following categorization of causes for architectural
mismatch is based on Garlan et al’s original taxonomy [9].

1. Assumptions about thenature of componentscan be
divided into four sub-categories.

• Functionality supply.Components provide func-
tionality that may not be needed in the final as-
sembly, leading to excessive code size of result-
ing applications.

• Infrastructure expectations.Components may
assume the presence of certain resources (e.g., li-
braries or hardware) that may not be available,
rendering these components non-usable.

• Control model.Designers assume that their com-
ponents will own the main thread of control that
contains an infinite event processing loop. Coor-
dinating these event loops is non-trivial and may
require change to component implementations.

• Data manipulation. Designers make assump-
tions about how clients manipulate component
data structures.

2. Assumptions aboutcommunication between compo-
nentscan be divided into two sub-categories.

• Asynchronous communication.Asynchronous
messaging can force conceptually single-
threaded applications to be implemented with
multiple threads.

• Message data model.Incompatibilities in the
formats of messages that components exchange
can lead to massive performance overhead due to
costly message conversions.

3. Global architecture structure. Designers assume
that different clients of a component operate indepen-
dently. However, clients may delegate tasks to each
other, violating the independence assumption. Such
dependencies may be subtle, for example, when two
components access the same resource.

4. Construction process. Designers assume an order
in which components should be constructed and how
these components are combined into the system. Con-
flicting construction order assumptions can complicate
the application’s construction process.

The following four section discuss how these categories
of architectural mismatch affect SOAs. Afterwards we sum-
marize empirical evidence for our findings.

3. The Nature of Services

From an architectural point of view, a service provides a
logically coherent piece of functionality to its clients. Mis-
match can occur when designers of services define their na-
ture in ways that make it difficult to use these services.

3.1. Functionality Supply

Problems with functionality supply exist in SOA both for
individual services and because of the employed SOA in-
frastructure. Individual services are designed to be reusable
and will therefore provide a certain flexibility in the way
they can be used. This can lead to oversized services with
bloated interfaces. For example, an interest payment calcu-
lation service could be used for home mortgages, auto and
credit card loans. The rules of calculation are somewhat
different for different loan-types. Thus, the service’s incom-
ing and outgoing messages now have to include the type of
loan as well as different regulatory and location parame-
ters needed for interest calculations, regardless of whether
clients actually exercise this flexibility. Thus mismatch in
functionality supply can lead to oversized messages.

Another source of mismatch in functionality of individ-
ual services is the level of service granularity of an SOA.
While many SOA experts advocate using business pro-
cesses to define the scope and granularity of the underlying
services, the problem of granularity mismatch does not go
away because business processes can often be decomposed
into smaller process steps. If processes are too fine-grained
then messaging overhead becomes overwhelming. If ser-
vices are too large then messages can become big and cause
services to respond slowly.

This messaging overhead directly impacts the perfor-
mance of the service. Studies have shown that XML mes-
sages are typically 10 to 50 times larger than their binary
counterparts and that XML-related tasks such as parsing,
transformation and serialization consumed over 93% of to-
tal processing of typical XML documents [4]. Thus, a single
highly used service with oversized messages can impact an
entire SOA infrastructure.

Additionally, SOA middleware commonly addresses
non-functional concerns such as security. In order to ad-
dress these concerns, the middleware commonly expects
that services expose certain interfaces. However, despite
having standards like WS-Security, these interfaces may
differ between middleware vendors, leading to vendor lock-
in or mismatches in critical areas such as security or relia-
bility (see section 7.1.1). While mismatches between indi-
vidual services could potentially be corrected by changing
service implementations, mismatches between SOA mid-
dleware implementations from different vendors cannot be
addressed directly.



3.2. Infrastructure Expectation

Many traditional component technologies use late bind-
ing, i.e. components are not connected until they are exe-
cuted. Essentially, lately bound components only depend on
the interfaces of other components and not on their imple-
mentation. This introduces additional flexibility, in particu-
lar the ability to change the implementation of one compo-
nent without the need to re-compile other components. On
the other hand, late binding causes brittleness if a compo-
nent disappears that other components depend on.

In traditional component development, early binding is a
prevalent way to couple components at compile time. Be-
cause independence of services is highlighted in the con-
text of SOA we suspect that changing service interfaces and
service disappearance may be a more common phenomena
in SOAs. Loose coupling between services is one of the
promises and advantages of SOA but it requires more work
in controlling the dependencies between services and across
versions of a service. Service directories currently begin to
address this issue.

3.3. Control Model

In SOAs, services operate autonomously and typically
run in independent processes. Therefore, competition for
a main thread of control (as found to be a problem with
traditional components) is not a significant issue for ser-
vices in SOAs. However, SOAs typically orchestrate ser-
vices in a workflow-like manner using an orchestration en-
gine. The orchestration engine owns the “logical” thread of
control that drives the overall application. Control model
mismatches can occur when multiple orchestration engines
have to cooperate. In particular, orchestration engines may
have to cooperate in a peer-to-peer manner across organiza-
tional boundaries to accomplish a task (see section 7.1.2).
Similar problems can occur in SOAs with a federated topol-
ogy where orchestrated services are exposed as “logical”
services to other orchestration engines, thus creating a hier-
archy of orchestrations.

3.4. Data Manipulation

On the surface, data manipulation problems are less
problematic in SOA than with traditional components. Ser-
vices typically cannot expose internal data to clients and
therefore clients cannot manipulate this data directly. How-
ever, if services are stateless, the entire conversational state
may be required to be sent back and forth between client and
service, thereby effectively exposing internal data to exter-
nal clients. Clients may only be allowed to modify certain
parts of the conversational state received from the service.

In carelessly implemented services, unexpected manipula-
tions of conversational state by clients could lead to incon-
sistent data and ultimately service malfunctioning. Thus
mismatch due to restrictions on data manipulation by clients
does exist and can lead to various problems as described in
section 7.2.

4. Communication Between Services

Communication between applications and services par-
ticipating in an SOA is typically handled by messaging
middleware. Messages are commonly exchanged in XML
format and routed through a message bus that connects to
all applications and services. Messaging follows an asyn-
chronous model and some services will even publish no-
tification messages without knowing which other services
receive these notifications.

4.1. Asynchronous Communication

In theory, services in SOA should be autonomous and
communicate asynchronously. Asynchronous communica-
tion can be a significant complication because seemingly
single-threaded applications are forced into multi-threaded
implementations. On the positive side, service orchestra-
tion engines are specifically designed to facilitate taking
advantage of asynchronous communication without burden-
ing developers with traditional problems of multi-threaded
software. Unfortunately, services are rarely completely
autonomous and they do not communicate solely through
asynchronous means. Such deviations from the “norm”
can lead to significant problems in properly orchestrating
services: orchestration engines and other services have to
be prepared for service dependencies and occasional syn-
chronous communication.

4.2. Message Data Model

Services typically communicate through XML and
therefore require support for accessing and manipulating
XML. XML messages are difficult to parse and relatively
verbose. Thus messaging overhead is a considerable factor
in designing an SOA even if no mismatch occurs [7].

Mismatch in message data models essentially means that
messages from one service do not fit the expectations of an-
other service. Consider the case where output of one service
is used as part of the input to another service. If the two ser-
vices use different message formats then the first service’s
output needs to be converted so that it meets the second ser-
vice’s expectations (see section 7.2).

It has been pointed out that such conversions quickly be-
come a performance bottleneck in SOAs [7]. This is be-
cause XML is not only difficult to parse and therefore dif-



ficult to convert (see section 3.1) but also because the state-
less model of services requires messages to carry the entire
conversational state, leading to very large messages. There-
fore it appears that mismatch in message data models can
become a serious problem in SOA-based infrastructures.

5. Global Architecture Assumptions

Services, like traditional components, likely assume that
their clients are independent from each other. But if a ser-
vice delegates part of its work to another service and both
access a third service then that third service’s independence
assumption is violated. Such dependencies can be subtle
because they might be encoded in the orchestration mecha-
nism rather than the participating services. In this case ser-
vices do not even know which other services work on tasks
they delegated.

6. Construction Process

At first glance it appears that mismatching component
assumptions about the construction process are eliminated
in SOA. This is because services are developed and built in-
dependently. By “building” we mean compiling and linking
the service implementation. While the situation is certainly
much better than with traditional components it appears that
managing the build process can still be difficult because ser-
vices can depend on the interface of other services.

Consider the case where service A depends on service
B. One way of building service A is to obtain B’s interface
definition and use it for generating glue code for communi-
cating with B. If B (directly or indirectly) happens to depend
on A’s interface as well then it can be challenging to build
A and B fully automatically.

In SOA there is another complication: Services also have
to be deployed to on a SOA middleware in order to make
them available. This can complicate testing of indepen-
dently constructed services when an expected service is not
(yet) available. Techniques similar to unit testing are needed
that essentially simulate the presence of other services with
“mock services”.

7. Empirical Evidence

In this section, we provide empirical evidence and show
models that describe how architectural mismatch surfaces
in SOAs. We review the issues of architectural mismatch
in an Accenture project and in message exchanges between
services. The section primarily illustrates mismatches in the
nature of services and in communication.

7.1. Tarpon

Project Tarpon is an SOA R&D initiative within Accen-
ture to explore the promises and pitfalls of SOA. The initia-
tive will test everything from security to performance, de-
livering a realistic evaluation of the feasibility and benefits
of separating cross-enterprise processes from applications
that implement the processes.

7.1.1 Basic Messaging

As the first step in this evaluation process, Tarpon per-
formed a series of basic messaging interoperability tests
across select SOA platforms from vendors like Microsoft,
IBM and Oracle. The tests we performed are a superset of
what was published by the WS-Interoperability organiza-
tion [1]. The idea is to measure the effectiveness of various
web services standards such as SOAP, XML and WSDL
in alleviating the differences of communication protocols
across multiple platforms [14].

We found that even with these established standards,
cross-platform interoperability continues to be a challenge.
Specifically, we found that:

• different vendors are adopting standards at different
pace;

• different vendors are adopting different parts of a stan-
dard, and

• complex dependencies among standards further exac-
erbate confusion in implementation.

Speed of adopting standards. Because standardization
is typically a multi-year process, by the time a specifica-
tion becomes a standard, that standard may be succeeded
by a new and better specification. That is exactly what hap-
pened to WS-Reliability, a reliable messaging standard that
is published by OASIS. By the time it became a standard
it was already superseded by a new–and by many measures
superior–specification: WS-ReliableMessaging (WS-RM).

The vendors are left with a dilemma of which one to
adopt: a published standard or a better specification. To
make things worse, the two are completely incompatible.
While it is not surprising that some vendors chose to im-
plement the published standard, those that chose the better
specification worked hard to ensure that the specification
becomes a standard. In the meanwhile, this left users baf-
fled as they had to absorb this incompatibility at their own
expense.

Partial adoption of standards. WS-Security is another
standard from OASIS that addresses, among other concerns,
encryption and authentication of messages. As a fairly com-
plicated standard it contains multiple parts, some of which



are optional. For example, WS-Security specifies a num-
ber of authentication protocols such as username-password
pair, X.509, Kerberos and SAML. Except for the username-
password pair, it is up to the vendor to choose which other
protocols to implement.

This implies that while two products can claim that they
support one standard, WS-Security, they may implement
two different sets of protocols. For example, one vendor
supports Kerberos and the other supports SAML. This com-
plicates cross-platform interoperability. Users have to be
aware of these variations and are often times left with the
least common denominator.

Complex dependencies among standards. Many stan-
dards do not stand alone. They depend on other existing
standards. Take for example X.509, a decade-old stan-
dard for public key infrastructure published by International
Telecommunication Union (ITU). One of its essential com-
ponents is the key certificate. The format of this certifi-
cate is defined by other standards such as RSA Data Secu-
rity’s Public Key Cryptography Standard (PKCS). There are
many versions of PKCS–most notably PKCS #8 and #12.
While it is possible to convert one certificate format to an-
other, the process is non-trivial [11].

As each standard evolves independently, keeping track of
the dependencies and compatibilities is a serious and time-
consuming exercise. The situation is worsened by the fact
that the number of standards organizations involved in this
area continues to grow due to the popularity of web services
and SOA. For example, the World Wide Web Consortium,
OASIS, Liberty Alliance, Internet Engineering Task Force,
Data Management Task Force are all involved in standard-
izing security and identity management. As such, it is in-
evitable that they will create multiple conflicting standards.

7.1.2 Control Model

Business process orchestration is a key component of SOA
that distinguishes SOA from JBOWS (just a bunch of
web services). The idea is that each service in SOA is
autonomous and message exchanges across services are
handled through one or more orchestration engines in a
workflow-like manner. This way, service invocation is en-
tirely controlled by orchestration engines.

We found that this control model is too constraining for
cross-enterprise scenarios. Take for example electronic pre-
scribing: a doctor creates an electronic prescription. Before
a prescription can be forwarded to a pharmacy, it has to go
through several organizations including the insurance com-
pany that checks for drug coverage under an insurance plan.
Since there are many independent organizations involved, it
is not clear where service orchestration should reside and
how the invocation of services should be strung together.

This calls for an event-driven business process orchestra-

tion (or event-driven architecture) [6]. The idea is to move
from a static control flow structure–similar to what is typ-
ically found in a console program–to an event-based flow
as found in many GUI environments. We found that many
SOA platforms today do not support this type of control
model.

7.2. Errors In Exchanging XML Data

It is conservatively estimated that the cost of program-
ming errors in component interoperability just in the capital
facilities industry1 in the U.S. alone is $15.8 billion per year.
A primary driver for this high cost is fixing flaws in incor-
rect data exchanges between interoperating components [3].
An instance of this problem is described in a case study of
a large-scale project conducted at KLA-Tencor Corp. [10].

We use the model shown in Figure 1 to describe how ser-
vices interoperate. In this model,J andC are services that
interact using XML dataD2. ServiceJ reads in dataD1,
modifies it, and passes it as dataD2 to C. ServiceC reads in
the dataD2 expecting it to be an instance of some schemaS.
SinceJ outputs dataD2 beforeC accesses it, concurrency
is not relevant. However, because of design or program-
ming errors, serviceJ outputs the dataD2 as an instance of
a different schemaS’ , which is not explicitly stated in any
design documents. SinceS’ is different fromS, a runtime
error may be issued whenC reads inD2.

J D2
modify CD1

read read

Figure 1. A model of service interoperability.

There are different reasons why programmers make such
mistakes when they write the servicesJ andC. Based on our
participation in large-scale projects, we observe that pro-
grammers often make wrong assumptions about schemas.
Given that many industrial schemas contain thousands of
elements and types, it is easy to make mistakes about names
of elements and their locations in schemas. The other
source of errors lies in the complexity of platform API calls
that programmers use to access and manipulate XML data.
XML parsers export dozens of different API calls, and mas-
tering them requires a steep learning curve.

Programmers often lack the knowledge of the impact
caused by changing the code of some component on other
components that interoperate using XML data. This lack of
knowledge is an effect of Curtis’ law that states that appli-
cation and domain knowledge is thinly spread and only one
or two team members may possess the full knowledge of a

1A capital facility is a structure or equipment which generally costs at
least $10,000 and has a useful life of ten years or more.



software system [5]. The effect of this law combined with
the difficulty of comprehending large-scale XML schemas
and high complexity of platform API calls result in compo-
nents producing XML data that is incompatible for use by
other components.

The other source of errors is the disparity in evolving
XML schemas and components. Database administrators
usually maintain schemas, and programmers maintain com-
ponents that interoperate using XML data that should be
instances of these schemas. If a database administrator
modifies a schema and does not inform all programmers
whose services are affected by this change then some ser-
vices will keep modifying XML data according to the obso-
lete schema.

The problem of mismatch between XML data and
schemas is typically addressed by using schema validators
that are parts of many XML parsers. In our model shown
in Figure 1, an XML parser can validate that the dataD2 is
an instance of the schemaS whenJ produces this data. If
the data is not an instance of this schema, then the parser
throws a runtime exception. Obviously, it is better to pre-
dict possible errors at compile time rather than to deal with
them at runtime.

In reality, the situation is even more complicated. Us-
ing schemas for validating XML data is often not attempted
because it degrades components performance [15, 13] and
it leads to exceptions when there may not be any problems
when processing the data. It is important to know what data
elements servicesJ andCaccess and modify, and if no data
element accessed byC is modified byJ , thenJ andC may
still interact safely even if the dataD2 is not an instance of
the given schemaS.

8. Conclusions

This paper systematically analyzes how the different cat-
egories of architectural mismatch affects Service Oriented
Architectures (SOAs). We study how implicit and conflict-
ing assumptions that designers make about web services
and their compositions affect the quality of resulting SOA-
based systems. We support our analysis with empirical data
that we collected as part of Tarpon, a large-scale SOA-based
project within Accenture and other smaller projects. We
show that architectural mismatch is not only helpful in cate-
gorizing and understanding practical challenges in building
SOAs. It turns out that all originally described constituents
of architectural mismatch are still relevant in the context
of SOA. Two primary concerns for architectural mismatch
in SOAs are messaging overhead and incompatibilities be-
tween SOA middleware vendors.

This paper suggests that architectural mismatch is a
promising framework for categorizing and understanding
challenges around building SOAs. It provided initial em-

pirical evidence for some of the identified causes for ar-
chitectural mismatch. Future work includes at least three
directions. (1) Identification of additional causes for archi-
tectural mismatch in SOAs. (2) More complete empirical
evidence to understand when mismatch occurs in practice.
(3) Mitigating individual causes for architectural mismatch.
We mentioned a number of immediate research possibili-
ties throughout the paper. More long-term we hope that
understanding the causes for architectural mismatch helps
guiding SOA research and practice in their efforts.
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