

Adversarial Inverse Graphics Networks

Katerina Fragkiadaki

Carnegie Mellon University

3D representations

depth map

surface normals

3D mesh

3D point cloud

3D voxel occupancy

2D-to-3D synthesis

Hard to collect 3D annotations on real images/videos

Can we improve 2D-to-3D synthesis with unlabelled data?

2D keypoints

Adversarial Inverse Graphics Networks (AIGNs)

	Direct	Discus	s Eat	Greet	Phone	Photo	Pose	Purchas	e Sit	SitDow	Smoke	Wait	Walk	Average
Forward2Dto3D	75.2	118.4	165.7	95.9	149.1	154.1	77.7	176.9	186.5	193.7	142.7	99.8	74.7	128.9
3Dinterpr [33]	56.3	77.5	96.2	71.6	96.3	106.7	59.1	109.2	111.9	111.9	124.2	93.3	58.0	88.6
Monocap [39]	78.0	78.9	88.1	93.9	102.1	115.7	71.0	90.6	121.0	118.2	102.5	82.6	75.62	92.3
AIGN (ours)	53.7	71.5	82.3	58.6	86.9	98.4	57.6	104.2	100.0	112.5	83.3	68.9	57.0	79.0

Table 1. **3D reconstruction error** in H3.6M using ground-truth 2D keypoints as input.

	Direct	Discus	s Eat	Greet	Phone	Photo	Pose	Purchase	e Sit	SitDow	n Smoke	Wait	Walk	Average
Forward2Dto3D	80.2	92.4	102.8	92.5	115.5	79.9	119.5	136.7	136.7	144.4	109.3	94.2	80.2	104.6
3Dinterpr [33]	78.6	90.8	92.5	89.4	108.9	112.4	77.1	106.7	127.4	139.0	103.4	91.4	79.1	98.4
AIGN (ours)	77.6	91.4	89.9	88	107.3	110.1	75.9	107.5	124.2	137.8	102.2	90.3	78.6	97.2

Table 2. 3D reconstruction error in H3.6M using detected 2D keypoints as input.

Male -> Female

CV researcher -> Tom Cruise

Female to male

Female to male

To older

To younger

To younger

Masking

To bigger lips

To bigger lips

2D-to-3D synthesis

Recover a human 3D mesh from 2D videos

Can we improve with unlabelled data?

SMPL [M. Loper et al.]: a low-parametric model learned from aligning high-resolution 3D scans.

3D mesh SMPL(θ , β)

Pose Shape β

SMPL [M. Loper et al.]: a low-parametric model learned from aligning high-resolution 3D scans.

3D mesh SMPL(θ , β)

Pose Shape β

SMPL [M. Loper et al.]: a low-parametric model learned from aligning high-resolution 3D scans.

Pose Shape β

3D mesh

SMPL [M. Loper et al.]: a low-parametric model learned from aligning high-resolution 3D scans.

3D mesh SMPL(θ , β)

Pose Shape β

SMPL [M. Loper et al.]: a low-parametric model learned from aligning high-resolution 3D scans.

3D mesh SMPL(θ , β)

Pose Shape θ

SMPL [M. Loper et al.]: a low-parametric model learned from aligning high-resolution 3D scans.

3D mesh SMPL(θ , β)

Pose Shape β

3D human shape model

SMPL [M. Loper et al.]: a low-parametric model learned from aligning high-resolution 3D scans.

3D mesh SMPL(θ , β)

Pose Shape β

3D human shape model

SMPL [M. Loper et al.]: a low-parametric model learned from aligning high-resolution 3D scans.

3D mesh SMPL(θ , β)

Pose

 θ

Shape

B

Differentiable mapping

RGB - to - 3D mesh

Inputs:

RGB frame 2D keypoint heatmaps

RGB - to - 3D mesh

Inputs:

RGB frame 2D keypoint heatmaps

Outputs:

SMPL parameters (β , θ)

Our model

Inputs:

RGB frame 2D keypoint heatmaps

Outputs:

SMPL parameters (β , θ) camera parameters (R, R)

Self-supervised reprojection losses

Self-supervised reprojection losses

Self-supervised reprojection losses

Flownet 2.0: Evolution of optical flow estimation with deep networks. Ilg at al., 2016

Visibility-aware reprojection

Supervised training

Synthetic data: SURREAL dataset

Results

Per-Joint Error

	Per-Joint Error (mm)
optimization	562.4
supervised pretrained	125.6
Supervised+self-supervised	98.4

Results

Adam Harley

Hsiao-Wei Tung

William Seto

Ersin Yumer

- Adversarial Inverse Graphics Networks, Tung et al., ICCV 2017
- Self-supervised learning of motion capture, Tung et al. NIPS 2017