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Large-Scale Reinforcement Learning 
‣ Reinforcement learning has been used to solve large problems, e.g.  

- Backgammon: 1020 states  
- Computer Go: 10170 states  
- Helicopter: continuous state space 

‣ Tabular methods clearly do not work



‣ Solution for large MDPs: 
- Estimate value function with function approximation 

- Generalize from seen states to unseen states  

Value Function Approximation (VFA)
‣ So far we have represented value function by a lookup table  

- Every state s has an entry V(s), or 
- Every state-action pair (s,a) has an entry Q(s,a) 

‣ Problem with large MDPs: 
- There are too many states and/or actions to store in memory  
- It is too slow to learn the value of each state individually 



Value Function Approximation (VFA)
‣ Value function approximation (VFA) replaces the table with a general 

parameterized form:



̂π(At |St, θ)

Value Function Approximation (VFA)
‣ Value function approximation (VFA) replaces the table with a general 

parameterized form:

Next week: we will see policies to have such parametric form, also over 
continuous actions 



Value Function Approximation (VFA)
‣ Value function approximation (VFA) replaces the table with a general 

parameterized form:

|θ | < < |𝒮 |

When we update the parameters \theta, the values of many states change  
simultaneously!



Which Function Approximation?
‣ There are many function approximators, e.g.  

- Linear combinations of features 
- Neural networks 
- Decision tree  
- Nearest neighbour  
- Fourier / wavelet bases 
- … 



Which Function Approximation?
‣ There are many function approximators, e.g.  

- Linear combinations of features 
- Neural networks 
- Decision tree  
- Nearest neighbour  
- Fourier / wavelet bases 
- … 

‣ differentiable function approximators



Gradient Descent
‣ Let J(w) be a differentiable function of parameter vector w  
‣ Define the gradient of J(w) to be:  



Gradient Descent
‣ Let J(w) be a differentiable function of parameter vector w  
‣ Define the gradient of J(w) to be:  

‣ To find a local minimum of J(w), adjust w in 
direction of the negative gradient:  

Step-size

wn+1 = wn −
1
2

α∇wJ(wn)

J(w0) ≥ J(w1) ≥ J(w2) ≥ . . .

w0

w0, w1, w2, . . .



Gradient Descent
‣ Let J(w) be a differentiable function of parameter vector w  
‣ Define the gradient of J(w) to be:  

‣ Starting from a guess 

‣ We consider the sequence                             s.t. : 

‣ We then have

wn+1 = wn −
1
2

α∇wJ(wn)

J(w0) ≥ J(w1) ≥ J(w2) ≥ . . .

w0

w0, w1, w2, . . .



Our objective
‣ Goal: find parameter vector w minimizing mean-squared error between the 

true value function vπ(S) and its approximation              : 
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Our objective
‣ Goal: find parameter vector w minimizing mean-squared error between the 

true value function vπ(S) and its approximation              : 

Let         denote how much time we spend in each state s 
under policy    , then:

J(w) =
|𝒮|

∑
n=1

μ(S)[vπ(S) − ̂v(S, w)]2

μ(S)

∑
s∈𝒮

μ(S) = 1

π



Our objective
‣ Goal: find parameter vector w minimizing mean-squared error between the 

true value function vπ(S) and its approximation              : 

J2(w) =
1

|𝒮 | ∑
s∈𝒮

[vπ(S) − ̂v(S, w)]2

Let         denote how much time we spend in each state s 
under policy    , then:

J(w) =
|𝒮|

∑
n=1

μ(S)[vπ(S) − ̂v(S, w)]2

μ(S)

∑
s∈𝒮

μ(S) = 1

π

In contrast to:



Gradient Descent 
‣ Goal: find parameter vector w minimizing mean-squared error between the 

true value function vπ(S) and its approximation              : 

‣ Gradient descent finds a local minimum: 



Stochastic Gradient Descent 
‣ Goal: find parameter vector w minimizing mean-squared error between the 

true value function vπ(S) and its approximation              : 

‣ Gradient descent finds a local minimum: 

‣ Stochastic gradient descent (SGD) samples the gradient: 

No summation over all states! One example at a time!



Feature Vectors
‣ Represent state by a feature vector 

‣ For example 
- Distance of robot from landmarks  
- Trends in the stock market 
- Piece and pawn configurations in chess  



Linear Value Function Approximation (VFA)
‣ Represent value function by a linear combination of features 

‣ Update = step-size × prediction error × feature value 
‣ Later, we will look at the neural networks as function approximators. 

‣ Objective function is quadratic in parameters w  

‣ Update rule is particularly simple 



Incremental Prediction Algorithms 
‣ We have assumed the true value function vπ(s) is given by a supervisor 
‣ But in RL there is no supervisor, only rewards 
‣ In practice, we substitute a target for vπ(s) 

‣ For MC, the target is the return Gt

‣ For TD(0), the target is the TD target: 

Remember



Monte Carlo with VFA
‣ Return Gt is an unbiased, noisy sample of true value vπ(St)  
‣ Can therefore apply supervised learning to “training data”:  

‣ Monte-Carlo evaluation converges to a local optimum 

‣ For example, using linear Monte-Carlo policy evaluation 



Monte Carlo with VFA
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Gradient Monte Carlo Algorithm for Approximating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rn ! R

Initialize value-function weights ✓ as appropriate (e.g., ✓ = 0)
Repeat forever:

Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
For t = 0, 1, . . . , T � 1:

✓  ✓ + ↵
⇥
Gt � v̂(St,✓)

⇤
rv̂(St,✓)

If Ut is an unbiased estimate, that is, if E[Ut] = v⇡(St), for each t, then ✓t is guar-
anteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.

For example, suppose the states in the examples are the states generated by in-
teraction (or simulated interaction) with the environment using policy ⇡. Because
the true value of a state is the expected value of the return following it, the Monte
Carlo target Ut

.
= Gt is by definition an unbiased estimate of v⇡(St). With this

choice, the general SGD method (9.7) converges to a locally optimal approximation
to v⇡(St). Thus, the gradient-descent version of Monte Carlo state-value prediction
is guaranteed to find a locally optimal solution. Pseudocode for a complete algorithm
is shown in the box.

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St)

is used as the target Ut in (9.7). Bootstrapping targets such as n-step returns G(n)
t

or the DP target
P

a,s0,r ⇡(a|St)p(s0, r|St, a)[r + �v̂(s0,✓t)] all depend on the current
value of the weight vector ✓t, which implies that they will be biased and that they
will not produce a true gradient-descent method. One way to look at this is that
the key step from (9.4) to (9.5) relies on the target being independent of ✓t. This
step would not be valid if a bootstrapping estimate was used in place of v⇡(St).
Bootstrapping methods are not in fact instances of true gradient descent (Barnard,
1993). They take into account the e↵ect of changing the weight vector ✓t on the
estimate, but ignore its e↵ect on the target. They include only a part of the gradient
and, accordingly, we call them semi-gradient methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear
case discussed in the next section. Moreover, they o↵er important advantages which
makes them often clearly preferred. One reason for this is that they are typically
significantly faster to learn, as we have seen in Chapters 6 and 7. Another is that they
enable learning to be continual and online, without waiting for the end of an episode.
This enables them to be used on continuing problems and provides computational
advantages. A prototypical semi-gradient method is semi-gradient TD(0), which uses
Ut

.
= Rt+1 + �v̂(St+1,✓) as its target. Complete pseudocode for this method is given

in the box at the top of the next page.



TD Learning with VFA
‣ The TD-target                                    is a biased sample of true value 

vπ(St)  

‣ Can still apply supervised learning to “training data”:

‣ For example, using linear TD(0):

We ignore the dependence of the target on w!  
We call it semi-gradient methods



TD Learning with VFA
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Semi-gradient TD(0) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function weights ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A ⇠ ⇡(·|S)
Take action A, observe R, S0

✓  ✓ + ↵
⇥
R + �v̂(S0,✓)� v̂(S,✓)

⇤
rv̂(S,✓)

S  S0

until S0 is terminal

Example 9.1: State Aggregation on the 1000-state Random Walk State
aggregation is a simple form of generalizing function approximation in which states
are grouped together, with one estimated value (one component of the weight vector
✓) for each group. The value of a state is estimated as its group’s component, and
when the state is updated, that component alone is updated. State aggregation is
a special case of SGD (9.7) in which the gradient, rv̂(St,✓t), is 1 for St’s group’s
component and 0 for the other components.

Consider a 1000-state version of the random walk task (Examples 6.2 and 7.1).
The states are numbered from 1 to 1000, left to right, and all episodes begin near the
center, in state 500. State transitions are from the current state to one of the 100
neighboring states to its left, or to one of the 100 neighboring states to its right, all
with equal probability. Of course, if the current state is near an edge, then there may
be fewer than 100 neighbors on that side of it. In this case, all the probability that
would have gone into those missing neighbors goes into the probability of terminating
on that side (thus, state 1 has a 0.5 chance of terminating on the left, and state 950
has a 0.25 chance of terminating on the right). As usual, termination on the left
produces a reward of �1, and termination on the right produces a reward of +1.
All other transitions have a reward of zero. We use this task as a running example
throughout this section.

Figure 9.1 shows the true value function v⇡ for this task. It is nearly a straight
line, but tilted slightly toward the horizontal and curving further in this direction for
the last 100 states at each end. Also shown is the final approximate value function
learned by the gradient Monte-Carlo algorithm with state aggregation after 100,000
episodes with a step size of ↵ = 2⇥ 10�5. For the state aggregation, the 1000 states
were partitioned into 10 groups of 100 states each (i.e., states 1–100 were one group,
states 101-200 were another, and so on). The staircase e↵ect shown in the figure is
typical of state aggregation; within each group, the approximate value is constant,
and it changes abruptly from one group to the next. These approximate values are



Control with VFA

‣ Policy evaluation Approximate policy evaluation: 
‣ Policy improvement ε-greedy policy improvement 



Action-Value Function Approximation 
‣ Approximate the action-value function  

‣ Minimize mean-squared error between the true action-value function 
qπ(S,A)  and the approximate action-value function:

‣ Use stochastic gradient descent to find a local minimum 



Linear Action-Value Function Approximation 
‣ Represent state and action by a feature vector  

‣ Represent action-value function by linear combination of features 

‣ Stochastic gradient descent update 



Incremental Control Algorithms 
‣ Like prediction, we must substitute a target for qπ(S,A)  
‣ For MC, the target is the return Gt 

‣ For TD(0), the target is the TD target:



Incremental Control Algorithms 

234 CHAPTER 10. ON-POLICY CONTROL WITH APPROXIMATION

action-value prediction is

✓t+1
.
= ✓t + ↵

h
Ut � q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.1)

For example, the update for the one-step Sarsa method is

✓t+1
.
= ✓t + ↵

h
Rt+1 + �q̂(St+1, At+1, ✓t)� q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.2)

We call this method episodic semi-gradient one-step Sarsa. For a constant policy,
this method converges in the same way that TD(0) does, with the same kind of error
bound (9.14).

To form control methods, we need to couple such action-value prediction methods
with techniques for policy improvement and action selection. Suitable techniques
applicable to continuous actions, or to actions from large discrete sets, are a topic of
ongoing research with as yet no clear resolution. On the other hand, if the action set
is discrete and not too large, then we can use the techniques already developed in
previous chapters. That is, for each possible action a available in the current state St,
we can compute q̂(St, a, ✓t) and then find the greedy action A⇤

t = argmaxa q̂(St, a, ✓t).
Policy improvement is then done (in the on-policy case treated in this chapter) by
changing the estimation policy to a soft approximation of the greedy policy such as
the "-greedy policy. Actions are selected according to this same policy. Pseudocode
for the complete algorithm is given in the box.

Example 10.1: Mountain–Car Task Consider the task of driving an underpow-
ered car up a steep mountain road, as suggested by the diagram in the upper left
of Figure 10.1. The di�culty is that gravity is stronger than the car’s engine, and
even at full throttle the car cannot accelerate up the steep slope. The only solution
is to first move away from the goal and up the opposite slope on the left. Then, by

Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

S, A initial state and action of episode (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

If S0 is terminal:
✓  ✓ + ↵

⇥
R� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

Go to next episode
Choose A0 as a function of q̂(S0, ·, ✓) (e.g., "-greedy)
✓  ✓ + ↵

⇥
R + �q̂(S0, A0, ✓)� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

S  S0

A A0



Example: The Mountain-Car problem



Example: The Mountain-Car problem
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Figure 10.1: The mountain–car task (upper left panel) and the cost-to-go function
(� maxa q̂(s, a, ✓)) learned during one run.

applying full throttle the car can build up enough inertia to carry it up the steep
slope even though it is slowing down the whole way. This is a simple example of a
continuous control task where things have to get worse in a sense (farther from the
goal) before they can get better. Many control methodologies have great di�culties
with tasks of this kind unless explicitly aided by a human designer.

The reward in this problem is �1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (�1), and zero throttle (0).
The car moves according to a simplified physics. Its position, xt, and velocity, ẋt,
are updated by

xt+1
.
= bound

⇥
xt + ẋt+1

⇤

ẋt+1
.
= bound

⇥
ẋt + 0.001At � 0.0025 cos(3xt)

⇤
,

where the bound operation enforces �1.2  xt+1  0.5 and �0.07  ẋt+1  0.07.
In addition, when xt+1 reached the left bound, ẋt+1 was reset to zero. When it
reached the right bound, the goal was reached and the episode was terminated.
Each episode started from a random position xt 2 [�0.6, �0.4) and zero velocity. To
convert the two continuous state variables to binary features, we used grid-tilings
as in Figure 9.9. We used 8 tilings, with each tile covering 1/8th of the bounded
distance in each dimension, and asymmetrical o↵sets as described in Section 9.5.4.1

1
In particular, we used the tile-coding software, available on the web, version 3 (Python), with

iht=IHT(2048) and tiles(iht, 8, [8*x/(0.5+1.2), 8*xdot/(0.07+0.07)], A) to get the indices

of the ones in the feature vector for state (x, xdot) and action A.



Batch Reinforcement Learning  
‣ Gradient descent is simple and appealing 
‣ But it is not sample efficient 
‣ Batch methods seek to find the best fitting value function  
‣ Given the agent’s experience (“training data”)  



Least Squares Prediction 
‣ Given value function approximation:  
‣ And experience D consisting of ⟨state,value⟩ pairs 

‣ Find parameters w that give the best fitting value function v(s,w)? 

‣ Least squares algorithms find parameter vector w minimizing sum-
squared error between v(St,w) and target values vtπ: 



SGD with Experience Replay 
‣ Given experience consisting of ⟨state, value⟩ pairs  

‣ Converges to least squares solution 

‣ We will look at Deep Q-networks later. 

‣ Repeat 
- Sample state, value from experience  

- Apply stochastic gradient descent update  



Which Function Approximation?
‣ There are many function approximators, e.g.  

- Linear combinations of features 
- Neural networks 
- Decision tree  
- Nearest neighbour  
- Fourier / wavelet bases 
- … 



Nearest neighbors
‣ Save training examples in memory as they arrive (s,v(s)). (state, value) 

‣ Then, given a new state s’, retrieve closest state examples from the 
memory and average their values based on similarity:

v(s′�) =
K

∑
i=1

k(hs′�, hsi
)v(si)

‣ Accuracy improves as more data accumulates. 

‣ Agent’s experience has an immediate affect on value estimates in the 
neighborhood of its environment’s current state.  

‣ Parametric methods need to incrementally adjust parameters of a 
global approximation.





Nearest neighbors Lookup



If identical key h present:

Else add row                    to the memory(h, QN(s, a))

Writing in the memory



‣ Repeat 
- Sample state, value from experience  

- Apply stochastic gradient descent update  



‣ Repeat 
- Sample state, value from experience  
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Spatial Softmax

End-to-end learning of visuomotor policies, Levine et al. 2015



Spatial Softmax

• For each feature map, ``flatten” it and compute a softmax 
• Then take X and Y grid coordinates and compute the 

corresponding weighted averages 
• Imposes a very tight bottleneck and avoids overfitting

End-to-end learning of visuomotor policies, Levine et al. 2015



End-to-End RL 
‣ End-to-end RL methods replace the hand-designed state 

representation with raw observations.

Ot

Ot

Ot

Ot

• We get rid of manual design of state representations :-) 
• We need tons of data to train the network since O_t usually WAY more high 

dimensional than hand-designed S_t :-( 
• We can pre-train or jointly train with additional losses (auxiliary tasks) :-) For 

example?



Unsupervised Losses / Pretraining

•We can always fine-tune from weights trained on a 
supervised visual task. 

•We can use auxiliary tasks, e.g., autoencoders 
•We can use prediction of griper key points (we know 
where they are using forward kinematics and camera 
calibration 

•We can use inverse model learning 



Autoencoders

what/where autoencoder

autoencoder

denoising autoencoder 

Autoencoders are trained to reconstruct 
the input (e.g., L2 pixel loss) after they 
pass through a tight bottleneck layer 
(the state representation) 
What can go wrong?



Train to predict the robotic action

Learning to poke by poking, Agrawal et al., 2015


