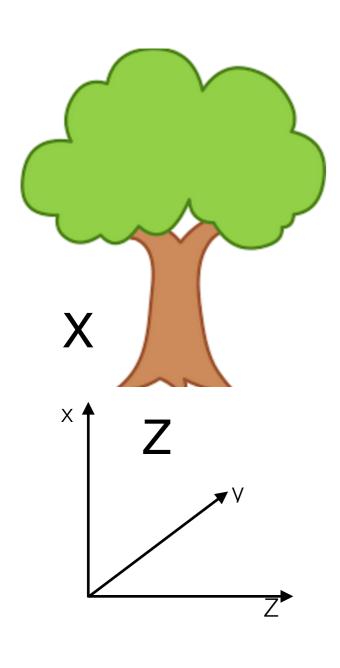
Vision as Inverse Graphics

Katerina Fragkiadaki

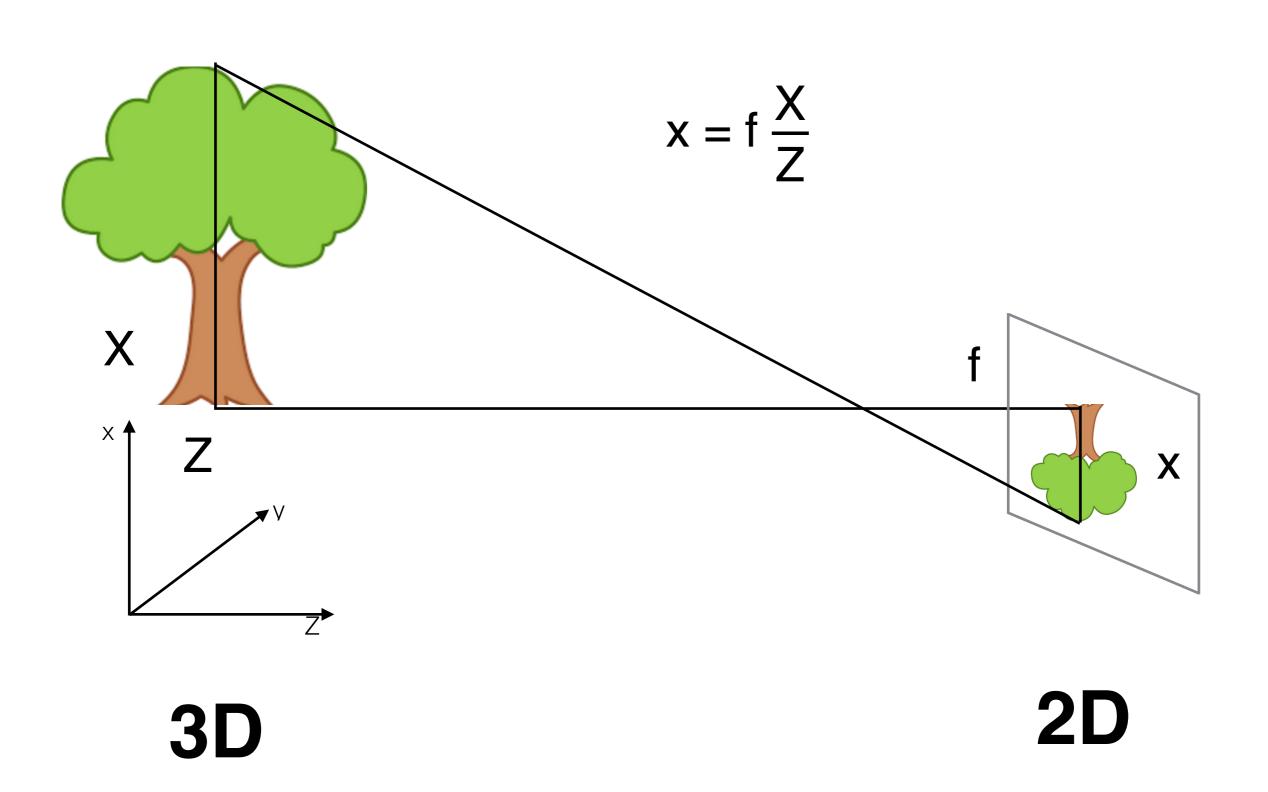
Machine Learning Department CMU

Understanding the world from images and videos

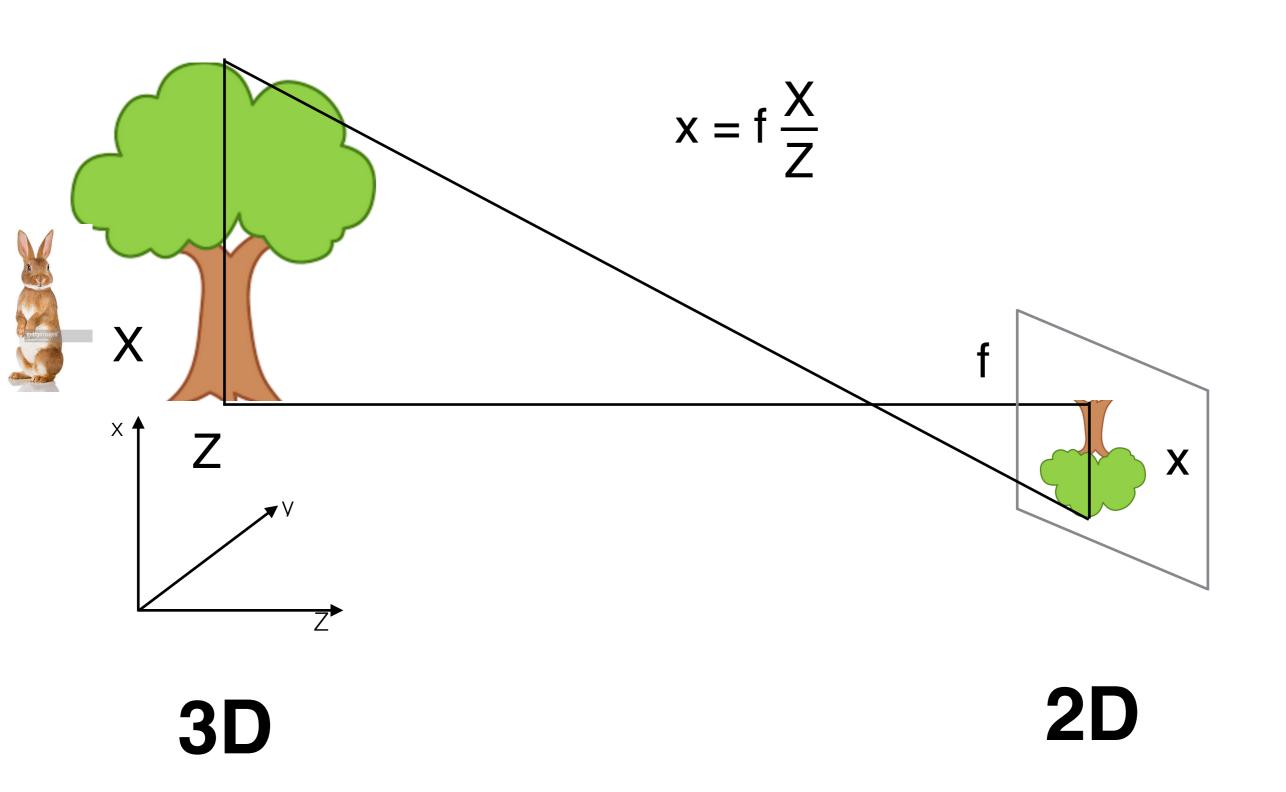


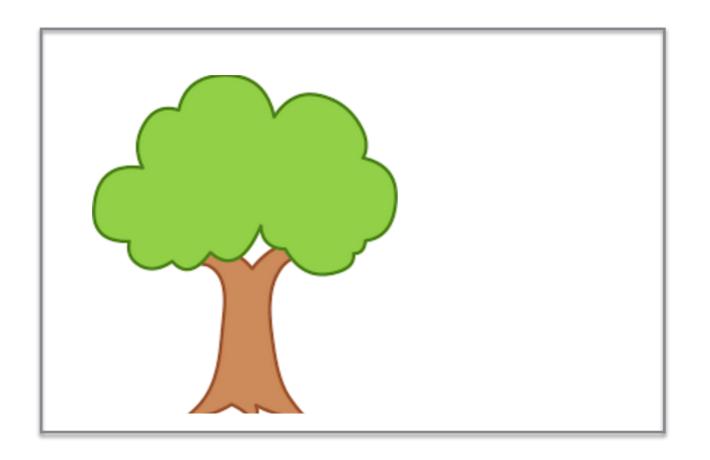
3D

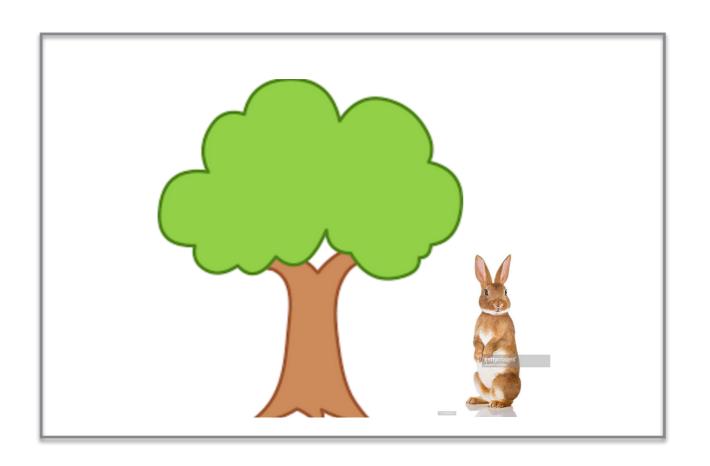
Understanding the world from images and videos

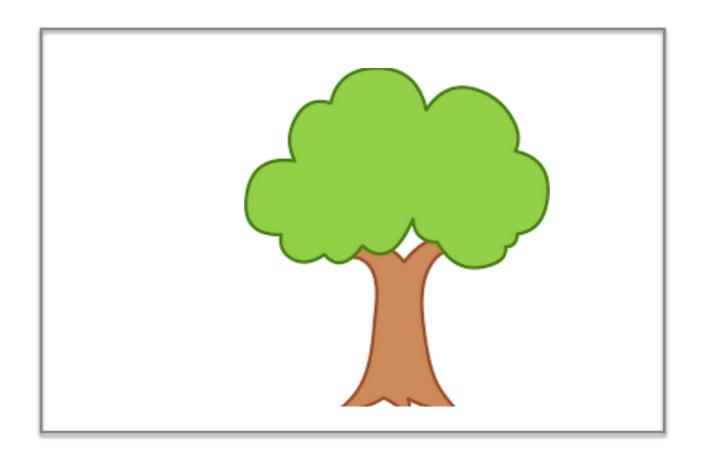


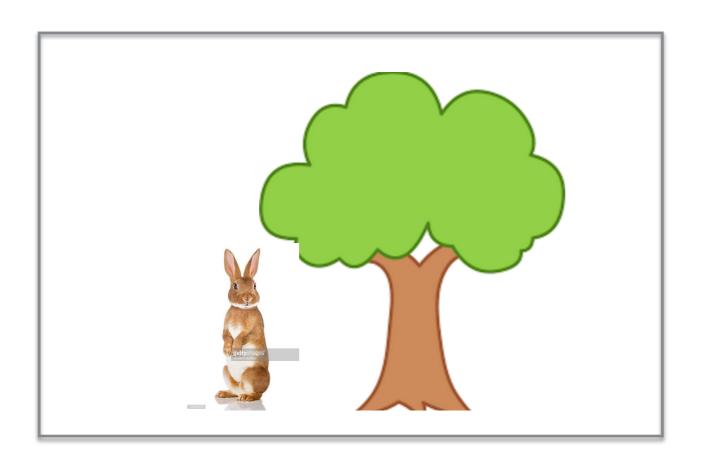
Understanding the world from images and videos



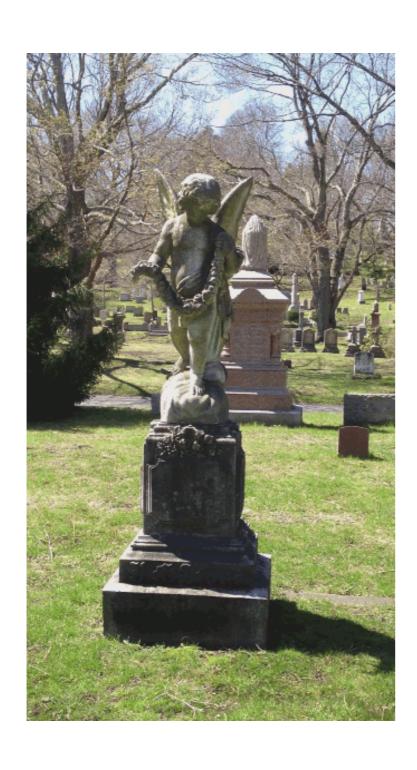








Simultaneous Localization and Mapping



Simultaneous Localization and Mapping

3D point cloud

Camera motion

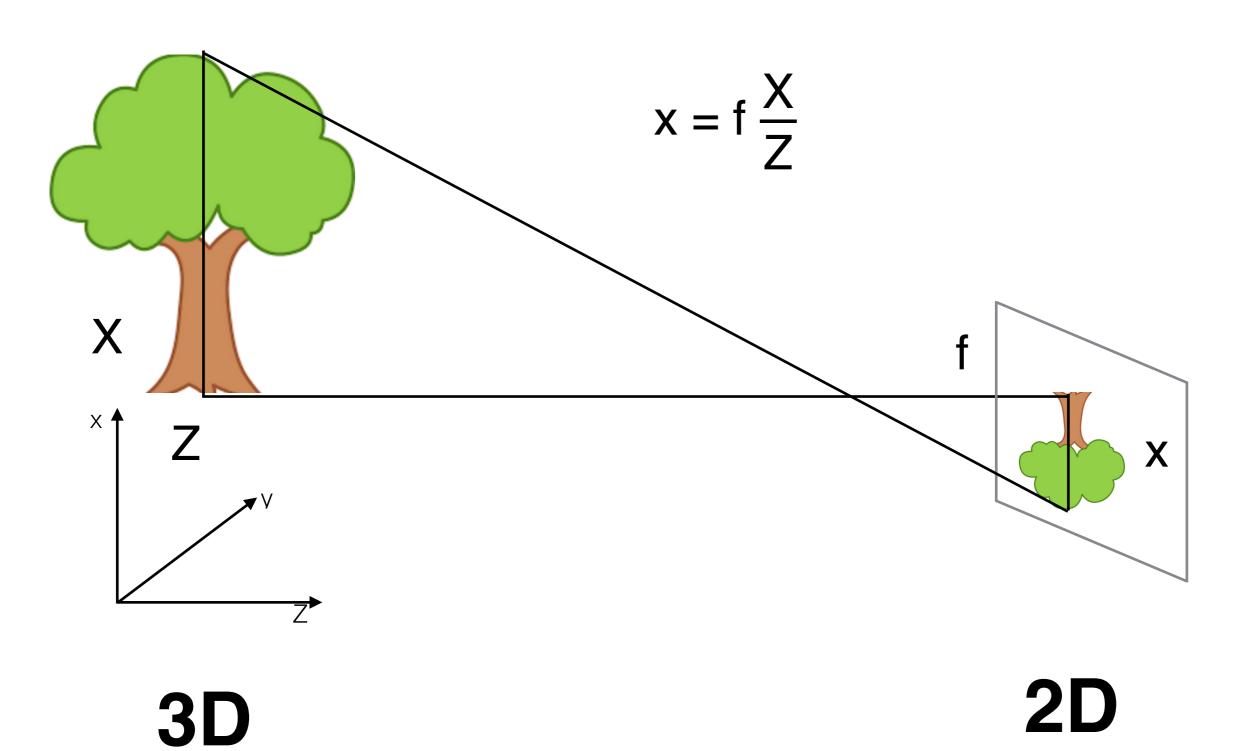
Why Learning in SLAM

- Scale Ambiguity
- Moving Objects
- Mapping the Invisible
- Geometrically-consistent deep memories for recognition in videos

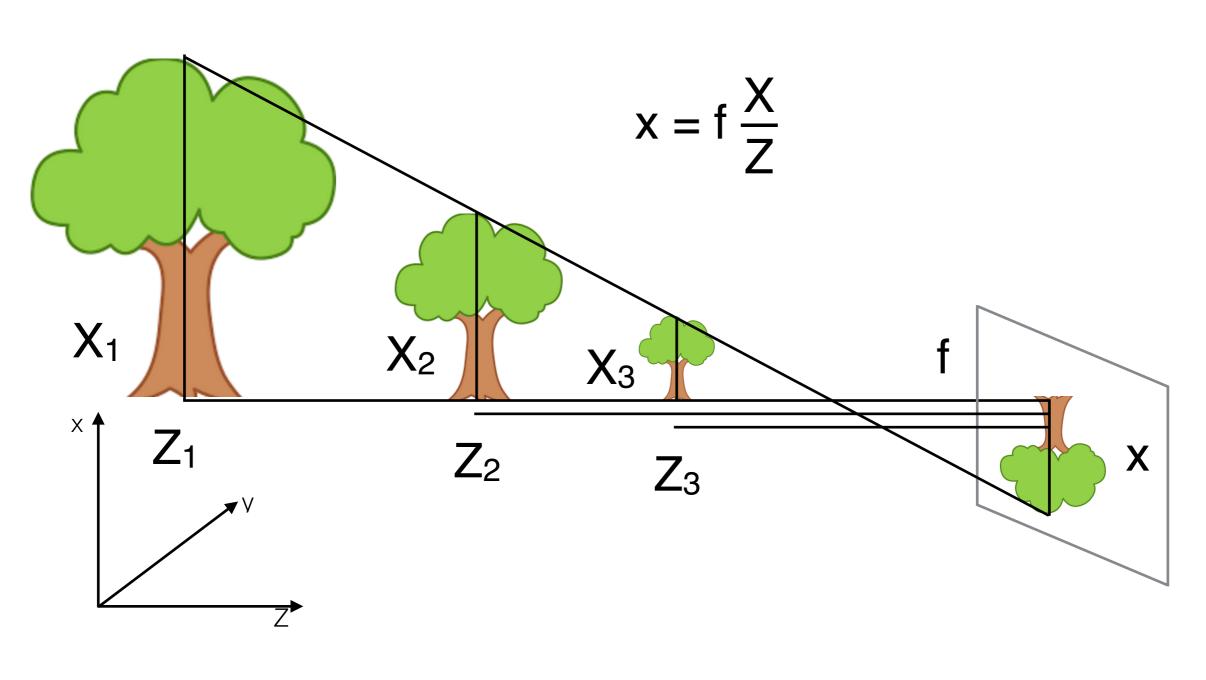
Why Learning in SLAM

- Scale Ambiguity
- Moving Objects
- Mapping the Invisible
- Geometrically-consistent deep memories for recognition in videos

Scale Ambiguity



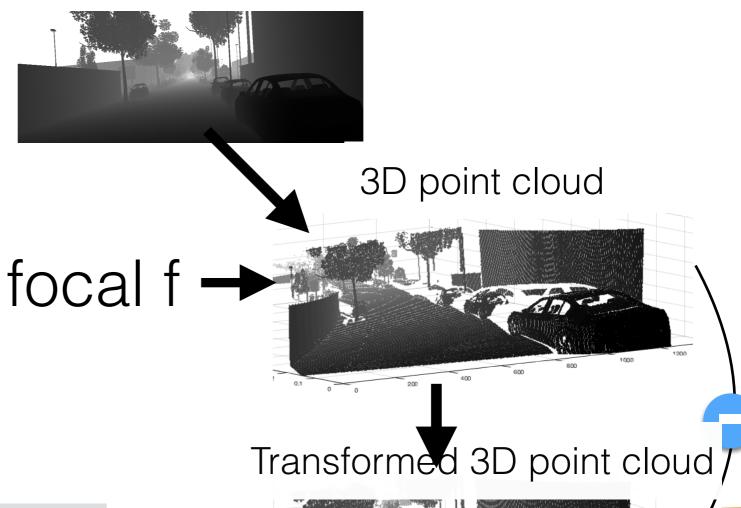
Scale ambiguity



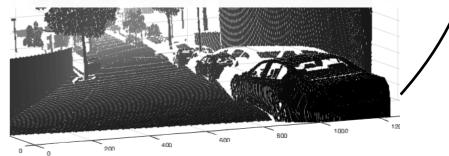
3D

2D

Depth map



EgoNet



camera projection

flow field

photometric loss

Depth map

Denth Net

3D point cloud

focal f

We can regularize depth and ego motion using priors, e.g., spatial/temporal smoothness

What if, instead of designing priors, we

earn them?

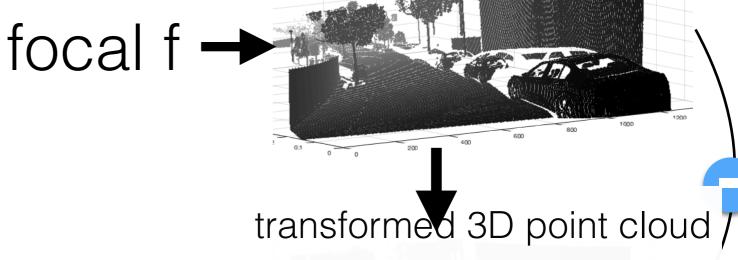
camera projection

flow field

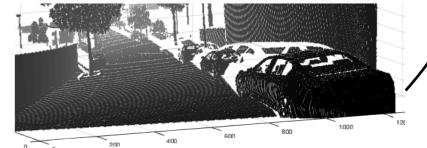
photometric loss

Depth map

DepthNet

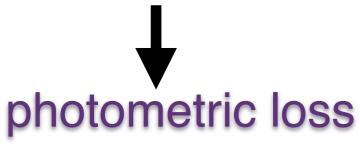


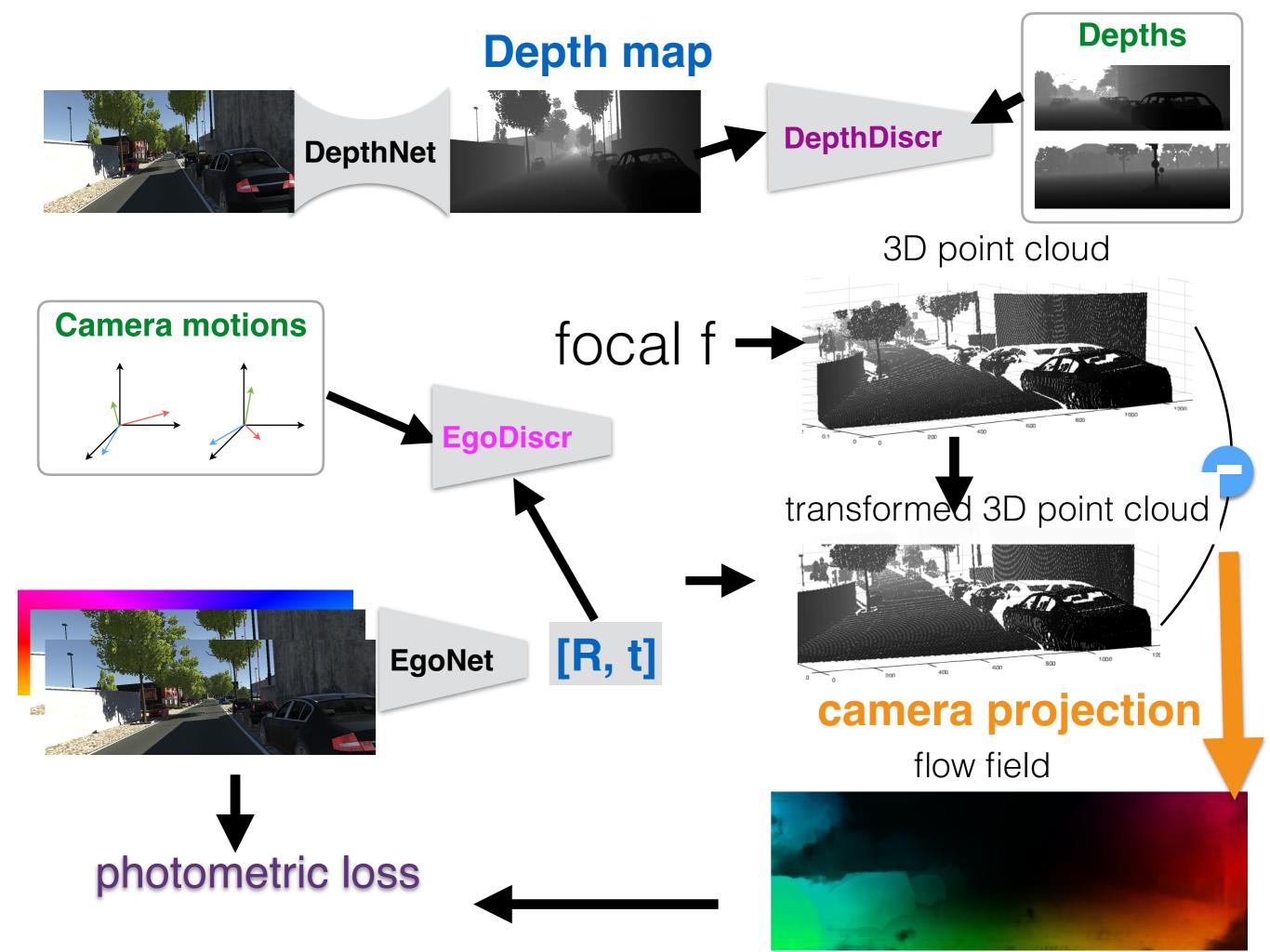
EgoNet

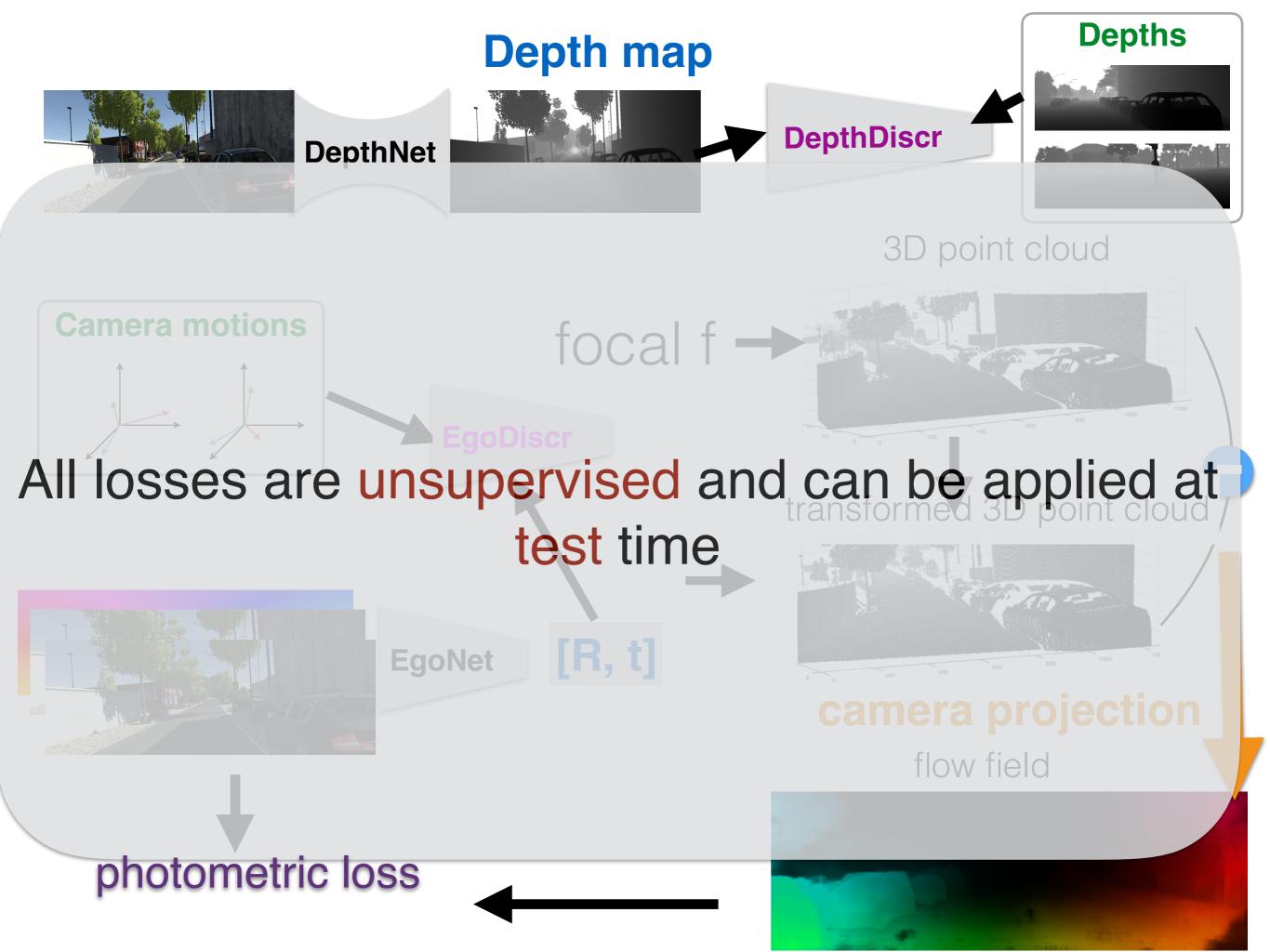


camera projection

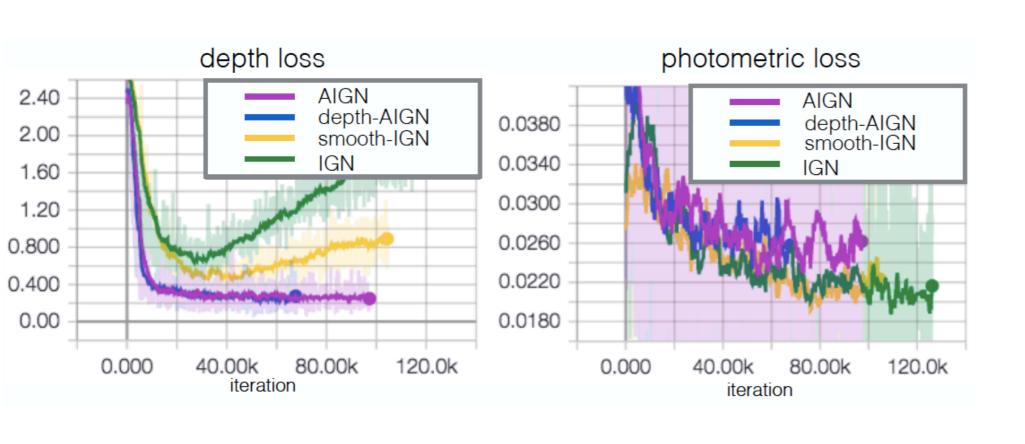
flow field







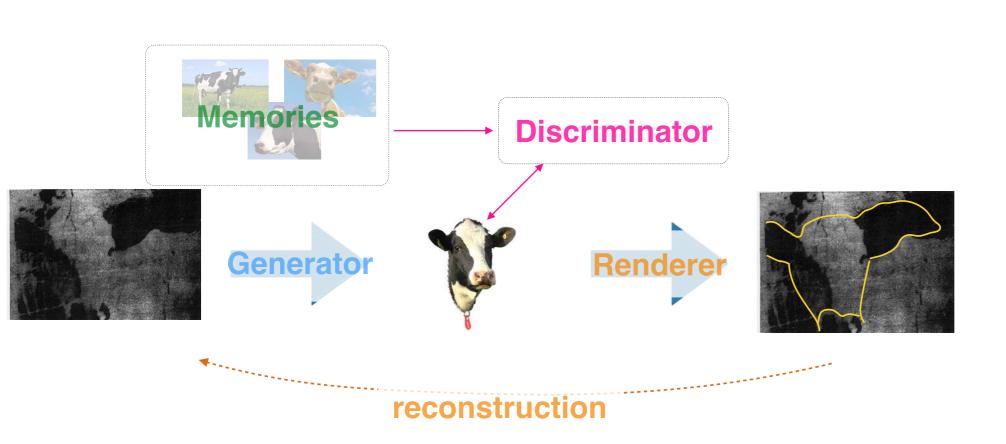
Tung et. al.,ICCV 2017

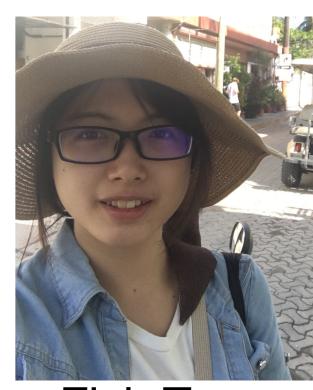


Fish Tung

- Scale Ambiguity causes Drifting
- Adversarial priors stabilize training
- Recovered depth is metric

Tung et. al.,ICCV 2017

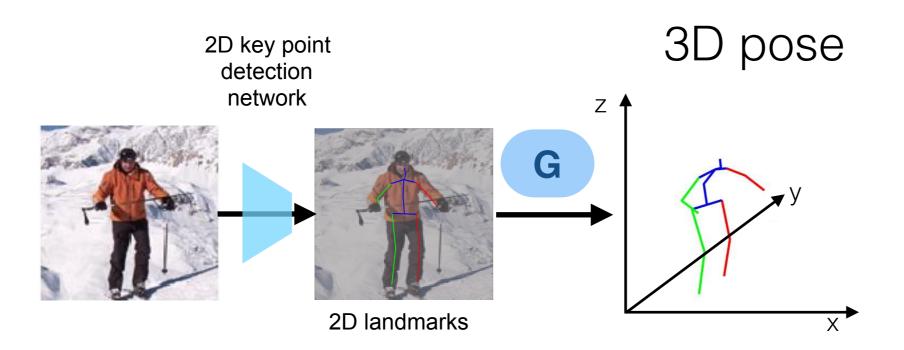




Fish Tung

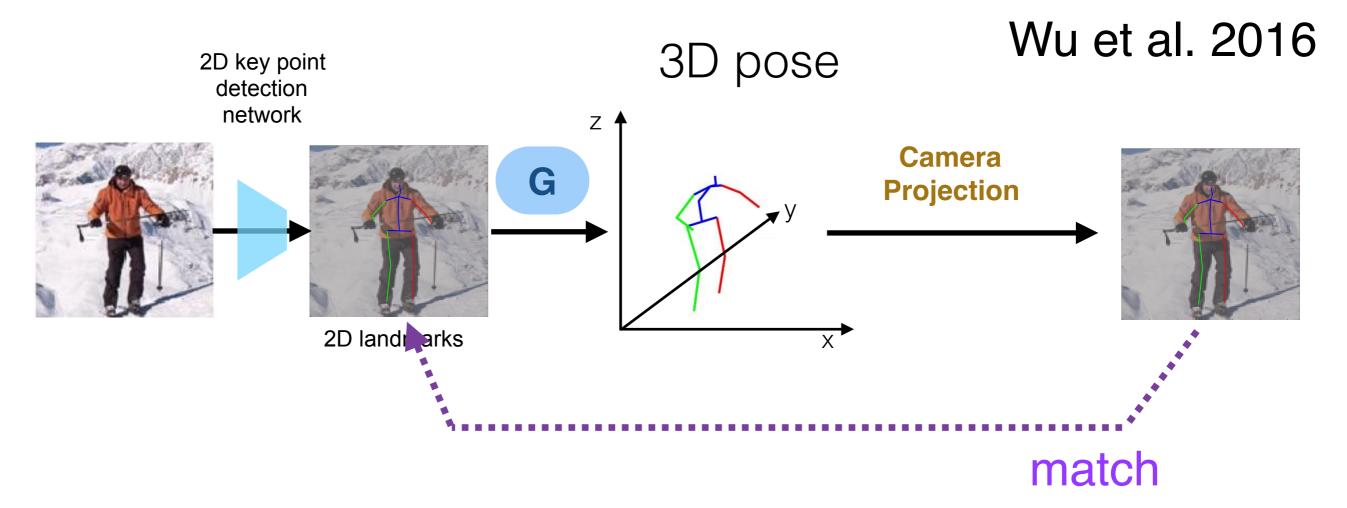
- Parameter-free decoder (renderer)
- Discriminators on the predicted parameters
- Reprojection losses

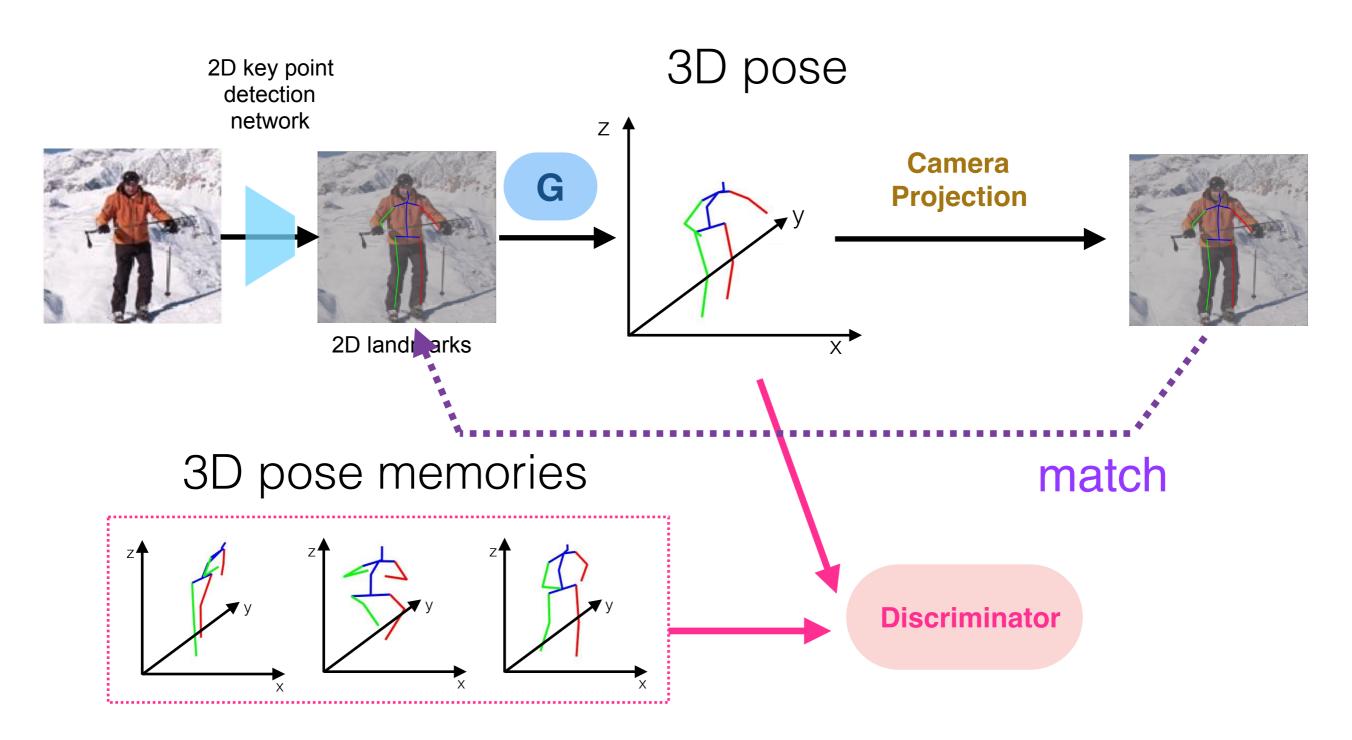
Open Pose

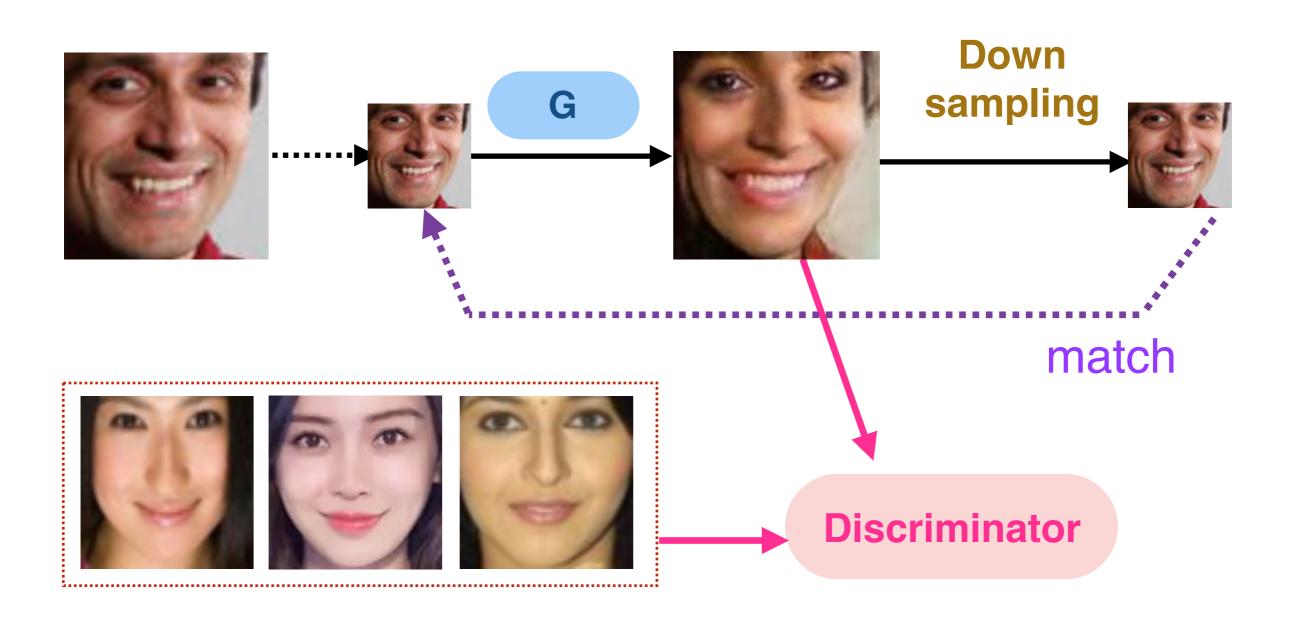


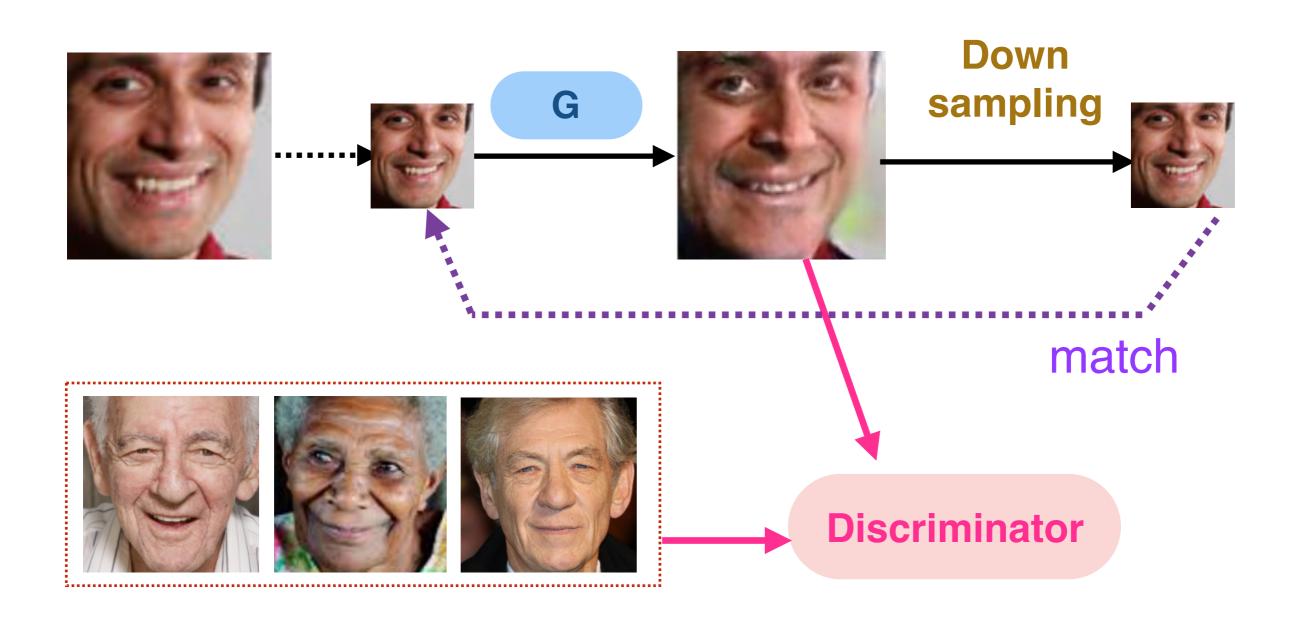
https://github.com/CMU-Perceptual-Computing-Lab/openpose

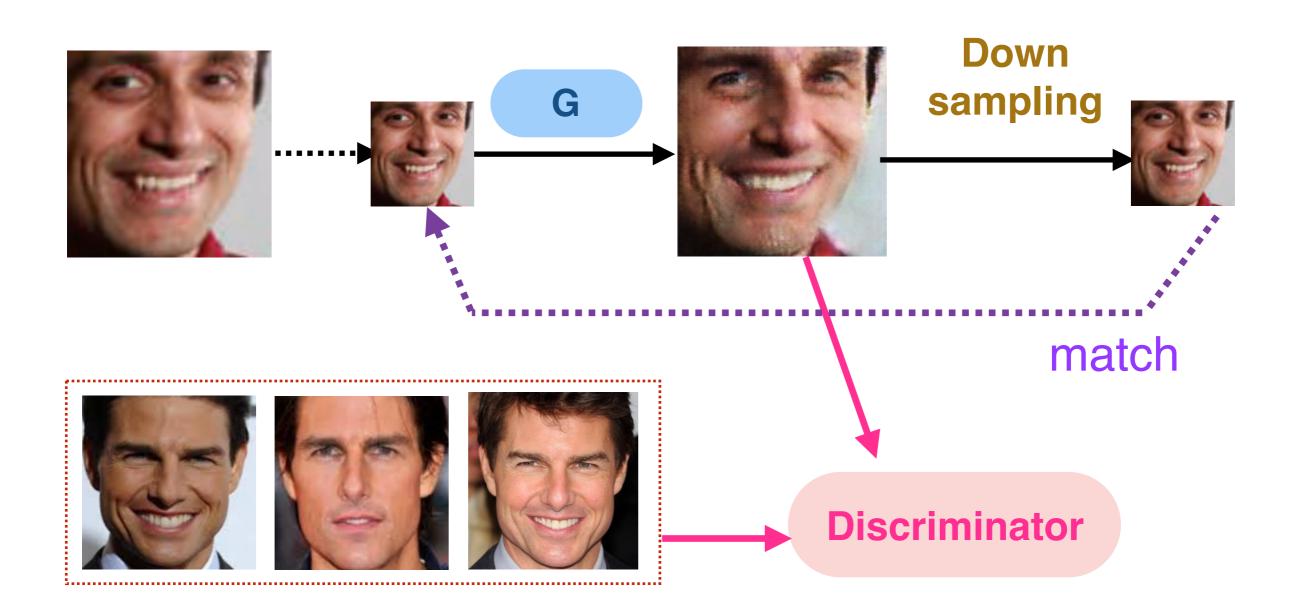
Single Image 3D Interpreter Network











Why Learning in SLAM

- Scale Ambiguity
- Moving Objects
- Mapping the Invisible
- Geometrically-consistent deep memories for recognition in videos

Input: RGB video

Input: RGB video

Outputs:

- depth
- egomotion

Reprojection loss is not correct on independently moving objects! Moving objects are treated as noise

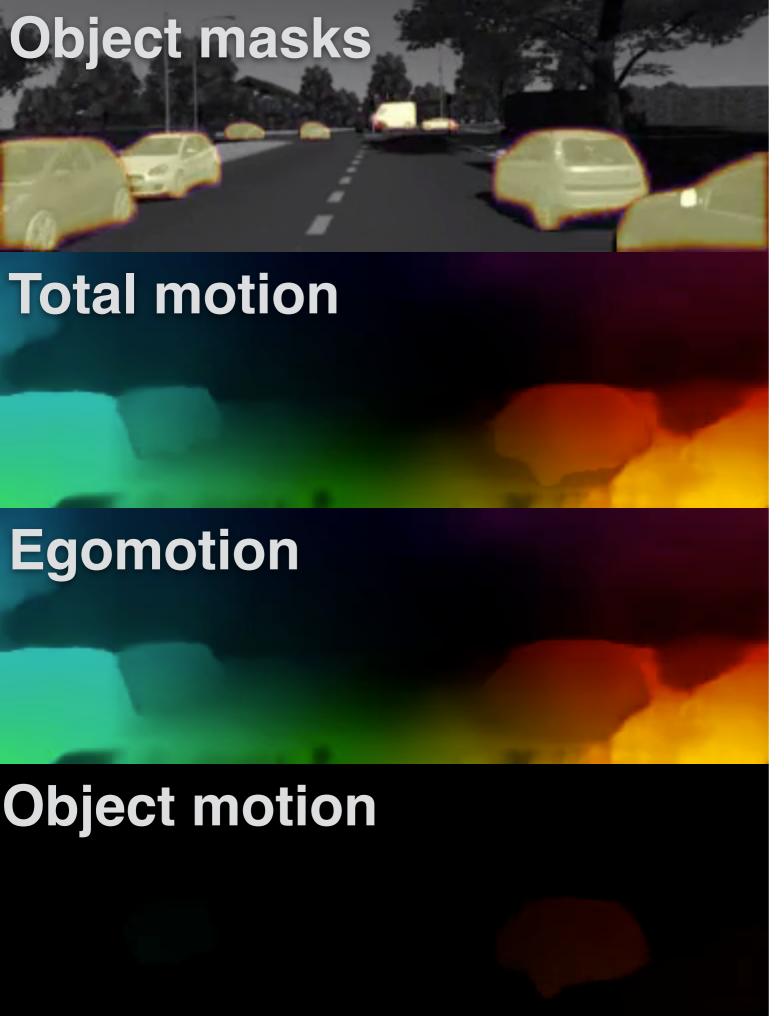
Input: RGB video

Outputs:

- depth
- egomotion

objects

- 6D motion
- segmentation

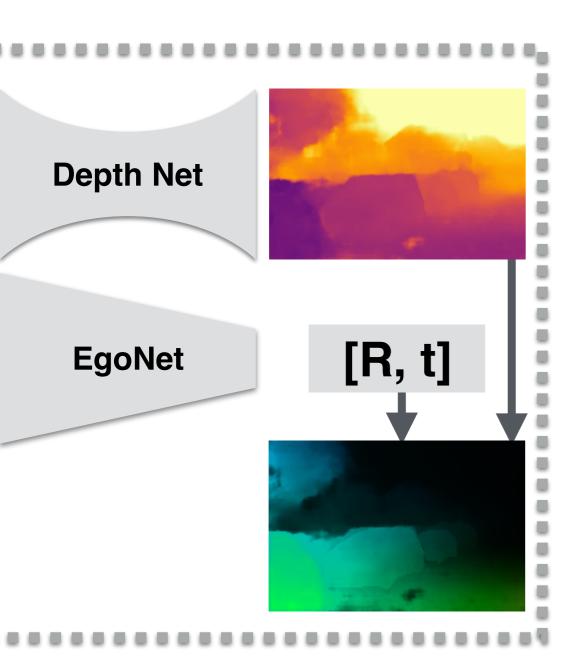


Decompose total motion into egomotion and object motion.

SfM-Net: Learning of Structure and Motion from Video, Vijayanarasimhan et al. 2017

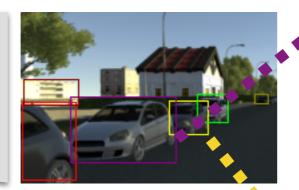
Object-centric Neural Structurefrom-Motion, in submission

Adam Harley

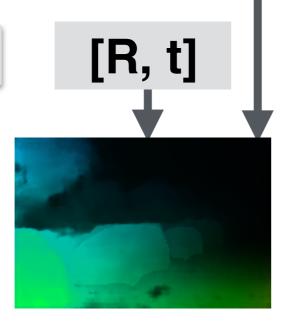


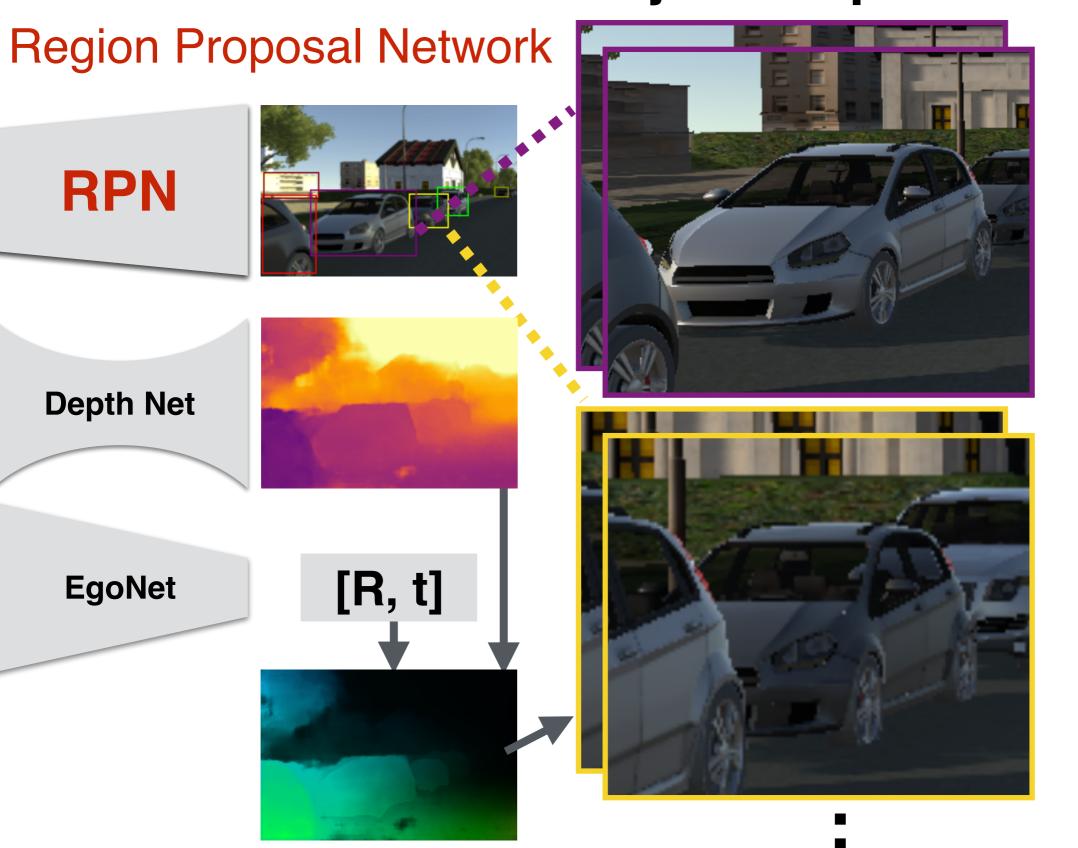
Object crops

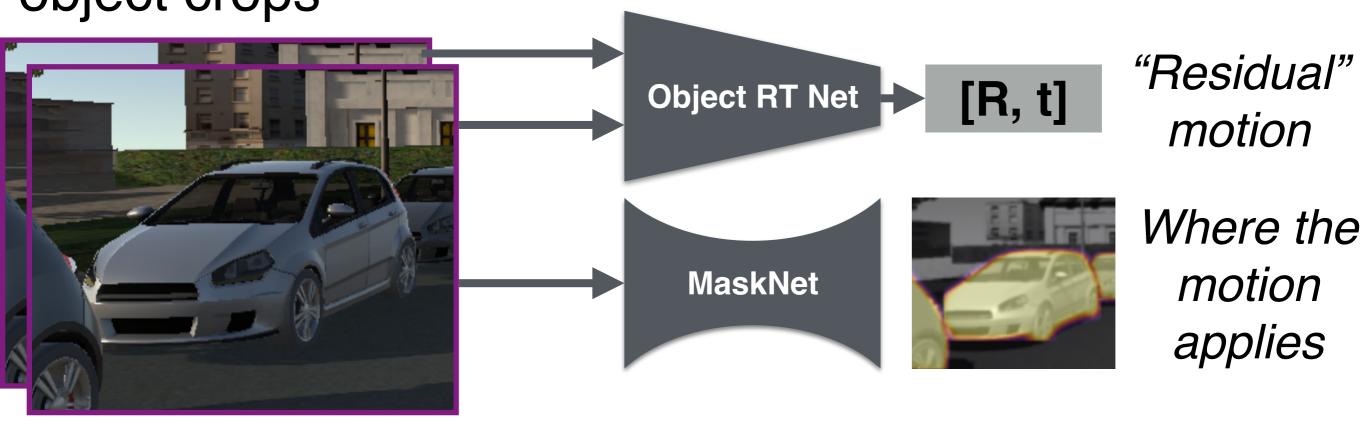
Region Proposal Network

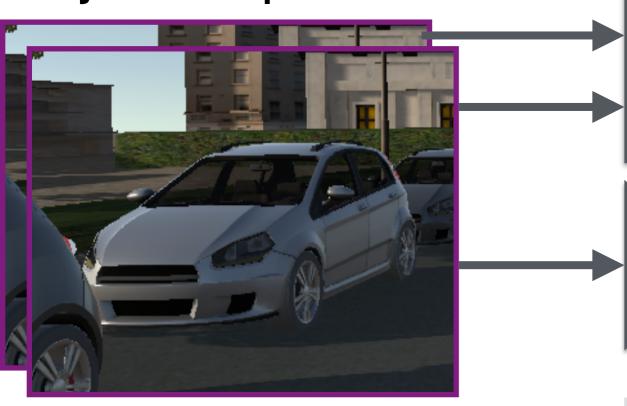












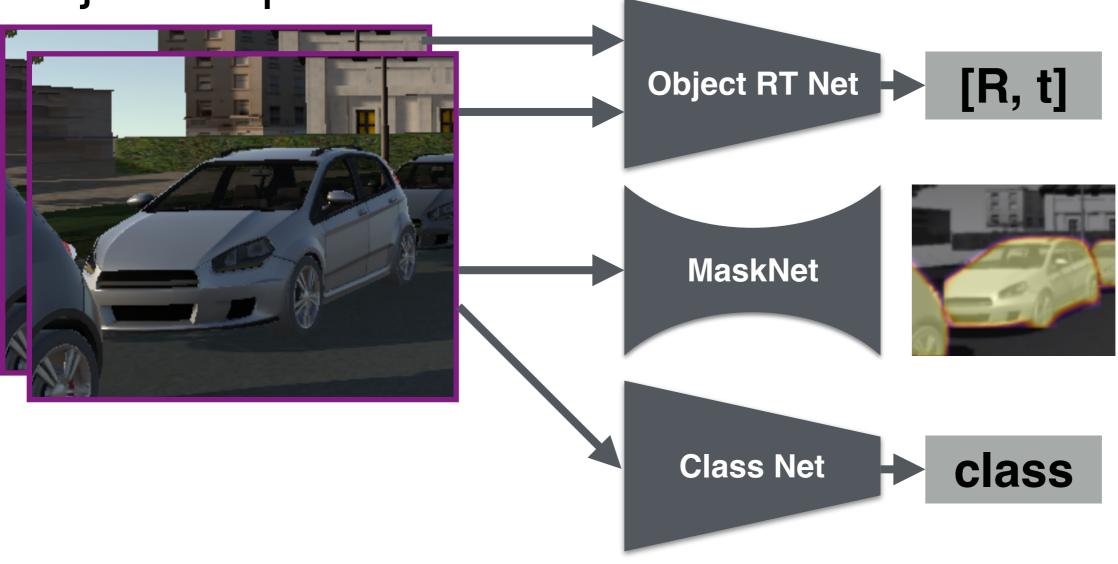
Object RT Net [R, t] "Residual" motion

Where the motion applies

Add moving objects to the reprojection

XYZ2 = RTobj RTego XYZ1

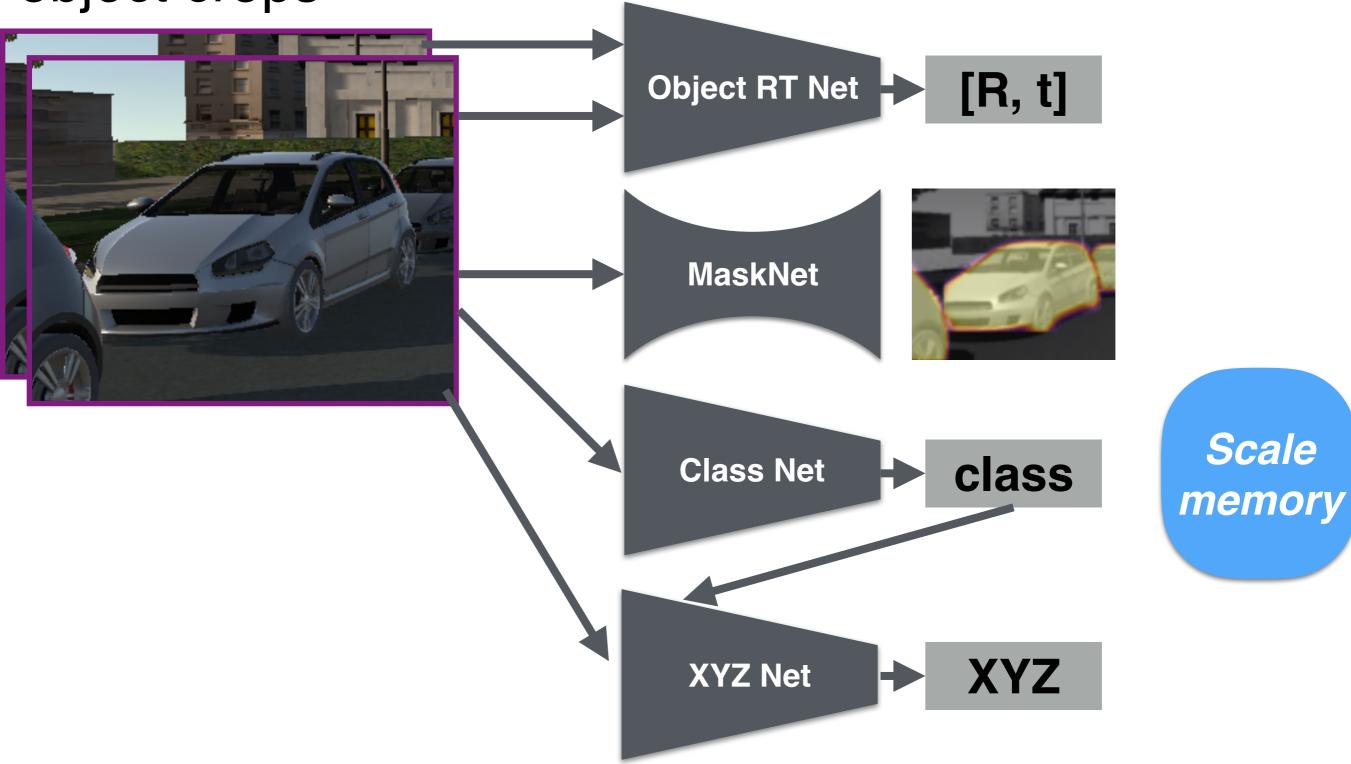
MaskNet



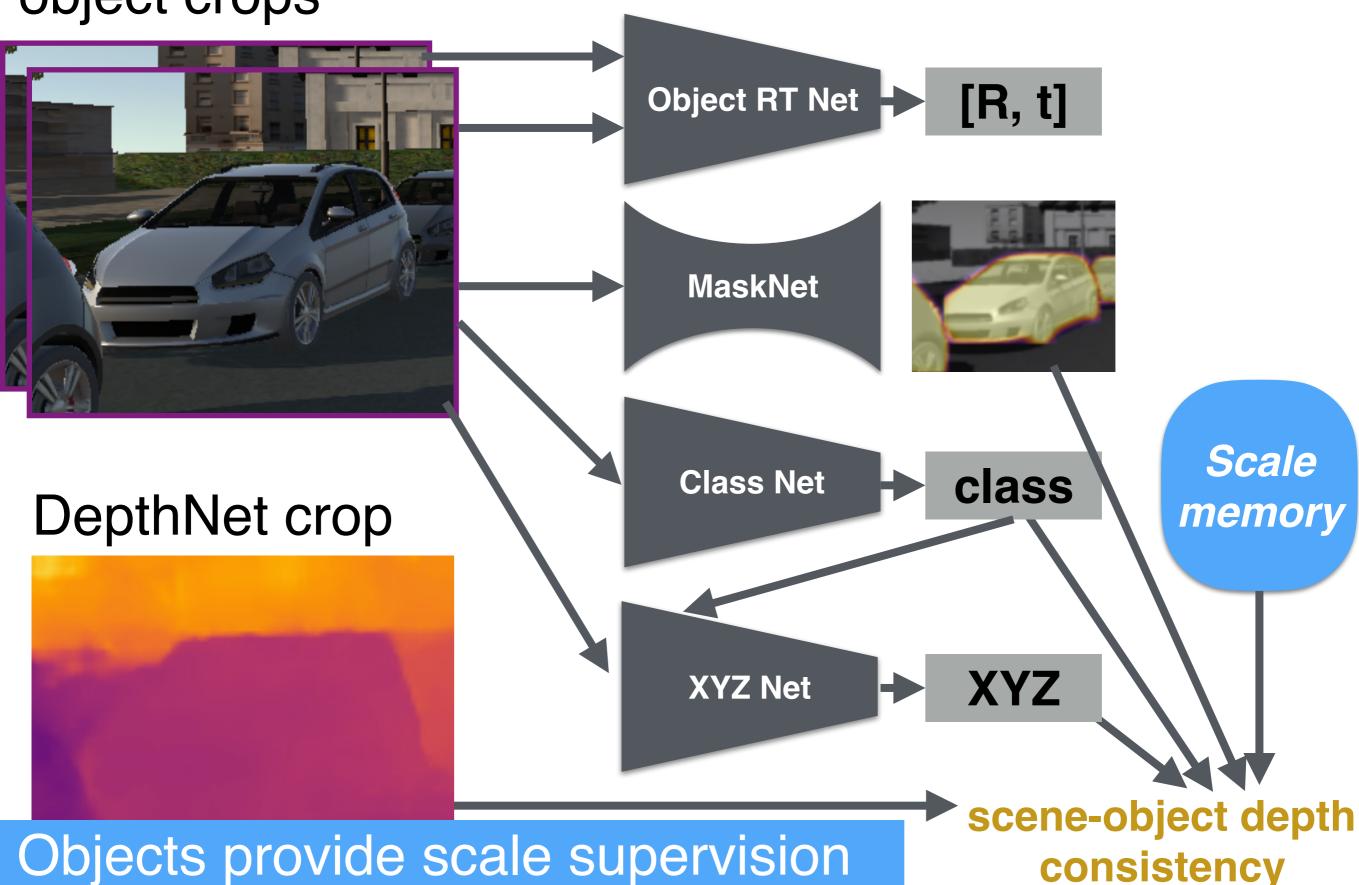
Egomotion-stabilized object crops **Object RT Net** [R, t] **MaskNet** Scale **Class Net** class

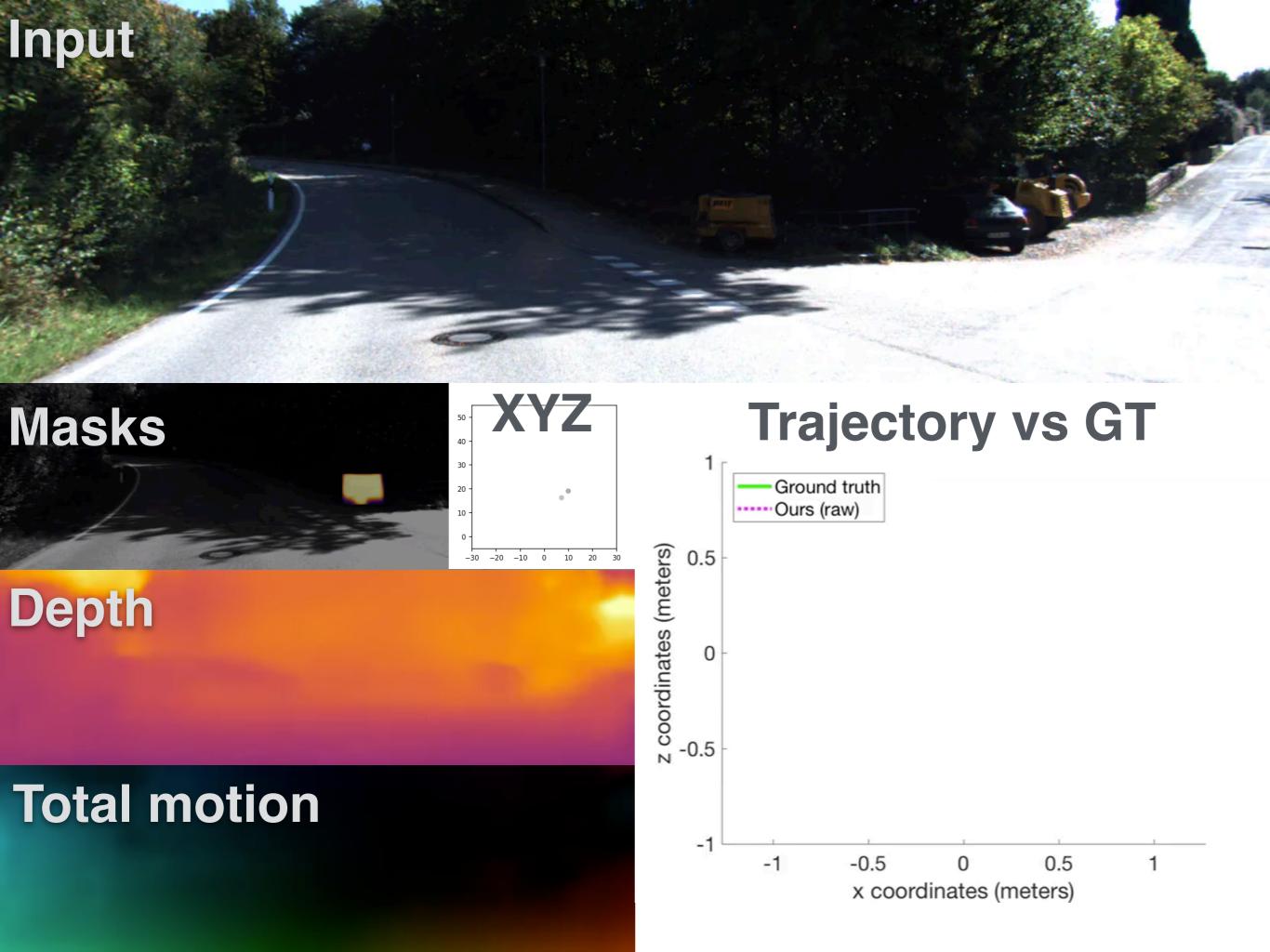
memory

Object categories have typical sizes.

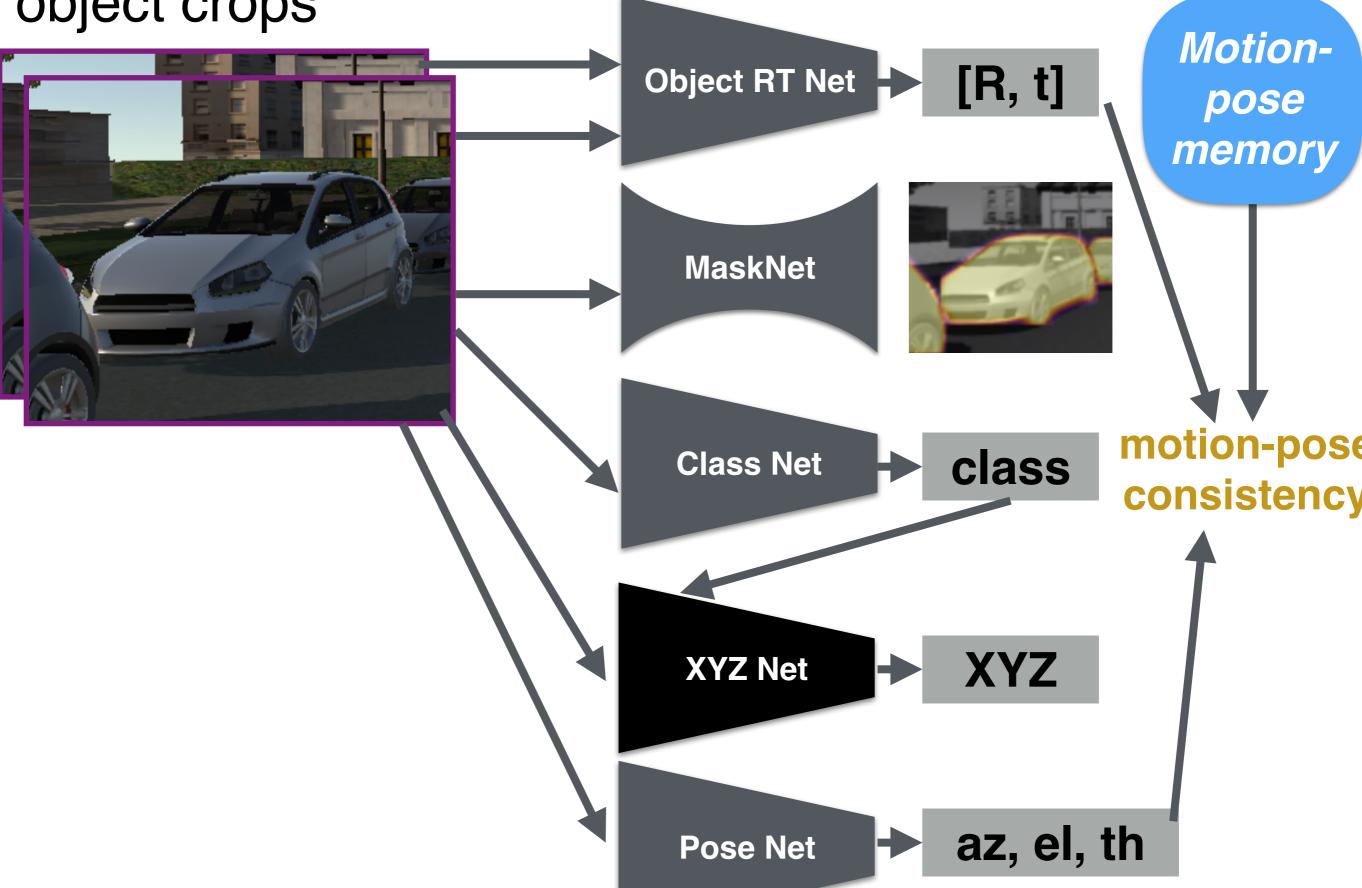


Ego-stabilized object crops





Ego-stabilized object crops

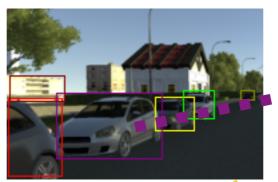


Input

Scene nets

RPN

EgoNet



Object nets

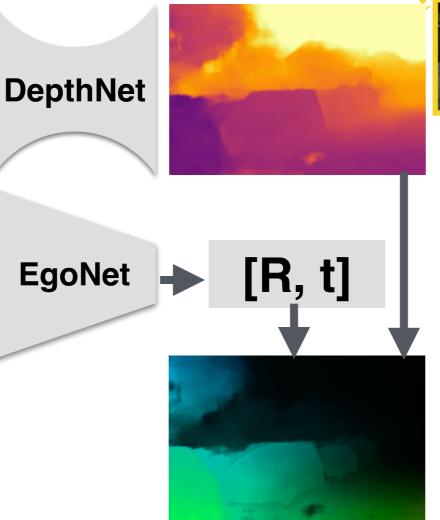
Object [R, t] **RT Net**

Class Net

class

XYZ Net **XYZ**

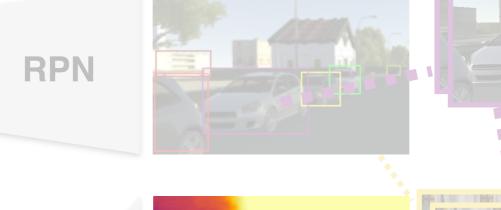
Pose az, el, th Net



Input

Scene nets

Object nets



Object RT Net

[R, t]

MaskNet

EgoNet

Class Net

class

XYZ Net

XYZ

Reproj

Pose Net

az, el, th

Input

Scene nets

Depth Net

Object nets

[R, t]

MaskNet

Class Net

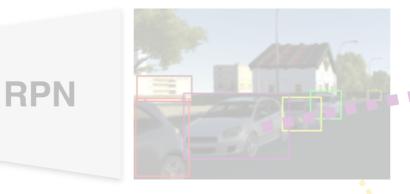
class

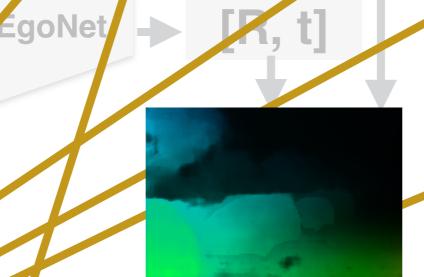
XYZ Net

XYZ

Pose Net

az, el, th





Reproj

Scale

Object nets Input Scene nets Object **RPN** [R, t] **RT Net Depth Net** Class class EgoNet Net XYZ Net XYZ Pose az, el, th Scale Pose Reproj Net

Self supervision helps, even if all networks are pretrained (strongly) supervised.

	Depth metrics		Egomotion		Object-centric	
Net type	L1 static	L1 moving	R	Т	Vel	Pose
Pretrained	10.96	10.48	0.006	0.46	0.19	1.69
Ours	8.14	3.49	0.002	0.07	0.14	0.608
Error reduction	25%	67%	67%	85%	26%	64%

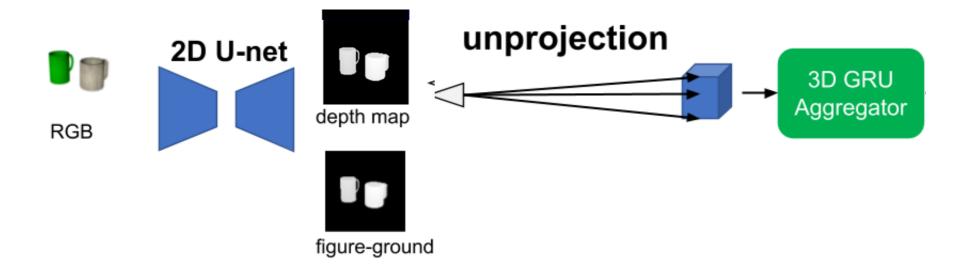
Our outputs are **metric**, but our model wins on **relative** evaluations as well, due to improved training stability.

ado to improvod training otability.							Rel.	
	Relative depth metrics							Ego
Net type	Abs. relative	Sq. relative	RMSE	Log RMSE	D 1	D2	D3	ATE
Baseline	0.24	4.81	6.49	0.28	0.72	0.90	0.95	0.15
Ours	0.19	1.41	5.21	0.26	0.71	0.91	0.97	0.14
Error reduction	21%	71%	20%	7%	-1%	1%	2%	6%

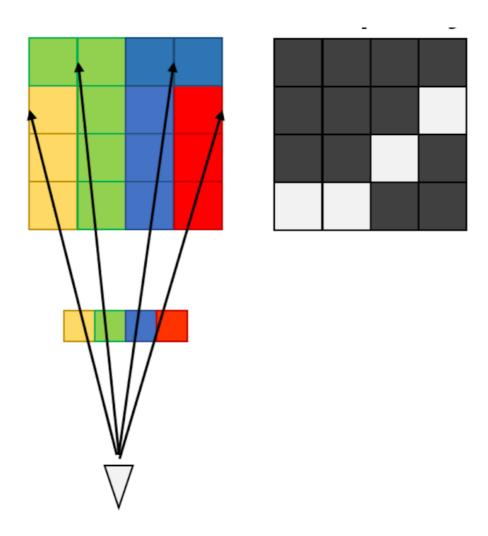
Why Learning in SLAM

- Scale Ambiguity
- Moving Objects
- Mapping the Invisible
- Geometrically-consistent deep memories for recognition in videos

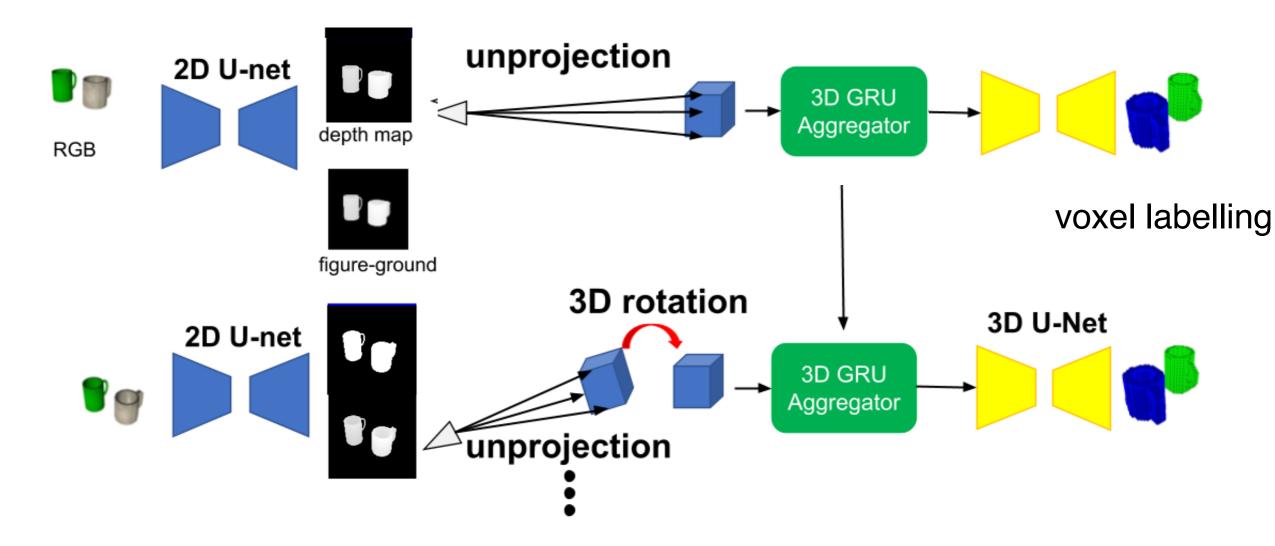
Full 3D scene reconstruction



Unprojection



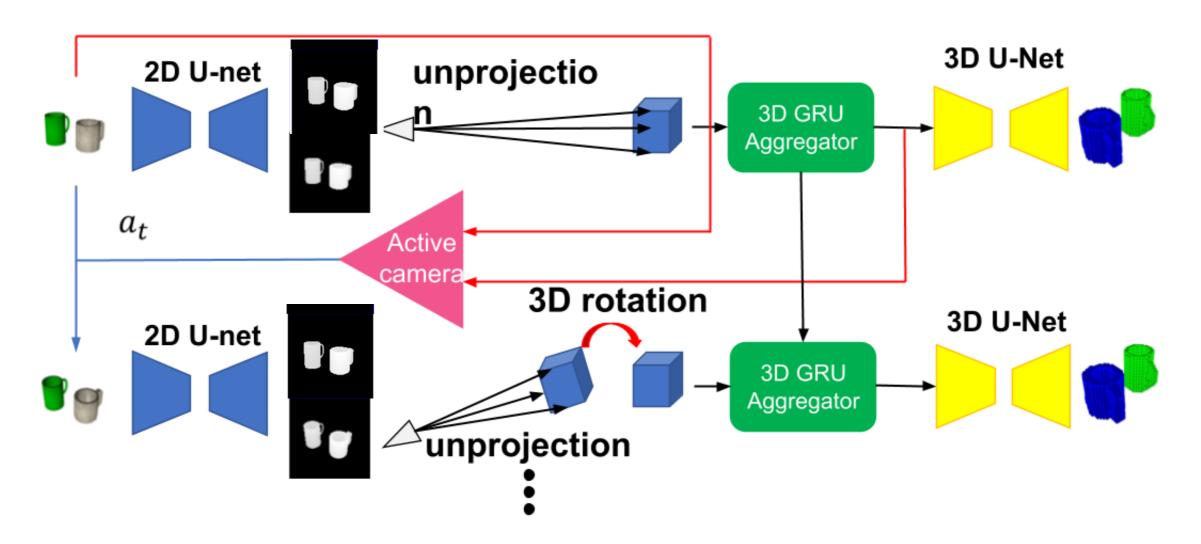
Full 3D scene reconstruction

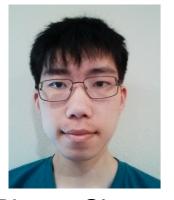


Ziyan Wang

Geometry-aware Active Visual Recognition under Occlusions

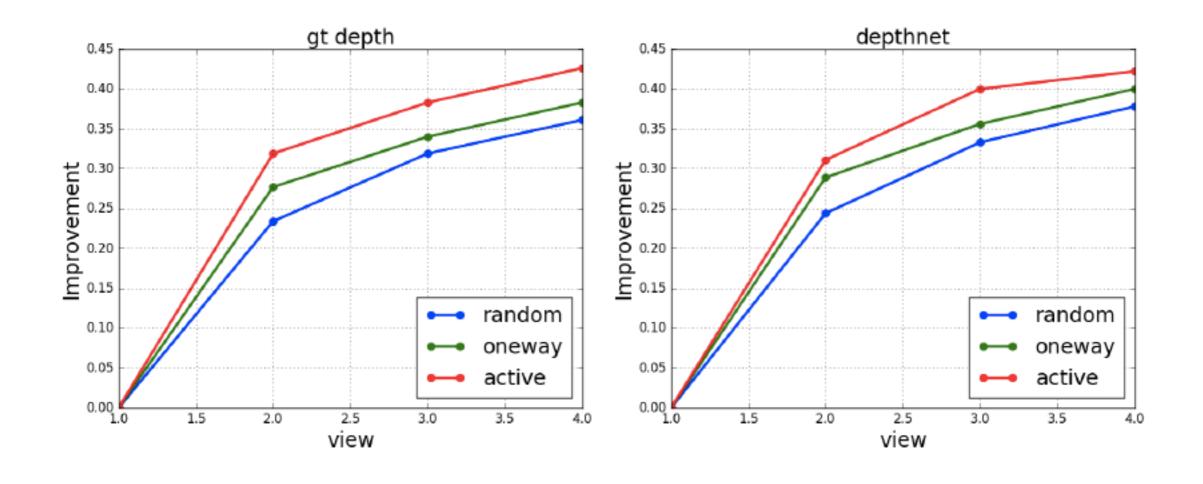
Active full 3D scene reconstruction



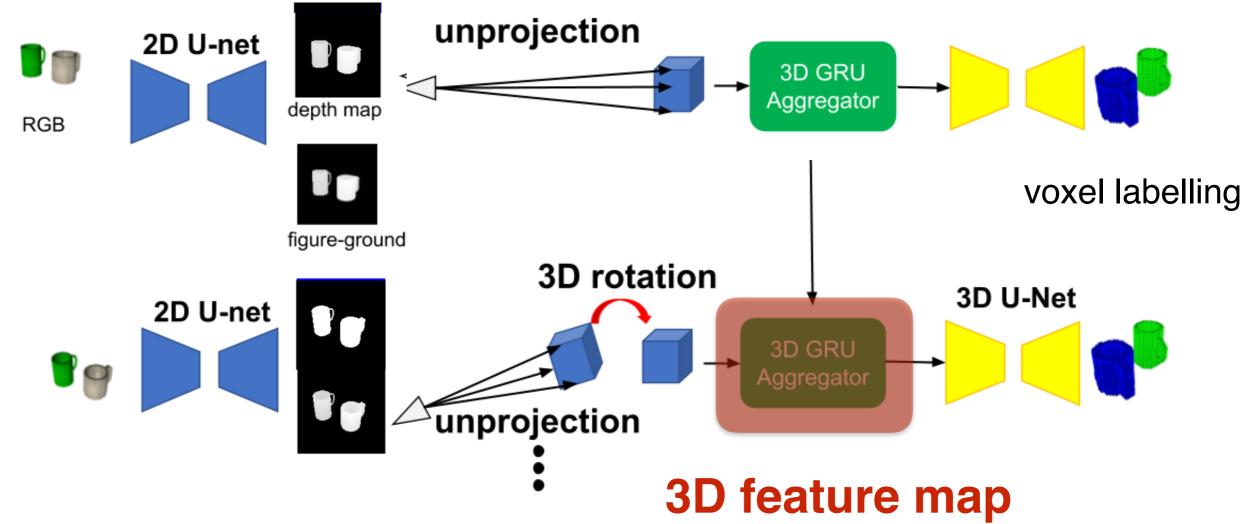


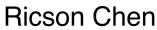
Geometry-aware Active Visual Recognition under Occlusions

Geometry-aware Active Visual Recognition under Occlusions



Full 3D scene reconstruction





Ziyan Wang

Geometry-aware Active Visual Recognition under **Occlusions**

Benefit of Geometric consistency

	single object			multi-objects				
	view-1	view-2	view-3	view-4	view-1	view-2	view-3	view-4
2D LSTM	0.57	0.59	0.60	0.60	0.11	0.15	0.17	0.20
LSM	0.63	0.66	0.68	0.69	0.43	0.47	0.51	0.53
LSM+gt depth	0.65	0.68	0.69	0.70	0.48	0.51	0.54	0.56
Ours+gt depth	0.55	0.69	0.72	0.73	0.47	0.58	0.62	0.64
Ours+learnt depth	-	-	-	-	0.45	0.56	0.60	0.62

Why Learning in SLAM

- Scale Ambiguity
- Moving Objects
- Mapping the Invisible
- Geometrically-consistent deep memories for recognition in videos

Active full 3D scene reconstruction

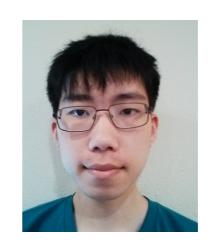
Along 3D reconstruction losses, add segmentation loss and classification loss, directly on the 3D feature map

Object detection can be carried out directly from the 3D feature memory map, as opposed to 2D views

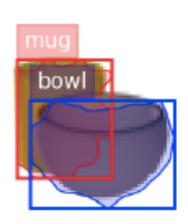
Geometry-aware Active Visual Recognition under Occlusions

In submission

Projecting the object detection results in each 2D view, we get amodal boxes

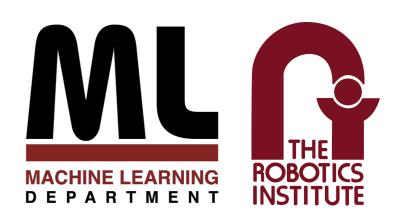


Ziyan Wang

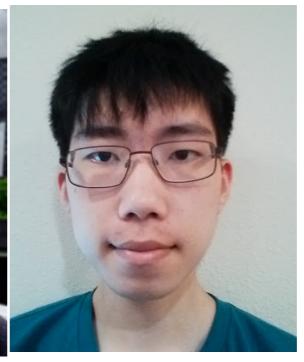


Conclusions

- GANs provide rich data-driven priors to regularize inverse problems
- Object semantics help scale ambiguity in 3D reconstruction, and can deal with moving object in 3D reconstruction
- Egomotion-aware 3D visual feature memory maps produce stable in time object recognition



Adam Harley



Ricson Chen

Ziyan Wang

- Adversarial Inverse Graphics Networks: Learning 2D-to-3D Lifting and Image-to-Image Translation with Unpaired Supervision, F. Tung, A. Harley, W. Sato, K.F. et. al, ICCV 2017
- Geometry-Aware Recurrent Neural Networks for Active Visual Recognition,
 R. Cheng, Z. Wang, K.F., NIPS 2018