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Understanding the world from images and videos
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Understanding the world from images and videos




Visuomotor Coordination
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Visuomotor Coordination




Simultaneous Localization and Mapping




Simultaneous Localization and Mapping

3D point cloud

amera motion




Why Learning in SLAM

Scale Ambiguity
Moving Objects
Mapping the Invisible

Geometrically-consistent deep memories for
recognition in videos
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Danth Net

We can regularize depth and ego motion using priors, e.g.,
spatial/temporal smoothness

What if, instead of designing priors, we
learn them?
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DepthNet

All losses are unsupervised and can be applied at |
test time
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Adversarial Inverse Graphics Networks
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Scale Ambiguity causes Dirifting
Adversarial priors stabilize training
Recovered depth is metric



Adversarial Inverse Graphics Networks
Tung et. al.,ICCV 2017
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> Discriminator

Fish Tung

Parameter-free decoder (renderer)
Discriminators on the predicted parameters
Reprojection losses



Open Pose

2D key point 3D pose
detection
network 7 A
S e 4 A h_ y
2D landmarks X

https://github.com/CMU-Perceptual-Computing-Lab/openpose



Single Image 3D Interpreter Network

2D key point 3D pose WU et al 2016

detection
network

Camera
Projection




Adversarial Inverse Graphics Networks
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Adversarial Inverse Graphics Networks
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Adversarial Inverse Graphics Networks
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Adversarial Inverse Graphics Networks




Adversarial Inverse Graphics Networks




Why Learning in SLAM

* Moving Objects



. RGB video

Input




Input: RGB video

- egomotion

Reprojection loss is not correct on independently moving objects!
Moving objects are treated as noise



Input: RGB video

Outputs: - gepth objects
- egomotion - 6D motion

- segmentation



Object masks
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Total motion

Egomotion

Object motion

Decompose total
motion Into

| egomotion and

object motion.

SfM-Net: Learning of Structure and Motion
from Video, Vijayanarasimhan et al. 2017

Object-centric Neural Structure-
from-Motion, in submission
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Object crops
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Egomotion-stabilized
object crops

Depth Net
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Egomotion-stabilized
object crops

“Residual’

Object RT Net [R, 1] mofi
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Where the
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applies



Egomotion-stabilized
object crops

Object RT Net [R, t] “RGSI'(.J'UQI 7
motion
Where the
motion
applies
Add moving objects

to the reprojection
XYZ2 = RTobj RTego XYZ1



Egomotion-stabilized
object crops




Egomotion-stabilized
object crops

MaskNet

Scale
memory

Object categories have typical sizes.



Egomotion-stabilized
object crops

Object RT Net

memory



Ego-stabilized
object crops
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Objects provide scale supervision consistency




Total motion

z coordinates (meters)

Trajectory vs GT
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Ego-stabilized
object crops
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Input  Scene nets _ Object nets

DepthNet

EgoNet 5 [R, t]




[R, 1]
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Self supervision helps, even if all
networks are pretrained (strongly)
supervised.

Depth metrics Egomotion Object-centric

Net L1 L1

: : R T Vel Pose
type static moving

Pretrained 10.96 10.48 0.006 0.46 0.19 1.69

Ours 8.14 3.49 0.002 0.07 0.14  0.608

Srror 25% 67% 67% 85% 26% 64%

reduction



Our outputs are metric, but our model
wins on relative evaluations as well,
due to improved training stability.

Relative depth metrics

Net Abs. Sq. RMSE Log

type relative relative RMSE =

Baseline JENON2 481 0649 0.28 0.72 0.90 0.95 0.15

Ours 0.19 1.41 521 020 0.71 091 097 0.14

Al 21% 71% 20% 7% -1% 1% 2% 6%

reduction



Why Learning in SLAM

* Mapping the Invisible



Full 3D scene reconstruction
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Full 3D scene reconstruction
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Geometry-aware Active Visual Recognition under
Occlusions

In submission

Ricson Chen Ziyan Wang



Active full 3D scene reconstruction

unprojectio 3D U-Net

N :' BN 3DGRU . ’
Aggregator

3D rotation

' 3D GRU
Aggregator

2D U-net

'vbi

2D U-net 3D U-Net

e

unpro;ectlon

Geometry-aware Active Visual Recognition under
Occlusions

In submission

Ricson Chen Ziyan Wang



Geometry-aware Active Visual Recognition under Occlusions
In submission
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Full 3D scene reconstruction

2D U-net unpro;ectlon
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Geometry-aware Active Visual Recognition under
Occlusions

In submission

Ricson Chen Ziyan Wang



Benefit of Geometric consistency

single object multi-objects
view-1 view-2 view-3 view-4 | view-1 view-2 view-3 view-4
2D LSTM 0.57 0.59 0.60 0.60 0.11 0.15 0.17 0.20
LSM 0.63 0.66 0.68 0.69 0.43 0.47 0.51 0.53

LSM+gt depth 0.65 0.68 0.69 0.70 0.48 0.51 0.54 0.56
Ours+gt depth 0.55 0.69 0.72 0.73 0.47 0.58 0.62 0.64
Ours+learnt depth - - - - 0.45 0.56 0.60 0.62




Why Learning in SLAM

* (Geometrically-consistent deep memories for
recognition in videos
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Along 3D reconstruction losses,

Object detection can be carried out directly from
the 3D feature memory map, as opposed to 2D
vViews



Geometry-aware Active Visual
Recognition under Occlusions

In submission

Projecting the object detection
results in each 2D view, we get
amodal boxes

Ricson Chen  ziyan Wang




Conclusions

- GANSs provide rich data-driven priors to regularize
inverse problems

- Object semantics help scale ambiguity in 3D
reconstruction, and can deal with moving object in
3D reconstruction

- Egomotion-aware 3D visual feature memory maps
produce stable in time object recognition
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