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Simultaneous Localization and Mapping



3D point cloud

Camera motion

Simultaneous Localization and Mapping



Why Learning in SLAM

• Scale Ambiguity 

• Moving Objects 

• Mapping the Invisible 

• Geometrically-consistent deep memories for 
recognition in videos
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We can regularize depth and ego motion using priors, e.g., 
spatial/temporal smoothness

What if, instead of designing priors, we 
learn them?
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All losses are unsupervised and can be applied at 
test time

photometric loss



Tung et. al.,ICCV 2017

Fish Tung

Adversarial Inverse Graphics Networks

• Scale Ambiguity causes Drifting
• Adversarial priors stabilize training
• Recovered depth is metric



Adversarial Inverse Graphics Networks

• Parameter-free decoder (renderer)
• Discriminators on the predicted parameters
• Reprojection losses

RendererGenerator

DiscriminatorMemories

reconstruction

Tung et. al.,ICCV 2017

Fish Tung
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https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Wu et al. 2016
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Adversarial Inverse Graphics Networks
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Why Learning in SLAM

• Scale Ambiguity 

• Moving Objects 

• Mapping the Invisible 

• Geometrically-consistent deep memories for 
recognition in videos



Input: RGB video



Input: RGB video

Outputs: - depth
- egomotion

Reprojection loss is not correct on independently moving objects!
Moving objects are treated as noise



Input: RGB video

Outputs: - depth
- egomotion

objects
- 6D motion
- segmentation



Total motion

Object motion

Egomotion

Object masks Decompose total 
motion into 
egomotion and 
object motion.
SfM-Net: Learning of Structure and Motion 
from Video, Vijayanarasimhan et al.  2017

Object-centric Neural Structure-
from-Motion, in submission

Adam Harley
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Object RT Net

MaskNet
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Add moving objects 
to the reprojection
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 Object categories have typical sizes.
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scene-object depth 
consistency

Object RT Net

MaskNet

[R, t]

Class Net class Scale 
memory

XYZ Net XYZ

DepthNet crop

Ego-stabilized 
object crops

 Objects provide scale supervision
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Self supervision helps, even if all 
networks are pretrained (strongly) 
supervised.

Net  
type

L1
static

L1 
 moving R T Vel Pose

Pretrained 10.96 10.48 0.006 0.46 0.19 1.69

Ours 8.14 3.49 0.002 0.07 0.14 0.608

Error 
reduction 25% 67% 67% 85% 26% 64%

Depth metrics Egomotion Object-centric



Our outputs are metric, but our model 
wins on relative evaluations as well, 
due to improved training stability.

Net  
type

Abs.
relative

Sq. 
relative RMSE Log 

RMSE D1 D2 D3 ATE

Baseline 0.24 4.81 6.49 0.28 0.72 0.90 0.95 0.15

Ours 0.19 1.41 5.21 0.26 0.71 0.91 0.97 0.14

Error 
reduction 21% 71% 20% 7% -1% 1% 2% 6%

Relative depth metrics
Rel.
Ego
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• Moving Objects 

• Mapping the Invisible 

• Geometrically-consistent deep memories for 
recognition in videos
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Full 3D scene reconstruction

voxel labelling

In submission

Geometry-aware Active Visual Recognition under 
Occlusions

Ziyan WangRicson Chen

3D feature map



Benefit of Geometric consistency
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Active full 3D scene reconstruction

Along 3D reconstruction losses, add segmentation loss and 
classification loss, directly on the 3D feature map

Object detection can be carried out directly from 
the 3D feature memory map, as opposed to 2D 

views



Ziyan WangRicson Chen

In submission

Geometry-aware Active Visual 
Recognition under Occlusions

Projecting the object detection 
results in each 2D view, we get 

amodal boxes



Conclusions

• GANs provide rich data-driven priors to regularize 
inverse problems

• Object semantics help scale ambiguity in 3D 
reconstruction, and can deal with moving object in 
3D reconstruction

• Egomotion-aware 3D visual feature memory maps 
produce stable in time object recognition



Ziyan WangRicson ChenAdam HarleyFish Tung

Thank you!

• Adversarial Inverse Graphics Networks: Learning 2D-to-3D Lifting and 
Image-to-Image Translation with Unpaired Supervision, F. Tung, A. Harley, 
W. Sato, K.F. et. al, ICCV 2017

• Geometry-Aware Recurrent Neural Networks for Active Visual Recognition , 
R. Cheng, Z. Wang, K.F., NIPS 2018


