
Data Dreaming for Object Detection: Learning Object-Centric State
Representations for Visual Imitation

Maximilian Sieb,1 Katerina Fragkiadaki1

Abstract— We present a visual imitation learning method
that enables robots to imitate demonstrated skills by learning
a perceptual reward function based on object-centric feature
representations. Our method uses the background configuration
of the scene to compute object masks for the objects present.
The robotic agent then trains a detector for the relevant objects
in the scene via a process we call data dreaming, generating a
synthetic dataset of images of various object occlusion config-
urations using only a small amount of background-subtracted
ground truth images. We use the output of the object detector to
learn an object-centric visual feature representation. We show
that the resulting factorized feature representation comprised
of per-object appearance features and cross-object relative
locations enables efficient real world reinforcement learning
that can teach a robot a policy based on a single demonstration
after few minutes of training.

I. INTRODUCTION

Imitation learning allows robots to acquire manipulation
skills from human demonstrations. Using this approach, a
robot can be trained quickly in an intuitive manner by non-
roboticists to perform different tasks. The demonstrations
can be provided to the robot using a number of techniques,
including teleoperation and kinesthetic teaching. The most
intuitive method for a human to provide a demonstration
is through visual demonstrations, i.e., the human performs
the task as they would naturally, and the robot observes
the human using a camera. Although this method is easy
for the human, it does not allow the robot to observe the
actions and forces employed by the human to perform the
task. The embodiment of the human and robot is different,
which means that the human’s motions and dynamics for
performing the skill cannot be directly mapped to the robot’s
body.

The goal of manipulation tasks is to change the states
of objects in the environment in a predictable manner. The
robot therefore does not need to mimic the movements
of the human exactly. Instead, it should imitate the state
trajectories of the objects in the scene. We formulate this
imitation problem with a reward function, wherein the robot
receives more reward if its actions result in object states
that are more similar to those observed during the human
demonstrations. Using this reward function, the robot can
employ reinforcement learning to learn policies for imitating
the demonstrated manipulations in different situations. This
approach allows the robot to learn suitable manipulation
policies despite the differing embodiment of the human and
robot.

1both authors are members of Carnegie Mellon University (CMU)
{msieb, kfragki2}@andrew.cmu.edu

Fig. 1: Learning similarities between human demonstra-
tion and robot trials. The goal is to find a feature mapping
φ that minimizes the distance of similar visual inputs in the
embedding space.

The key problem with employing this approach is defining
what it means for two manipulations to be more or less
similar. If we directly compared the full pixel observations
of the scenes, then even two distinct manipulations might
be considered as similar because they were both performed
in front of the same background. Instead, the robot should
focus on the subset of relevant objects in the scene and
ignore the irrelevant ones [19]. The similarity measure should
also compare how the states of the relevant objects change
over the course of the manipulation. These changes in state
may correspond to local changes in the individual objects’
appearances, and how they are arranged in the scene.

We propose learning state representations for visual imita-
tion with a structural bias regarding object attention. Given
an input video frame x, the proposed feature representa-
tion φ(x) is comprised of appearance features of each of
the relevant objects in the scene, as well as the relative
object distances in 3D. The proposed object-centric state
representation is made possible via on-the-fly training of
state-of-the-art neural object detectors [13] for novel objects,
not present in large scale human annotated datasets, such
as MS-COCO [21]. The detector is trained instead using
synthetic data “dreamed” from unoccluded RGB masks of
the relevant objects which are obtained through background
subtraction. The masked images are then pasted onto a
base image, visually augmenting the pasted images. While
not generating completely realistic images, the synthetically
generated images suffice to learn accurate detectors for the

relevant objects.
During the imitation process, the learner detects each

relevant object in the scene and extracts object appearance
features from each detected object bounding box as well
as the relative distances of the 3D-centroids of the objects
in the scenes. The object appearance features are learned
using unsupervised time-contrastive losses [31], in order to
capture subtle changes in the objects’ appearances over time.
The proposed object-factorized state representation is used in
a trajectory optimization method [7], both to represent the
state, as well as the cost, as Euclidean distance between the
state of the demonstrator and the state of the imitator.

This paper attempts to close the gap between deep object
detectors used in computer vision and machine perception
based approaches in robotic learning. Due to the fact that ob-
ject instances encountered by a robotic agent are often task-
specific and not part of the categories labelled in commonly
available computer vision datasets, the successful application
of deep object detectors in this settings is often challenging.
Instead, frame-wide representations are preferred, both for
reinforcement learning [22], [3] and for visual imitation [31].
We show that generating a synthetic dataset based on a
few ground truth examples, commonly referred to as data
dreaming, is sufficient to train on-the-fly object detectors.
Even though they do not detect each target object in all
possible contexts, they are powerful enough in the current
scene to track the object through partial occlusions.

The proposed framework was evaluated both in a simulator
on several pick-and-place tasks, as well as on a Baxter
robot putting rings onto a pole and rotating an object. Our
experiments suggest object-centric state representations out-
perform frame-wide ones [31], which do not introduce any
structural biases regarding object-centric attention. Agreeing
with authors of [5], incorporating useful structural biases
can greatly accelerate learning of neural architectures and
alleviate the need of obtaining a large enough dataset to
train these architectures. Furthermore, structural bias via
placing hard attention on relevant objects greatly aids the
interpretability of the algorithm compared to frame-centric
end-to-end approaches.

II. RELATED WORK

a) Visual imitation learning: Imitation learning con-
cerns the problem of acquiring skills by observing demon-
strations. It has been considered an integral part in the field
of robotics, with the potential to highly expedite trial-and-
error learning [30]. However, the vast majority of previous
approaches assume that such demonstrations are given in
the workspace of the agent, (e.g., through kinesthetic teach-
ing or teleoperation in the case of robots [16], [4]) and
the actions/decisions of the demonstrator can be imitated
directly, either with behavioral cloning (BC) [36], inverse
reinforcement learning (IRL) [25], or generative adversarial
imitation learning (GAIL) [14].

The problem of mimicking humans based on visual infor-
mation is challenging due to the difficulet visual inference
needed for fine-grained activity understanding [32]. In this

case, imitation requires a mapping between observations in
the demonstrator space to observations in the imitator space
[24]. Numerous works circumvent the difficult perception
problem using special instrumentation of the environment to
read off object and hand poses during video demonstrations,
such as AR tags, and use rewards based on known 3D object
goal configurations [28]. Other works use hand-designed
reward detectors that only work on restrictive scenarios [23].

Recent approaches bypass explicit state estimation and
attempt to imitate the demonstrator’s behaviour by directly
matching latent perceptual states to which the input images
are mapped. Numerous loss functions have been proposed
to learn such an image or image-sequence encoding. One
single RGB frame or an entire sequence of frames is encoded
into an embedding vector using a combination of forward
and inverse dynamics model learning in [27], [1], multiview
invariant and time-contrastive metric learning in [31], or
reconstruction and temporal prediction objectives in [9], [35].
[20] provides an overview of common loss metrics and
inductive biases for state representation learning.

Having obtained this latent state space, imitation is carried
out by iterative application of the inverse model in [27], [1],
or via trajectory optimization in [31], where the state is the
combination of the latent visual state embedding vector and
the robot configuration. Our work is most similar to [31], in
that we use a similar trajectory optimization method [7] for
imitating a human visual demonstration and similar unsuper-
vised loss functions for visual feature learning. However, we
apply such metric learning to features collected within each
relevant object bounding box, as opposed to a video frame,
i.e., we share neural feature extraction weights across objects
in the scene.

Utilizing graph encodings of a visual scene in terms
of objects or parts and their pairwise relations has been
found beneficial for generalization of action-conditioned
scene dynamics [11], [6], and body motion and person
trajectory forecasting [17], [2]. In contrast to the work of [9]
which learns to represent an RGB image in terms of spatial
coordinates of few keypoints, we employ explicit attention
only to relevant objects, and preserve their correspondence
in time, i.e., the detectors bind with specific objects in the
scene.

b) Synthetic data augmentation: Synthetic data aug-
mentation has been very successful in multiple machine
perception tasks [26], [12], [34], [29]. In [12], images with
cross-person occlusions are generated to help train occlusion-
aware detectors. Context-specific data augmentation was
used in [18] to train neural networks for object video
segmentation. The work of [34] showed that domain ran-
domization, namely augmenting textures of the background
and the objects, even in a non-visually plausible way, helps
in training successful detectors that work on real images.

III. OBJECT-CENTRIC PERCEPTUAL REWARD LEARNING

A. Problem Statement

Our goal is to learn a policy that imitates a human based on
a single demonstration of a manipulation task. We formulate

Fig. 2: Overview.Using a few frames in which we can obtain ground truth masks through standard background subtraction
and connected components, we create synthetic data and train an object detector that is robust to occlusions. We then collect
human demonstrations and detect bounding boxes of all relevant objects in the scene, fine-tuning our detector network in
case of missed detection by generating more synthetic training data. During inference, we detect the bounding boxes of all
relevant objects in the scene, compute appearance features using our trained feature network and object relative distance
information directly from the bounding box centroids and use this feature representation for learning policies on the robot.
The combined object appearance and relative distance features are used to guide imitation learning on a real robot.

this as a reinforcement learning problem, wherein the robot
is given a reward based on the similarity between the visual
observations x resulting from its execution of the task,
and the visual observations xd obtained during the human’s
visual demonstration of the task [8]. We then define the step-
wise reward function similar to [31] as:

R(φ(x), φ(xd)) =− α
1

2
||φ(x)− φ(x)d||22

− β
√
||φ(x)− φ(x)d||22 + γ, (1)

where φ is a function that maps the observation x into a
latent embedding space in which high perceptual similarity
between visual frames is demonstrated as small Euclidean
distance between their corresponding feature embeddings
and α, β and γ are hyperparameters that we set to α = 10,
β = 0.001 and γ = 10−5 for all experiments. This loss is in
essence a smooth version of the L1-Loss, and is less sensitive
towards outliers than the L2-Loss.

The observation encoding function φ is not provided
to the robot and must be learned. Inverse reinforcement
learning methods attempt to learn such observation encoding
function from a large number of expert demonstrations.
In this work, we opt for an unsupervised learning method
instead. The observation encoding function should focus on

the relevant objects in the scene and ignore irrelevant ones.
We learn detectors of the relevant objects and use them to
provide instance specific attention bounding boxes in both
demonstration and imitation videos.

In the following sections, we describe object detector
training and learning of object-centered appearance features.
Given a learned observation encoding function φ(x), we
will use trajectory optimization [7] to compute a time-
dependent parameterized policy πt(u|φ(x),xr; θ) that de-
fines the distribution over actions u given the current en-
coded observation φ(x) and robot configuration xr and
maximizes the expected return of the entire trajectory J(θ) =
Eu∼πt(u|x,xr;θ)[

∑
tR(φ(x), φ(xd))].

B. Object Detection via Data Dreaming

To extract object-centric features, we need to first predict
2D bounding boxes that capture each of the relevant objects
in the scene in the visual demonstrations and during robot
execution. We do not have bounding box annotations for
the objects present in the scene. It is not possible to use
a pretrained detector when the objects the robot encounters
are not contained in the datasets on which the detector was
trained, e.g., in Fig. 2, our robot task involves toy rings and a
yellow pole, categories not present in MS-COCO. Even if the

object category is part of a category in a human-annotated
dataset, we still need to train instance-specific detectors
in order to reliably track the objects during manipulation
(e.g., different instances of the same object class cannot be
uniquely identified by the detector if it has not been trained
on these specific object instances before, greatly exacerbating
the problem of accurately tracking them.)

Manually generating the masks and bounding boxes for
the relevant objects in a variety of configurations in order to
fine-tune the detector is a tedious process. Our main insight
in this work is to create a sufficiently large synthetic dataset
on-the-fly by translating, scaling, rotating and changing the
pixel intensity of RGB masks of the objects in the scene,
as shown in Fig. 2. Objects’ RGB masks are automatically
obtained using background subtraction in the initial frame,
where we assume the objects are not occluding one another.
Each image is also given a label, e.g., “blue ring”, to identify
the relevant object in the scene. In the synthetically generated
images, the segmented object masks will often overlap with
one another. Such overlaps help the detector to be robust
under partial occlusions, still predicting the correct amodal
bounding box, i.e. predicting the entire bounding box even if
the corresponding object is only partially visible. In our case,
we fine-tune Mask R-CNN [13] to predict the synthetically
generated object labels, namely masks and bounding boxes.

We alternate between training our object detector creating
synthetic image augmentations. Specifically, whenever the
robot fails to detect an object, we use the last frame in which
it confidently detected the object, using the classification
score as the confidence metric. The robot then uses the
mask from this high-confidence frame to create a new
cropped object image. This cropped object frame is then
used to create additional synthetic images using the same
transformations as before to fine-tune the detector network.
In this manner, the robot continues to expand its training set
over time to fill in gaps in the training distribution. While
complete object occlusion is possible, this can mostly be
avoided by choosing an amenable camera angle or using
multiple cameras and switching the viewpoint in case of total
object occlusion during a trial.

Given multiple objects present in the scene, we need a
way to indicate to our agent which ones are relevant for the
task. In our case, we provided labels to the objects within
the training set, and thus, we can specify the label of the
target objects in the scene. The output of our visual detector
is thus an ordered set of bounding boxes and segmentation
masks that correspond to the set of relevant objects in the
scene.

C. Object-Centric Appearance Feature Learning

Given the predicted object bounding boxes, our feature
representation is comprised of two parts, what and where:
per object appearance features φvisual and cross-object 3D
spatial arrangements φspatial. An Intel RealSense camera
provides the robot with Cartesian X, Y, and Z coordinates for
each pixel in the RGB-D image. Using the object segmen-
tation mask predicted by our detector, the robot extracts the

point cloud corresponding to each object. The 3D position
of the object is then given by the centroid of the X, Y, Z
point cloud. We assume that we are supplied a task-specific
pre-defined ordering of the relevant objects.

Depending on the task to be solved, different inductive
biases can be more or less appropriate. As for the ob-
ject appearance features in manipulation-based tasks, these
should ideally be highly discriminative of the objects’ tem-
poral changes relevant to the task success. We choose to
train object appearance features using time-contrastive met-
ric learning proposed in [31]: The authors learn a feature
mapping that pulls temporally close RGB frames together in
the embedding space, and pushes temporally far frames away
from each other. In this work, we apply time-contrastive
metric learning using object tubes (the temporal sequence of
the object-specific bounding boxes), as opposed to the full-
frame video sequence. Specifically, we use a triplet loss as
introduced in [15], ensuring that temporally close neighbours
in each object tube are closer to each other in the embedding
space than any temporally distant pair of boxes within the
same object tube. Formally, given any object-specific object
tube, this condition reads:

||ψ(xb
a)− ψ(xb

+)||22 + α < ||ψ(xb
a)− ψ(xb

−)||22, (2)

where xb denotes the RGB sequence of bounding boxes for a
specific object (an example is shown in Fig. 2 under step 2 of
the pipeline), α is the margin which we set to 2.0 during our
experiments, xa is a randomly sampled anchor frame, x+

is a frame that is temporally close to the anchor (positive
sample), and x− is a frame that is temporally distant from
the anchor (negative sample). The positive sample is only
drawn within a certain range around the anchor frame (in our
case within 4 frames), and the negative sample is only drawn
outside of a certain range (in our case at least 8 frames apart).
If the scene is static, for example, then negative frames are
just as similar to the anchor frame as positive frames, greatly
hindering training. In our experiments, however, all relevant
objects underwent at least partial visual change during the
demonstration avoiding the aforementioned scenario.

Training our object-centric time-contrastive network al-
lows the robot to learn features that are useful for detecting
visual changes within an object’s bounding box that spatial
relationships cannot differentiate, including interaction with
hands and robot grippers. We train the network on multiple
views of the human demonstration. The time-contrastive
network is implemented using the same architecture as in
[31], and we also use pre-trained weights of the Inception-v3
model [33]. Furthermore, we extend the network architecture
by also incorporating depth information as an input. To
do so, we feed the depth as a separate input channel into
the network and run it through three convolutional layers
followed by a max pool layer, a spatial softmax layer and
finally a fully connected layer to output a 16-dimensional
vector. We concatenate this output and the output of the
RGB stream (which outputs a 16-dimensional feature vector
in our case) to obtain a 32-dimensional feature vector as
the overall output of the network, which is computed for

all relevant objects. We then obtain the final observation
encoding representation by concatenating the 32-dimensional
feature vectors for each object φvisuali and the cross-object
3D distances φspatiali between all objects relative to the
anchor object.

D. Policy Learning from Demonstration

Given the reward function in Eq. 1, we learn a policy
for imitating the demonstrated manipulation using PILQR
[7], a state-of-the-art trajectory optimization method that
combines, in a principled manner, the model-based gener-
alization of linear quadratic regulators together with path
integral policy search’s flexibility and ability to handle non-
linear dynamics. We learn a separate time-dependent policy
πt(u|x; θ) = N (Ktxt + kt,Σt) for each set of objects
and initial object locations. This policy is a time-dependent
linear feedback controller, as used in linear quadratic optimal
control. The time-dependent control gains are learned by
alternating model-based and model-free updates, where the
dynamical model p(xt|, xt−1, ut) of the a priori unknown
dynamics is learned during training time. For more detail,
please refer to [7]. The actions u are defined as the changes
in the robot end-effector’s 3D position and orientation about
the vertical axis, giving a 4-dimensional action space. The
gripper is always pointing downwards in our experiments.
The input to the policy consists of the joint angles, end-
effector position, the object location and appearance features
resulting in an njoints +N ∗ 32 + (N − 1) ∗ 3 dimensional
state space for N objects involved where njoints denotes the
number of joints of the robot.

IV. EXPERIMENTS

Our experiments aim to answer the following questions:
1) How much does the proposed object-centric RGB

encoding benefit reward shaping over frame-centric
feature encodings of previous works?

2) How well do appearance and location features con-
tribute to reward shaping?

3) How much does the proposed object-centric RGB
encoding benefit policy learning for sample efficient
visual imitation over previous alternatives?

A. Reward Shaping

For a comparison between frame-centric single-view [31]
and the proposed object-centric image encoding, we com-
pare in Fig. 3 the reward value of Eq. 1 as produced
by the two feature functions, while using only the object
appearance features and not cross-object distances in our
proposed feature function. The task is defined by rotating a
cylindrically shaped object around one of its principal axis.
In Fig. 3 first row we show the human demonstration, in
the second row we show a correct robot imitation and in
the third row we show a wrong behaviour. In both cases,
the feature encoding was trained using a video sequence in
which the tower was moved by a human. Note the object-
centric appearance features, here involving the one object
of interest (yellow tower), are more discriminative of the

correct task execution. The object-centric features are also
more attentive towards minor changes in appearance, such as
how the robot is holding the object. For purely translational
tasks, such as stacking or moving objects, the object location
features are often sufficient and adding appearance features
is not imperative for the success of the learner. As an
example task, we perform an experiment of putting a ring
on top of a cylindrical tower object as demonstrated by
a human. We show in Fig. 5 the reward curves for only
the spatial arrangement features that generalize well across
objects (blue to green ring) and across human and robot
demonstrator. Establishing cross-object correspondences thus
permits strong generalization for free using such appearance
agnostic features, that do not require immense amounts of
data to be trained in order to forget the appearance of the
original objects.

B. Policy Learning

We evaluate the suitability of our method for learning
robot policies both in simulation and in real world on the
following tasks:

1) Ring-on-Tower: The robot needs to learn how to put
a ring on top of a cylindrical tower given a human
demonstration, as seen in Fig. 5.

2) Block-on-Block: The robot needs to learn how to stack
a cube onto another cube given a video of a VR
demonstration of the robot agent.

3) Block-in-Bowl: The robot needs to learn how to place
a cube inside a bowl given a video of a VR demon-
stration of the robot agent.

We evaluate the following architectures:
1) ours: detector-based object-centric feature learning
2) TCN: frame-centric TCN using RGBD input trained

on demonstration data
3) blob detector: off-the-shelf blob detector generating

encodings the same way as for our method
For the first experiment, we use a Rethink Robotics

Baxter while for the other two tasks we work with the
Pybullet simulation engine using the provided KUKA
manipulator model. For each task, we provide the policy
learner with a single successful demonstration of the task
and a detector network trained on the relevant objects of
the scene.

For all experiments, we employ the robot’s task space
controller allowing end-effector movements in the x, y,
z-direction as well as rotation around the vertical axis.
Furthermore, we assume the availability of a grasping
primitive that succesfully grasps the relevant object. The
control frequency is 2 Hz. The inference time of the entire
pipeline is roughly 0.4 seconds, including the object detector
and feature extractor. Since we used a ResNet101 backbone
in our Mask R-CNN architecture, we expect much faster
inference time for less complex backbone models. For
the experiments, we use a fixed episode length, at which
point the robot’s episode is automatically terminated. For
the policy learning, we use an existing implementation of

Fig. 3: Reward comparison of object-centric and frame-centric time-contrasted visual features. In the proposed object-
centric feature representation, while the robot’s correct execution is attributed with a high reward, wrong execution is
penalized heavily. Frame-centric features cannot discriminate between correct and wrong execution. Note that the robot’s
hand has not been seen at all during training time.

Fig. 4: Reward comparison of spatial arrangement features. The reward decreases once the ring is not stacked on top
of the tower. The reward also generalizes well to a ring of different color and smaller size.

PILQR [10] as described in section III.D. To stay near the
dynamical models that were learned as part of PILQR, we
define a maximum movement of 3 cm in each principle
direction for each time step and a 10 degree rotational
movement limit.

In addition to the time needed to learn the policy through
PILQR, we trained the object detector on the synthetic
dataset for approximately 20 minutes beforehand. This
detector pre-training only has to be done if new object
classes are introduced and can be reused across different
tasks.

1) Ring-on-Tower Task in Real World: We set the episode
length to 10 for this task. For the PILQR learning, the robot
attempted the task 7 times between each policy update. Dur-
ing each time step, the detector network generates bounding
boxes and masks of the relevant objects in the scene. The
robot solves the ring-stacking task after only 3 iterations of
PILQR (taking around 5 minutes) after having been shown
a single human demonstration, as shown in Fig. 6.

We trained the time-contrastive network on three se-

quences from three different views each, namely the human
demonstration itself as well as two video sequences perform-
ing arbitrary movements with the ring and tower. Although
we use multiple views, the network is trained using each
view separately and during test time only one view is used
from the robot’s perspective.

For every iteration in PILQR, the robot has to reset to the
same initial condition. This initial condition, however, does
not need to coincide with the demonstrations’s initial condi-
tion and can undergo arbitrary translational variations due to
our object-centric location-invariant feature representation.

The task was neither solved using only a full-frame
time-contrastive feature representation nor using a blob
detector given the same training and test setup.

2) Block-on-Block Task in Simulation: We set the episode
length to 20 for this task. For the PILQR learning, the robot
attempted the task 15 times between each policy update.
During each time step, the detector network generates
bounding boxes and masks of the relevant objects in the
scene. The robot solves the task after only one iteration

Fig. 5: Real robot task execution. Left: Human demon-
stration of ring-on-tower task. Right: Robot executing the
demonstrated task. The bounding boxes extend even across
the occluded parts of the object.

Fig. 6: Learning progress of real world ring-on-tower
task. We see that the robot quickly learns to imitate the
demonstrated behaviour. Note that the reward does not
converge to zero since the robot does not start in the exact
same initial position as the learner and is therefore not able
to perfectly match the entire object trajectory for all time
steps.

of PILQR, having been shown a single demonstration, as
shown in Fig. 7. There, we see the average success rate
over multiple tries with varied starting positions of both
objects, randomly sampled within a 10 cm radius of the
original demonstration position. We experienced that the
spatial feature encodings are sufficient enough to solve this
task and did not see any deterioration in performance when
only using those. The blob is also able to solve the task,
it does so with much more variance in the execution. This
is due to the less accurate estimate of the correct depth
value because our method provides exact object masks
with accurate object depth estimates. For the blob detector,
heuristic methods such as color-based segmentation have to
be used to obtain object masks which fluctuated more during
our experiments. The TCN baseline, which we trained on
100 views of that single demonstration, fails to solve the task.

3) Block-in-Bowl Task in Simulation: We set the episode
length to 20 for this task. With respect to the policy learning,

Fig. 7: Average success rate of block-on-block task. The
robot learns to stack the block for both our method and the
blob detector baseline. It fails to do so for the TCN baseline.
Our method imitates the original trajectory more closely due
to to higher precision of the trained object detector.

Fig. 8: Average success rate of block-in-bowl task with
occluders. The robot learns to place the block into the bowl
for both our method and the blob detector baseline. It fails to
do so for the TCN baseline. Due to the occlusions introduced
into the setup, the blob detector shows much more variance
because the detections are further off with respect to the
ground truth state compared to our trained object detector.

the robot attempted the task 15 times between each policy
update. During each time step, the detector network generates
bounding boxes and masks of the relevant objects in the
scene. The robot solves the task after only one iteration of
PILQR, having been shown a single demonstration, as shown
in Fig. 8. There, we see the average success rate over multiple
tries with varied starting positions of both objects, randomly
sampled within a 10 cm radius of the original demonstration
position.

Because we include partial occlusions in the form of
distractor objects and artificial blacking out of pixels, the per-
formance of the blob detector deteriorates, while the trained
detector network still manages to solve the task robustly.
The task was not solved using the TCN baseline, which was
trained on 100 views of the provided demonstration.

V. CONCLUSION

We presented an object-centric feature learning method for
state representation and reward learning for visual imitation.
The learned state representation encodes how the relevant
objects are arranged in the scene, and how the state of the
objects changes during the manipulation. The features are
learned in an efficient manner by training state-of-the-art
object detector architectures using dreamed data by aug-
menting object RGB-masks obtained automatically through
background subtraction. We showed the effectiveness of the
learned state representation by employing it on a trajectory
optimization method and showed a Baxter robot could learn
a task within a few minutes using a single demonstration.

Our approach currently has the following limitations: first,
it cannot handle full object occlusions, and no advanced
tracking is employed in any way. We rely on per-frame
object detections provided by our iterative data dreaming and
tracking-by-detection. Secondly, the within-object appear-
ance features are far less discriminative of task completion
than the cross-object spatial features. In future work, we will
focus on end-to-end visual object tracking in manipulation
environments, and we plan to explore multiscale entity
graphs, where nodes not only represent single objects as in
thise work, but also sub-parts of individual objects.

VI. ACKNOWLEDGEMENTS

We would like to sincerely thank Oliver Kroemer for
fruitful discussions and insights during the course of this
research, as well as his extensive input on preparation of
this manuscript. We would also like to thank Deepika Bablani
for sharing her experience regarding training object detectors
on-the-fly and Yihe Tang for providing virtual reality demon-
stration for visual imitation in simulation. Maximilian Sieb
was partially supported by the German Academic Exchange
Service and the German Academic Scholarship Foundation
during the course of this research.

REFERENCES

[1] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine. Learning
to poke by poking: Experiential learning of intuitive physics. CoRR,
abs/1606.07419, 2016.

[2] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese. Social lstm: Human trajectory prediction in crowded
spaces. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 961–971, June 2016.

[3] S. Amarjyoti. Deep reinforcement learning for robotic manipulation-
the state of the art. arXiv preprint arXiv:1701.08878, 2017.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey
of robot learning from demonstration. Robot. Auton. Syst., 57(5):469–
483, May 2009.

[5] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F.
Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro,
R. Faulkner, aglar Gülehre, F. Song, A. J. Ballard, J. Gilmer, G. E.
Dahl, A. Vaswani, K. R. Allen, C. Nash, V. Langston, C. Dyer,
N. Heess, D. Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li,
and R. Pascanu. Relational inductive biases, deep learning, and graph
networks. CoRR, abs/1806.01261, 2018.

[6] P. W. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and
K. Kavukcuoglu. Interaction networks for learning about objects,
relations and physics. CoRR, abs/1612.00222, 2016.

[7] Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, and
S. Levine. Combining Model-Based and Model-Free Updates for
Trajectory-Centric Reinforcement Learning. 2017.

[8] P. Englert, A. Paraschos, M. P. Deisenroth, and J. Peters. Probabilistic
model-based imitation learning. Adaptive Behavior, 21(5):388–403,
2013.

[9] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel.
Learning visual feature spaces for robotic manipulation with deep
spatial autoencoders. CoRR, abs/1509.06113, 2015.

[10] C. Finn, M. Zhang, J. Fu, X. Tan, Z. McCarthy, E. Scharff, and
S. Levine. Guided policy search code implementation, 2016. Software
available from rll.berkeley.edu/gps.

[11] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning
visual predictive models of physics for playing billiards. CoRR,
abs/1511.07404, 2015.

[12] G. Ghiasi, Y. Yang, D. Ramanan, and C. Fowlkes. Parsing occluded
people. In CVPR, 2014.

[13] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN.
CoRR, abs/1703.06870, 2017.

[14] J. Ho and S. Ermon. Generative adversarial imitation learning. In
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages
4565–4573. Curran Associates, Inc., 2016.

[15] E. Hoffer and N. Ailon. Deep metric learning using triplet network.
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9370(2010):84–92, 2015.

[16] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning:
A survey of learning methods. ACM Comput. Surv., 50(2):21:1–21:35,
Apr. 2017.

[17] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena. Structural-rnn: Deep
learning on spatio-temporal graphs. CoRR, abs/1511.05298, 2015.

[18] A. Khoreva, R. Benenson, E. Ilg, T. Brox, and B. Schiele. Lucid data
dreaming for object tracking. CoRR, abs/1703.09554, 2017.

[19] O. Kroemer and G. S. Sukhatme. Learning relevant features for
manipulation skills using meta-level priors. CoRR, abs/1605.04439,
2016.

[20] T. Lesort, N. D. Rodrı́guez, J. Goudou, and D. Filliat. State repre-
sentation learning for control: An overview. CoRR, abs/1802.04181,
2018.

[21] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick,
J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller. Playing atari with deep rein-
forcement learning. CoRR, abs/1312.5602, 2013.

[23] K. Mülling, J. Kober, O. Kroemer, and J. Peters. Learning to select
and generalize striking movements in robot table tennis. International
Journal of Robotics Research, 32(3):263–279, 2013.

[24] C. L. Nehaniv and K. Dautenhahn. Imitation in animals and arti-
facts. chapter The Correspondence Problem, pages 41–61. MIT Press,
Cambridge, MA, USA, 2002.

[25] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement
learning. In Proceedings of the Seventeenth International Conference
on Machine Learning, ICML ’00, pages 663–670, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc.

[26] D. Park and D. Ramanan. Articulated pose estimation with tiny
synthetic videos. 2015 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 58–66, 2015.

[27] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu,
E. Shelhamer, J. Malik, A. A. Efros, and T. Darrell. Zero-shot visual
imitation. In ICLR, 2018.

[28] A. Rajeswaran, V. Kumar, A. Gupta, J. Schulman, E. Todorov, and
S. Levine. Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations. CoRR, abs/1709.10087,
2017.

[29] F. Sadeghi and S. Levine. (cad)$ˆ2$rl: Real single-image flight without
a single real image. CoRR, abs/1611.04201, 2016.

[30] S. Schaal. Is imitation learning the route to humanoid robots?
3(6):233–242, 1999.

[31] P. Sermanet, C. Lynch, J. Hsu, and S. Levine. Time-Contrastive
Networks: Self-Supervised Learning from Multi-view Observation.
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, 2017-July:486–487, 2017.

[32] B. C. Stadie, P. Abbeel, and I. Sutskever. Third-person imitation
learning. CoRR, abs/1703.01703, 2017.

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethink-
ing the Inception Architecture for Computer Vision. 2015.

[34] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel.
Domain randomization for transferring deep neural networks from
simulation to the real world. CoRR, abs/1703.06907, 2017.

[35] M. Watter, J. T. Springenberg, J. Boedecker, and M. A. Riedmiller.
Embed to control: A locally linear latent dynamics model for control
from raw images. CoRR, abs/1506.07365, 2015.

[36] T. Zhang, Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel.
Deep imitation learning for complex manipulation tasks from virtual
reality teleoperation. CoRR, abs/1710.04615, 2017.

