Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Function Approximation for
Prediction

Lecture 6, CMU 10703

Katerina Fragkiadaki

Parts of slides borrowed from Russ Salakhutdinov, Rich Sutton, David Silver

v

Large-Scale Reinforcement Learning

» Reinforcement learning has been used to solve large problems, e.qg.
- Backgammon: 1020 states
- Computer Go: 10170 states

- Helicopter: continuous state space

» Tabular methods clearly do not work

Value Function Approximation (VFA)

» So far we have represented value function by a lookup table
- Every state s has an entry V(s), or
- Every state-action pair (s,a) has an entry Q(s,a)

» Problem with large MDPs:

- There are too many states and/or actions to store in memory

- ltis too slow to learn the value of each state individually

» Solution for large MDPs:

- Estimate value function with function approximation
V(s,W) = v (s)
or §(s,a,w) = q,(s, a)

- Generalize from seen states to unseen states

Value Function Approximation (VFA)

» Value function approximation (VFA) replaces the table with a general
parameterized form:

S, ey
4 e

Value Function Approximation (VFA)

» Value function approximation (VFA) replaces the table with a general
parameterized form:

(A S, 0)

Next week: we will see policies to have such parametric form, also over
continuous actions

Value Function Approximation (VFA)

» Value function approximation (VFA) replaces the table with a general
parameterized form:

St

-~
A, >

When we update the parameters \theta, the values of many states change
simultaneously!

0(Sy, 9)

0] << |J]

Q(Sta Ata 9)

Which Function Approximation”?

» There are many function approximators, e.g.

- Linear combinations of features
- Neural networks

- Decision tree

- Nearest neighbour

- Fourier / wavelet bases

Which Function Approximation”?

» There are many function approximators, e.g.
- Linear combinations of features
- Neural networks
- Decision tree
- Nearest neighbour

- Fourier / wavelet bases

» differentiable function approximators

Gradient Descent

» Let J(w) be a differentiable function of parameter vector w

» Define the gradient of J(w) to be:

0J(w)
8w1

Vwd(w) = : :
5.J(w) = &7
Owp, o

Gradient Descent

» Let J(w) be a differentiable function of parameter vector w

» Define the gradient of J(w) to be:

0J(w)
Bwl

Vwd(w) = : :
0J(w) o 7
Owp, "

» To find a local minimum of J(w), adjust w in
direction of the negative gradient:

Aw = — 1onWJ(w)

"\

Step-size

Gradient Descent

» Let J(w) be a differentiable function of parameter vector w

» Define the gradient of J(w) to be:

0J(w)
Bwl

Vwd(w) = : :
0J(w) 7
Oowp, as

» Starting from a guess W
» We consider the sequence W, Wi, Wy, ... st

Wit1 = W, — Ea VW'](Wn)

» We then have J(Wo) Z J(Wl) Z J(Wz) Z c o

Our objective

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

Our objective

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) = E; [(va(S) — 0(S,w))?]

Our objective

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) = E; [(va(S) — 0(S,w))?]

Let u(S) denote how much time we spend In each state s
under policy z , then:

|S]

Jw) =Y uS)[® -oS.w]” Y us) =1
n=1

sES

Our objective

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) = E; [(va(S) — 0(S,w))?]

Let u(S) denote how much time we spend In each state s
under policy z , then:

|S]

Jw) =Y uS)[® -oS.w]” Y us) =1
n=1 sES
In contrast to: JH(w) = : Z [vﬂ(S) — (S, w)]2

| &

sES

Gradient Descent

» Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) = E; [(vz(S) — ¥(S,w))?]

» Gradient descent finds a local minimum:

Aw = — %anJ(w)

— aF, [(vo(S) — 9(S, W)V ?(S, w)]

Stochastic Gradient Descent

Goal: find parameter vector w minimizing mean-squared error between the
true value function v,(S) and its approximation ¢(S, w)

J(w) = E; [(vr(S) — ¥(S,w))?]

Gradient descent finds a local minimum:

Aw = — %anJ(w)

— aF, [(vo(S) — 9(S, W)V ?(S, w)]

Stochastic gradient descent (SGD) samples the gradient:

Aw = a(v;(S) — V(S,w))Vu (S, w)

No summation over all states! One example at a time!

Feature Vectors

» Represent state by a feature vector

X1(5)
x(S) = '

xn(.S)

» For example

- Distance of robot from landmarks
- Trends in the stock market

- Piece and pawn configurations in chess

Linear Value Function Approximation (VFA)

» Represent value function by a linear combination of features
n
A T
v(S,w) =x(S) ' w= ZXJ(S)WJ
J=1
» Obijective function is quadratic in parameters w

J(w) = Er [(ve(S) = x(S) w)?
» Update rule is particularly simple
Vw?(S,w) = x(S)
Aw = a(v.(S) — V(S,w))x(S)

» Update = step-size x prediction error x feature value

» Later, we will look at the neural networks as function approximators.

Incremental Prediction Algorithms

» We have assumed the true value function v(s) is given by a supervisor

» Butin RL there is no supervisor, only rewards

» In practice, we substitute a target for v_(s)

For MC, the target is the return G;

Aw = Qf(Gt — O(St, W))Vw\7(5t, W)

For TD(0), the target is the TD target: R, ; 4+ v¥(S;41, W)

AW — a(Rt+1 + “/O(St+1, W) — O(St, W))Vw\7(5t, W)

Monte Carlo with VFA

Return G; is an unbiased, noisy sample of true value v_(S;)

Can therefore apply supervised learning to “training data™:
(51, G1), (52, G2), ..., (ST, GT)

For example, using linear Monte-Carlo policy evaluation

Aw = a(G; — V(S¢, W)V v(S:, w)
= a Gt — V(S¢,w))x(S;)

Monte-Carlo evaluation converges to a local optimum

Monte Carlo with VFA

Gradient Monte Carlo Algorithm for Approximating v ~ v,

Input: the policy 7 to be evaluated
Input: a differentiable function v : 8 x R" — R

Initialize value-function weights 6 as appropriate (e.g., 8 = 0)
Repeat forever:
Generate an episode Sy, Ag, R1, 51, A1,..., Ry, ST using w
Fort=0,1,...,T —1:
0+ 0+ Oé[Gt — @(St,H)] V@(St,e)

TD Learning with VFA

» The TD-target Rii1 + ’7\7(5t+1, w) a biased sample of true value
Vir(St)

» Can still apply supervised learning to “training data”:

(51, Ro +vV(S2,w)), (S2, R3 + vV (S3,W)), ..., (ST—-1, RT)

» For example, using linear TD(0):

Aw = (R + v0(S",w) — ¥(S,w)) Vw9 (S, w)
= adx(S)

We ignore the dependence of the target on w!
We call it semi-gradient methods

TD Learning with VFA

Semi-gradient TD(0) for estimating v ~ v,

Input: the policy m to be evaluated
Input: a differentiable function ¢ : 8 x R™ — R such that ¢(terminal,-) = 0

Initialize value-function weights @ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A ~ 7(-|.5)
Take action A, observe R, S’
0 <+ 0+« R+~5(5,0) —0(5,0)|Vi(S,0)
S 5

until S’ is terminal

Control with VFA

» Policy evaluation Approximate policy evaluation: §(-,-,w) = g,

» Policy improvement e-greedy policy improvement

Action-Value Function Approximation
» Approximate the action-value function
§(S, A, w) ~ (S, A)

» Minimize mean-squared error between the true action-value function
d-(S,A) and the approximate action-value function:

J(w) = Ex [(9x(S,A) — 4(S, A, w))?]

» Use stochastic gradient descent to find a local minimum

_%VWJ(W) — (qw(S7A) — 6(57 A, W))VWCAI(S, A,W)
Aw = a(qg-(S,A) — G(S,A,w))Vwi(S, A w)

Linear Action-Value Function Approximation

» Represent state and action by a feature vector
x1(57 A)
X(Sv A) — ;
xn(S, A)

» Represent action-value function by linear combination of features

57(5, A7 W) — X(S, A)TW — ZXJ(S, A)WJ
j=1

» Stochastic gradient descent update

Vw@(S, A w) =x(S, A)
Aw = a(qr(S,A) — g(S,A,w))x(S, A)

Incremental Control Algorithms

» Like prediction, we must substitute a target for g(S,A)

» For MC, the target is the return G;

Aw = a(G; — §(St, At, W))VwG(St, Ae, w)

» For TD(0), the target is the TD target: R, 1 + vQ(Sti1, Ats1)

Aw = a(RH—l T “/é(5t+1, Ati1, W) — G(St, AnW))Vwa(Sta At, W)

Incremental Control Algorithms

Episodic Semi-gradient Sarsa for Estimating ¢ =~ g,

Input: a differentiable function ¢ : 6 x A x R® -+ R

Initialize value-function weights 8 € R™ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
S, A <+ initial state and action of episode (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
If S” is terminal:
0+« 0+aR-q(S,A,0)|Vi(s, A, o)
Go to next episode
Choose A’ as a function of ¢(5’,-,0) (e.g., e-greedy)
0+ 0+alR+~4(S", A, 0)—q(S,A,0)]Vi(S, A,)
S+ S
A A

Example: The Mountain-Car problem

SITUATIONS:
car's position and velocity

ACTIONS:
three thrusts: forward, reverse, none

REWARDS:
always —1 until car reaches the goal

Gravity wins

Episodic, No Discounting, y=1
Minimum-Time-to-Goal Problem

roblem
Mountain-Car p
- The

A)

A a H
NaXq g{s, ,

Goal
MOUNTAIN CAR

'4:!' ‘\
LBl " ‘:‘:‘E‘E‘
/ '%‘;:«E{ ‘.:.4.\ “‘\2\ e
Frar, I:¥uz; ey \sé' 0 \‘\\,&;‘:@
M."rd.s\ = . i .-.~.*~?.~’.--*‘~m\\\‘
T \‘..-..- i bty RS ol o
i ll'N ’\\ \\\\»\?&%&@ T .m,'m"w 0D A N
AL A HREN N e
4 £ ;;‘!!llg'.[ll'@fbt\ ‘\\‘\‘\\\1@ .:::::l,l,l,l,l,llllt',','p.'gf.*,.',»'w@*@ &3
il i A T
2 IR O z
S 0 WEaEasess
‘.* t‘:““ ',]
S
0.6

120 a-uﬂ}" .‘;‘z?""‘)
‘;...QOI d .\
LA lmi"%‘i‘.-:” y O
. i 2 o
: -mm.,... L LR N
N 04 7
R R LTI 'O
\ g ’ <
0*@&‘\’&“‘&%&“%‘1&1'
46 4 ‘,.nfu#m«wmw\s‘:
FEELEROAN b\m;«w g 0
TR F"&@'Q”Q’Q‘\i""}?’l"f O
HRy LA

Batch Reinforcement Learning

Gradient descent is simple and appealing
But it is not sample efficient
Batch methods seek to find the best fitting value function

Given the agent’s experience (“training data”)

v

v

v

v

Least Squares Prediction

Given value function approximation: (s, w) = v,(s)

And experience D consisting of (state,value) pairs

D = {<517 V{T>7 <527 V§T>7 e <5T7 V¥>}

Find parameters w that give the best fitting value function v(s,w)?

Least squares algorithms find parameter vector w minimizing sum-
squared error between v(S;,w) and target values v,

LS(w)

T

> (v — 0(st, w))?

t=1

ED [(v7r — O(s,w))z]

SGD with Experience Replay

» Given experience consisting of (state, value) pairs

D = {<517 Vf)y <527 V§T>7 te <5T> V77T'>}

» Repeat

- Sample state, value from experience
(s,v") ~D

- Apply stochastic gradient descent update

Aw = a(v™ — V(s,w))V, (s, w)

» Converges to least squares solution

» We will look at Deep Q-networks later.

Which Function Approximation”?

» There are many function approximators, e.g.
- Linear combinations of features
- Neural networks
- Decision tree
- Nearest neighbour

- Fourier / wavelet bases

Nearest neighbors

» Save training examples in memory as they arrive (s,v(s)). (state, value)

» Then, given a new state s’, retrieve closest state examples from the
memory and average their values based on similarity:

K
v(s) =) k(hy, h)v(s))
i=1

» Accuracy improves as more data accumulates.

» Agent’s experience has an immediate affect on value estimates in the
neighborhood of its environment’s current state.

Parametric methods need to incrementally adjust parameters of a
global approximation.

Neural Episodic Control

Alexander Pritzel
Benigno Uria
Sriram Srinivasan
Adria Puigdomeénech
Oriol Vinyals

Demis Hassabis
Daan Wierstra
Charles Blundell

DeepMind, London UK

APRITZEL @GOOGLE.COM
BURIA @GOOGLE.COM
SRSRINIVASAN @GOOGLE.COM
ADRIAP@GOOGLE.COM
VINYALS @GOOGLE.COM
DEMISHASSABIS @ GOOGLE.COM
WIERSTRA @GOOGLE.COM
CBLUNDELL@GOOGLE.COM

Nearest neighbors Lookup

hi

Writing in the memory

h; Qi

N—1

N—
Q(N) (Sta a) — Z ’Yj'rt—{-j + 7N Ht?‘x Q(St-{-Na CL,)
j=0

It identical key h present:

Writing

Qi + Qi + a(Q™)(s,a) — Q)

Flse add row (h, Q"(s, a)) to the memory

N-1

QW (s,0) =) ¥Irery + 7Y max Q(se1n, a')

J:

Algorithm 1 Neural Episodic Control

D: replay memory.
M., : a DND for each action a.
N': horizon for N-step () estimate.
for each episode do
fort=1,2,...,T do
Receive observation s; from environment with em-
bedding h.
Estimate ()(s;, a) for each action a via (1) from M,
a; < e-greedy policy based on Q(s;, a)
Take action a;, receive reward 74+ 1
Append (h, QW) (s¢,a)) to My, .
Append (s, ay, Q(N)(st, at)) to D.
Train on a random minibatch from D.
end for
end for

Algorithm 1 Neural Episodic Control

N-1

QW (s,a) = Y ¥y + 7N max Q(sern,)
j=0

3 Vud(W) = (4[5, A) — 4(S, A W) Vwd(S, A w)
Aw = a(g-(S,A) — §(S,A,w))Vwi(S, A w)

D: replay memory.
M., : a DND for each action a.
N': horizon for N-step () estimate.
for each episode do
fort=1,2,...,T do
Receive observation s; from environment with em-
bedding h.
Estimate (s, a) for each action a via (1) from M,
a; < e-greedy policy based on Q(s;, a)
Take action a;, receive reward 74+ 1
Append (h, QW) (s¢,a)) to M,, .
Append (s¢, a;, Q™) (s4,a¢)) to D.
Train on a random minibatch from D.
end for
end for

Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Neural Networks Architectures for RL

CMU 10703

Katerina Fragkiadaki

RGB image

™ 3 channels

240

mi, 7x7 conv

stride 2
RelLU

240

conv1

‘\64 filters

Spatial Softmax

5x5 conv
RelLU

117

conv2

. 32 filters

113

5x5 conv
RelLU

113

conv3

"\ 32 filters

109

End-to-end learning of visuomotor policies, Levine et al. 2015

109

spatial softmax feature
) points
\32 distributions| .

- fully fully fully
expectgq connected connected connected
2D position RelLU RelLU linear
109 4

64 0
109

robot
configuration . —
39

motor
torques

Spatial Softmax

conv1 conv2 conv3 spatial softmax feature otor
' i orques
nnels 64 filters istributions| -
, L 7x7 conv \ N 32 filters [X 32 filters] \32 distributions| .. fully !
stride 2 o 5x5 conv ed | connec ted] connected N *%g
RelLU 8 | RelLU l_’ ReLU .
4240 “f 13 109 ™ 40
113 109

End-to-end learning of visuomotor policies, Levine et al. 2015

* For each feature map, flatten” it and compute a softmax
 [hentake X and Y grid coordinates and compute the

corresponding weighted averages
* Imposes a very tight bottleneck and avoids overfitting

End-to-End RL

» End-to-end RL methods replace the hand-designed state
representation with raw observations.

Ot i}(ota 0)

« We get rid of manual design of state representations :-)
* We need tons of data to train the network since O_t usually WAY more high
dimensional than hand-designed S_t :-(

« We can pre-train or jointly train with additional losses (auxiliary tasks) :-) For
example?

Unsupervised Losses / Pretraining

e\\Ve can always fine-tune from weights trained on a
supervised visual task.

e\\Ve can use auxiliary tasks, e.g., autoencoders

e\\Ve can use prediction of griper key points (we know
where they are using forward kinematics and camera
calibration

e\\Ve can use inverse model learning

Autoencoders

autoencoder

Latent Space
_ Representation

_’

Reconstructed image

denoising autoencoder

Encoder

Noisiy input

Compressed

representation

Decoder

-2

Denoised image

what/where autoencoder

RGE image
% 3 channels S

240

A IX7 cony
I| stride 2

RelLU

_—

¥ 240

conv

‘Q4 filters

cony2
N 32 filters
“5x5 cony 5x5 cony
RelLU RelLU
— —
V17 "3

113

Autoencoders are trained to reconstruct

the input (e.q., L2 pixel loss) after they
pass through a tight bottleneck layer
(the state representation)

What can go wrong?

conv3

" 16 filters

spatial softmax

"\ 16 distributions

¥109

109

feature

oints .
P reconstruction

E

-—

60

fully
connected
linear

expected
2D position

—

109

Train to predict the robotic action

Predict Poke

Learning to poke by poking, Agrawal et al., 2015

