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My goal is to build intelligent machines that can perceive, reason, plan, act, and learn based on sensory
input. A central theme of my work is exploring how physics-based perceptual representations—grounded in
3D structure and motion—can enhance perception, reasoning, planning, action, and learning.

One line of work that exemplifies this vision began with our early efforts to develop end-to-end trainable
3D feature representations for mobile perception—representations that persist over time and account
for camera motion (31; 10; 9; 19; 24). At a time when most computer vision methods grounded their outputs
directly in 2D image space, we introduced architectures that mapped 2D image features into persistent 3D or
bird’s-eye-view (BEV) coordinate frames. These frames moved with the agent and effectively compensated
for its motion, all in a fully differentiable manner. Rather than extracting explicit 3D representations
(such as meshes or voxel grids), our key insight was to use the 3D structure as an inductive bias, allowing
the end-to-end learning of feature representations optimized for tasks such as object detection, tracking, and
self-supervised objectives such as novel view synthesis. These 3D representations have since become the
standard in autonomous driving, where multi-camera inputs are fused into BEV maps jointly trained for
multiple downstream tasks.

Building on this foundation, we have recently developed architectures for 3D robot manipulation
policies that reason directly in 3D space using rich 3D scene feature representations (see Section 1). These
models achieve strong performance on several benchmarks (5; 35; 15; 6), combining 3D scene understand-
ing with generative formulations to effectively capture multimodality in demonstration learning, enabling
generalization across tasks and viewpoints.

Beyond imitation learning, we extended this idea to show how geometry- and physics-aware generative
models can be used to search for high-reward behaviors, even when the reward function is unknown
at training time (38; 4; 37). Unlike demonstration-based approaches, our method enables the same gen-
erative model to be guided at test time to produce reward-maximizing actions for a wide variety of
tasks—regardless of whether the reward functions are differentiable or not—without the need for additional
training (see Section 2).

We investigated representations for motion estimation in video (Section 3). While prior methods
predominantly relied on frame-to-frame optical flow, we introduced multi-frame point trajectories that
persist through point occlusions (8; 39). To extract these trajectories, we developed learned iterative
neural networks trained on synthetic data from simulation environments. This work marked a paradigm
shift—point trajectories have since become the default motion representation, significantly outperforming
optical flow in both accuracy and expressiveness. For example, they have been widely adopted as goal
representations in imitation learning for robotics.

Recognizing the value for understanding physics in both fine-grained perception and robot interaction, we
have focused on enhancing the usability and scalability of physics engines. This includes the development of
GENESIS, a more accessible and powerful simulation platform, as well as efforts to scale and automate data
generation in the physics engine using generative models and reality-to-simulation translation (14; 34)
(see Section 4). In particular, we are advancing methods to simulate visible scenes and their dynamics—which
we see as a natural and essential path for scaling simulation data—through techniques such as 3D point
tracking in videos (39), amodal video completion in time and across viewpoints via analysis-by-synthesis
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and generative priors (3; 4), and inferring a structured scene from a single image by jointly generating a set
of 3D meshes with compositional diffusion models (21).

Motivated by the desire to develop experienced-based dynamic scene understanding, we have been
exploring the role of explicit memory retrieval and attention in vision-language-action reasoning (Section 5).
We have shown that such models enable effective personalization by storing and reusing explicit user
routines (28), and proposed methods to optimize memory structure in order to maximize task success
(26). Additionally, we have extended pre-trained 2D vision-language models (VLMs) to operate on both 2D
image-centric and 3D world-centric representations (11; 12). By introducing 3D feature maps as a form of
short-term memory, we significantly improved the ability of these models to reason over long egocentric
video sequences, scenarios that would otherwise overwhelm the context window due to the redundancy
and frame-by-frame repetition inherent in 2D representations. Our ongoing work focuses on developing
models that reason step-by-step by grounding their thoughts in visual input (25) as well as their past
memories—learning to actively move the camera to gain better observations as part of their reasoning process,
identifying which memories to retrieve to inform decisions, and improving memory consolidation to boost
overall performance.

Additional contributions, achievements, and recognition include:

1. DARPA Young Faculty Award, AFOSR Young Investigator Award, NSF Career, numerous industry
gifts and awards (Google, Amazon, Sony, UPMC, TRI, NVIDIA)

2. JPMorgan Chase Career Development Professorship

3. Started the AI4ALL summer camp in CMU.

4. Evidence of recognition through numerous invited talks in workshops and symposiums, e.g., 6 invited
talks in CVPR 2025 workshops, 2 invited talks in workshops in RSS 2025, 2 invited talks in workshops
for ICRA 2025, 5 invited talks at workshops in ICCV 2025, Future of ML Symposium in ISTA, Vienna
2024, keynote in MVA 2025, keynote in 3DV and BMVC 2021.

5. I have been Program Chair for ICLR 2024, Associate Editor in TPAMI, Senior Area Chair in ICLR
2025 and CVPR 2025, Area chair in all NeurIPS, ICML, ICCV, ECCV, CoRL conferences

1 3D Reasoning in Robot Action Prediction

Our lab has pioneered a new class of 3D robot manipulation policies that reason directly in 3D space, setting a
new standard for generalization and control in complex manipulation tasks. Unlike prior methods that operate
in 2D image space and predict 3D end-effector poses or body joint trajectories, our approach represents
both actions and visual observations as tokens embedded in a shared 3D coordinate frame. These
tokens are fused using relative 3D positional encodings, allowing the policy to reason jointly about
scene geometry, object layout, and task objectives.

Our Act3D (5) paper introduced a coarse-to-fine 3D action inference framework and demonstrated strong
generalization to unseen camera viewpoints—a setting where most existing methods fail. Building on this,
ChainedDiffuser (35) proposed a hierarchical policy architecture that first predicts key interaction poses and
then synthesizes full motion trajectories to reach them. This enabled robust execution of long-horizon tasks
in contact-rich environments, outperforming traditional motion planners in constrained manipulation settings.

In more recent work, we introduced the 3D Diffuser Actor (15), which formulates action inference as a
generative denoising process in a joint action-vision 3D space. This model introduces position-aware
attentions, where the positional encodings of action tokens are updated at each denoising step based on
intermediate predictions, allowing for precise spatial reasoning at each inference step. Our latest advance, 3D
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Flow Actor (6), extends generative 3D formulations to bimanual manipulation, and achieves state-of-the-art
performance on both simulated and real-world benchmarks (Figure 1).

Together, these contributions have established a new paradigm for spatially grounded, instruction-
conditioned robot policy learning. Our 3D diffusion policies are now widely adopted as sample-efficient
action decoders, capable of learning from just a handful of demonstrations, and have become a preferred
choice for labs seeking practical, generalizable manipulation systems.

(a) 3D Flow Actor model architecture 
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Figure 1: Robot Manipulation policies with 3D Reasoning. Our works 3D Diffuser Actor (15) and 3D
Flow Actor (6) show state-of-the-art performance of RLbench PerAct(30) and PerAct2 (7) benchmarks, and
the CALVIN (22) benchmarks.

2 Planning with Generative Visuo-Motor Models

Recent advances in generative modeling present a transformative opportunity for agent exploration and
reinforcement learning. Traditional model-based control relies on learning next-state prediction functions
and optimizing action sequences over time, a process that can quickly amplify errors in the learned dynamics.
In contrast, generative models can learn distributions over entire action trajectories—or joint action-state
trajectories—capturing the behavior of both the robot and its environment. This fully generative formula-
tion enables more robust and efficient search for high-reward actions, providing a powerful alternative to
conventional planning approaches.

In our work Diffusion-ES (Diffusion Evolutionary Search), we introduced a method that integrates
generative models of robot action trajectories—such as vehicle waypoint trajectories—with traditional
evolutionary search for planning in autonomous driving. A key innovation is a learned mutation operator:
rather than adding random noise to action sequences, we inject noise and then denoise it using a learned
trajectory diffusion model. This ensures that mutated samples stay on the manifold of plausible behaviors,
yielding a data-driven planner capable of efficiently optimizing even non-differentiable reward functions.

We demonstrated that Diffusion-ES achieves state-of-the-art performance in the nuPlan driving bench-
mark (2) as a real-time online planner. Furthermore, we showed that it can follow natural language instructions
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without additional training by using large language models (LLMs) to translate language instructions into
constraints that guide the diffusion-ES planning process.
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Figure 2: Left: Generative evolutionary search with Diffusion-ES. Trajectories are colored by rewards (blue
is low, green is high). Right: We visualize the mutations for varying noise levels. Color denotes timestep
along trajectory. While noise perturbations alone can lead to unrealistic trajectories, denoising helps project
samples back onto the trajectory data manifold.

More recently, in our work on Generative 3D Particle World Models (4), we extended this idea to
jointly model agent action trajectories and 3D object particle trajectories of manipulated deformable
objects using a single diffusion model. This unified representation enables goal-directed planning via
guided denoising—inferring actions that satisfy differentiable object-centric constraints (e.g., achieving a
target object position or deformation), while staying consistent with learned priors over realistic interactions.
This represents a step toward physically grounded, general-purpose planning from vision and interaction data.

3 Motion Understanding from Video

Tracking Any Point Through Time in a Video: Tracking objects, parts and points in video is crucial
for action recognition and robot imitation. Traditionally, motion estimation in video has been framed as
an optical flow problem: predicting per-pixel motion vectors between consecutive frames. However, this
formulation fails under occlusions, where pixel-wise correspondences are undefined and information is lost.

Our paper, Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories (8), introduced
a paradigm shift: instead of estimating motion as frame-to-frame optical flow, we model each point with a full
trajectory across time, enabling robust tracking through occlusions. The key contributions of this work are:

• Trajectory-based representation: We replace pairwise flow vectors with multi-frame point trajectories
that persist across occlusions.

• Iterative learned estimator: We introduce a neural architecture that iteratively updates point trajecto-
ries using a learned refinement operator.
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• Sim-to-real generalization: Our model is trained on synthetic data—where point supervision is easily
obtained in a graphics engine—and then deployed without any finetuning on real-world video.

• State-of-the-art performance: Our method outperforms baselines trained directly on real videos via
self-supervision, demonstrating the value of synthetic training for long-range correspondence.

This approach marked a paradigm shift in multiframe video processing, providing superior pixel tracking
and correspondence compared to previous methods that mostly focused on self-supervising temporal corre-
spondences on large amounts of real video. This multi-frame tracking approach has become a powerful tool
for robot learning, particularly in representing manipulation subgoals, since they provide a natural abstraction
of intended interactions.

Our latest work, TAPIP3D (39), extends these ideas to persistent point tracking in the 3D world space.
It significantly improves accuracy over both 2D and 3D baselines—particularly when depth is available—and
supports both camera-centric and world-coordinate inference. Our experiments show that compensating for
camera motion is crucial for accurate, long-horizon tracking.

From Videos to Complete 4D Scene Reconstructions While point tracking captures motion of points visi-
ble in some frame in the video, it does not account for completely occluded or unobserved regions of the scene.
In recent work, we have shown that advances in image generative models can enable training-free 4D scene
reconstruction from monocular videos of dynamic scenes. This is achieved through test-time optimization of
a set of differentiable 3D object representations, guided by differentiable rendering to minimize reprojection
error and maximize compliance to object-centric generative view synthesis constraints (3; 4). We introduce a
fully compositional, multi-object framework, in which deformable 3D representations of multiple objects
are jointly rendered in the camera frame to handle inter-object occlusions (or reprojection losses and
individually rendered in object-centric frames to leverage view-synthesis priors. Importantly, we employ
object-centric view synthesis models—more accurate than scene-level models due to lower intra-object
variability—to complete missing geometry. The system learns coordinate transformations between camera
and object frames on-the-fly, enabling consistent optimization across viewpoints.

Together, our work on long-term tracking and 4D reconstruction advances the development of video-
centric world models—capable of tracking visible content, reconstructing occluded structure, and supporting
downstream applications such as policy learning, scene editing, and simulation.

4 Improving Physics Engines for Perception-Driven Simulation

Foundation models enable a shift from single-task robots to versatile agents that generalize across environ-
ments by leveraging open-world knowledge of scenes and tasks. However, robotic foundation models must
also learn physics, sensory dynamics, and behaviour generation—skills that cannot be acquired from static
internet data alone. These require sequences of real-world interactions, which are often unsafe during early,
exploratory learning.

A central tool for scaling data in robotics is simulation—replicating the physical world within a physics
engine. Sim2Real learning has already transformed areas like robot locomotion. To support broader and
more accessible simulation, we developed GENESIS (1), a fully open-source, GPU-parallelizable physics
engine designed to be more general and user-friendly than existing alternatives. GENESIS supports a wide
range of materials and physical behaviors—including rigid bodies, deformable objects, fluids, gases, and
granular media—using custom physics solvers written from scratch in Taichi. This multi-institutional effort,
led by my PhD student Xian Zhou, has now been open-sourced and is actively used by many research labs.
The project has 25000 stars on Github.
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Automating Robot Data Generation in Physics Engines with Generative Models and Video-to-Simulation
Translation: Beyond building the physics engine itself, creating diverse scenes, assets, tasks, and reward
functions typically requires extensive human effort. A key area where our lab has established leadership
is in using generative models of language and vision to automate this process. In our work Gen2Sim (14),
we introduced a framework that generates 3D assets from 2D images using generative priors, infers task
descriptions and their temporal decompositions by querying large language models (LLMs), and constructs
reward functions accordingly. Robots are then trained with model-free reinforcement learning to complete
the inferred tasks by optimizing these rewards—forming a fully automated pipeline for data generation in
simulation. Our follow-up paper RoboGen (34) scaled this approach across multiple robot embodiments, and
augmented training with classical motion planners in addition to RL, enabling broader and more efficient
behavior synthesis.

RobotArena: Scalable and Reproducible Robotics Evaluations in Simulation With the rapid progress
in robot manipulation and growing momentum across academia and industry toward building robot general-
ists—agents capable of following instructions and performing diverse tasks in dynamic settings—there is an
urgent need for rigorous, scalable benchmarking frameworks to systematically measure research progress.
Real-world evaluation of robot policies remains fundamentally unscalable due to challenges related to logis-
tics, safety, and reproducibility—issues that become even more pronounced as policy capabilities expand in
scope and complexity.

We are developing RobotArena, a scalable, general, and continually evolving benchmark for evaluating
robot policies in simulation. Our initial prototype (13), illustrated in Figure 3, leverages an automated reality-
to-simulation translation method built upon recent advances in vision-language models, 3D generative
modeling, and differentiable rendering to automatically convert video demonstrations from popular real-
world robot datasets into simulated evaluation arenas. Within these arenas, robot policies are evaluated
directly—without additional training—and scored via a combination of vision-language models and human
preference judgments.

Simulated benchmarking enables controlled perturbations of the environment—such as changes in
camera viewpoint, background texture, object placement, lighting, friction and other material and surface
properties, and object inertial, elastic, plastic, and viscous parameters—allowing us to systematically assess
generalization and robustness. The result is a richly diverse yet reproducible suite of evaluation scenarios that
meaningfully stress-test the adaptability of modern robot generalists.

Our goal is to expand RobotArena into a continually growing set of environments and a progressively
challenging task curriculum, to provide a fair, transparent, and scalable way to measure progress in robotics.

Figure 3: RobotArena (13) generates simulated environments and evaluation schemes from video demonstra-
tions. It evaluates robot policies in the nominal scene and on controlled perturbations. It offers a way to obtain
apples-to-apples comparisons across robot manipulation policies trained on any data, real or simulation.
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5 Memory-Augmented Vision-Language Reasoning

Current vision-language models (VLMs) can only process input information in their context windows so
that any VLM will only have the ability to utilize “short-term memory” for decision-making or question-
answering. For example, Gemini downsamples videos at 1FPS to handle the explosion of visual tokens across
frames. Meaningful collaboration between humans and AI systems requires recalling past events, tendencies,
plans, and routines, as well as handling long continuous streams of video.

An area our lab has established leadership in is memory-augmented vision-language reasoning, with
models that encode knowledge using external repositories of experiences, or on-the-fly constructed
short-term 3D feature maps, alongside parametric networks, that learn to write, retrieve and fuse information
during inference. The HELPER model (29) enhances instruction-following in dynamic environments through
retrieval-augmented generation (RAG). It maintains an evolving memory of dialogue and action-plan pairs,
retrieving relevant past examples as in-context prompts to guide future responses. This allows the model to
store, recall, and adapt user-specific routines—such as “tidying up my kitchen”, enabling personalization.

Storing raw action plans in memory places the burden of adaptation on the model’s parameters. Our
follow-up work, ICAL (26), addresses this by editing and refining memories to improve task performance, as
shown in Figure 4. ICAL transforms suboptimal demonstrations into generalized, multimodal programs of
thought—natural language plans enriched with abstractions like subgoals, causal dependencies, and state
transitions. These structured memories enable more effective retrieval-augmented generation, improving
generalization and reducing reliance on human demonstrations. ICAL achieved state-of-the-art results on the
TEACh benchmark (23) and VisualWebArena benchmark (16), as shown in Tables 1 and 2.

Table 1: Evaluation of our ICAL method (26)
on TEACh unseen validation set. All evaluations
are done using GPT3.5-turbo-1106 unless otherwise
noted. Visual Demos = demonstrations labeled with
inverse dynamics model. Kinesthetic Demos = de-
mos labeled with GT actions. GC = goal-condition
success

Success GC

Ground truth segm, depth, attributes
HELPER hand-written (27) 34.5 36.7
Zero-Shot CoT (18) 11.8 24.6
Raw Visual Demos 17.2 26.6
Raw Kinesthetic Demos 26.5 29.5
ICAL retrieval (ours) 35.1 49.3
w/o programs of thought phase 29.4 44.9
w/o human-in-the-loop 29.9 41.0
w/ retrieval re-ranking 35.3 51.7
w/ GPT4 41.7 63.6

ICAL SFT 23.2 40.3
ICAL SFT + retrieval 35.8 54.2

Estimated perception
HELPER hand-written (27) 8.3 14.1
ICAL (ours) 10.5 15.4

Table 2: Results of our ICAL method (26) on Vi-
sualWebArena. ICAL outperforms the prior best,
GPT4o/V + Set of Marks. All VLM baselines are
given Image + SoM + Captions representation (see
(17)). Ablation studies were conducted with GPT4V
on a subset of 257 episodes.

Seen Unseen Average

Open-source VLMs
CogVLM (33; 17) – – 0.33
IDEFICS-80B-Instruct (20; 17) – – 0.99
Qwen2-VL-7B (32) – – 2.9
ICAL Qwen2-VL-7B SFT (ours) 16.7 7.4 8.2

Proprietary VLMs
Gemini-Pro-1.5 – – 11.9
GPT4o (17) – – 18.9
ICAL GPT4o (ours) 32.3 22.3 23.4
GPT4V∗ (17) 16.3 14.1 14.3
ICAL GPT4V∗ (ours) 38.8 20.9 22.7

Ablations
GPT4V (17) 11.5 12.9 12.7
ICAL (ours) 28.0 21.6 22.2
w/o image 28.0 17.3 19.0
w/ full text trajectory 57.7 21.6 25.5

Using 3D Scene Representations as Short-Term Memory for VLM Reasoning: Videos rapidly over-
whelm the context window of today’s vision-language models (VLMs). To address this, we propose
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Figure 4: ICAL transforms raw experience into useful programs of thought for in-context learning. Top:
Given a noisy trajectory, It prompts a VLM to optimize actions and add language annotations. The optimized
trajectory is executed, incorporating human feedback on failures. Successful examples are stored for future
VLM in-context action generation. Bottom: An example of the raw, noisy trajectory (left), and the final
abstracted example after ICAL (right).

compressing the input video into a 3D feature map that serves as a form of short-term memory. Instead
of using standard temporal positional encodings, we encode frame tokens with their corresponding XYZ
scene coordinates and merge tokens from nearby locations—significantly reducing the number of tokens the
model must reason over. Our approach supports joint training on both RGB images and posed RGB-D video
sequences by adjusting token positional encodings to reflect either 2D pixel locations or 3D world coordinates,
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as illustrated in Figure 5. Our models excel in answering queries that require integrating information spread
across long egocentric videos, where existing VLMs struggle (36).
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Figure 5: Joint 2D and 3D Reasoning in Vision-Language Models. In (11; 12), we introduce vision-
language models that can be trained across both 2D images and egocentric RGB-D videos simply by changing
the positional encoding of the visual tokens to be 2D or 3D aware, reflecting (x, y) pixel coordinates or
(X,Y, Z) world coordinates, respectively.

6 Future Directions: Robot Reasoning Fast and Slow for Novice-to-Expert
Progression

Looking ahead, a central direction of my research is to unify perception, memory, and action into
interactive, grounded world models that support intelligent exploration through generalization across
tasks, environments, and embodiments. We aim to develop agents that explore through memory-driven,
analogical reasoning, enabling them to draw on past experiences—reasoning about objects, their 3D
geometry, orientations, and relational context—to adapt their interaction strategies in a compositional and
interpretable manner. Building on our recent work on “thinking” vision-language models (VLMs) (25), we are
extending this paradigm to vision-language-action agents (VLAs) that incorporate classical computer vision
operations—such as object detection, 3D reconstruction, memory retrieval, and analogy-based prediction—as
structured components in a chain of thought. This form of “slow thinking”—which decomposes tasks step by
step and plans object and end-effector trajectories—serves as a foundation for learning fast, reactive policies
that generalize out-of-distribution and gradually eliminate the need for explicit task decomposition. Through
this framework, our robots will be able to explore more intelligently, generate high-quality training data
autonomously, and greatly reduce reliance on brute-force interaction—whether in the real world or within
self-generated simulation twins.

Real-to-Sim and Sim-to-Real Learning We are advancing our research on reality-to-simulation translation,
enabling the real-time creation of editable, interactive 4D environments from video to support safe exploration,
internal simulation, and scalable data generation. In parallel, we are automating sim-to-real learning for
a wide range of robotics applications, including locomotion, manipulation, human-robot collaboration.
The overarching goal is to build a universal data engine for robotics, through an automated curriculum of
tasks, scenarios, and data generation pipelines enabling seamless real-to-sim and sim-to-real learning across
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different robot embodiments and task domains. We find particular value in assistive robotics for the elderly
and are working on sim-to-real methodologies for that. It includes modeling elderly humans as humanoid
agents with limited joint mobility or torque, and training robots in simulation to assist with a variety of
everyday tasks.

From Explicit Physics Engines to Neural Simulators Generative modeling holds great promise for the
next generation of model-based learning, by accurately modeling the manifold of state-action trajectories,
and facilitating searches for high-performing actions. We are working towards generative 3D world models
that can explain scene dynamics primarily through particle-based object, robot and camera motion, while
also predicting necessary appearance changes—serving as an intuitive, neural physics engine. We envision
learning such models using rich supervision in simulation environments, and extending them to the real world
through rendering-based supervision. Guiding these diffusion-based world models to achieve specific scene
configurations, would generate corresponding end-effector actions or entity motions, through differentiable
(4) or non-differentiable guidance (38).
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