

Deep Reinforcement Learning and Control

Function Approximation for Prediction

Lecture 6, CMU 10703

Katerina Fragkiadaki

Parts of slides borrowed from Russ Salakhutdinov, Rich Sutton, David Silver

Large-Scale Reinforcement Learning

- ▶ Reinforcement learning has been used to solve large problems, e.g.
 - Backgammon: 10^{20} states
 - Computer Go: 10^{170} states
 - Helicopter: continuous state space
- ▶ Tabular methods clearly do not work

Value Function Approximation (VFA)

- ▶ So far we have represented value function by a **lookup table**
 - Every **state** s has an entry $V(s)$, or
 - Every **state-action** pair (s, a) has an entry $Q(s, a)$
- ▶ Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- ▶ Solution for large MDPs:
 - Estimate value function with **function approximation**

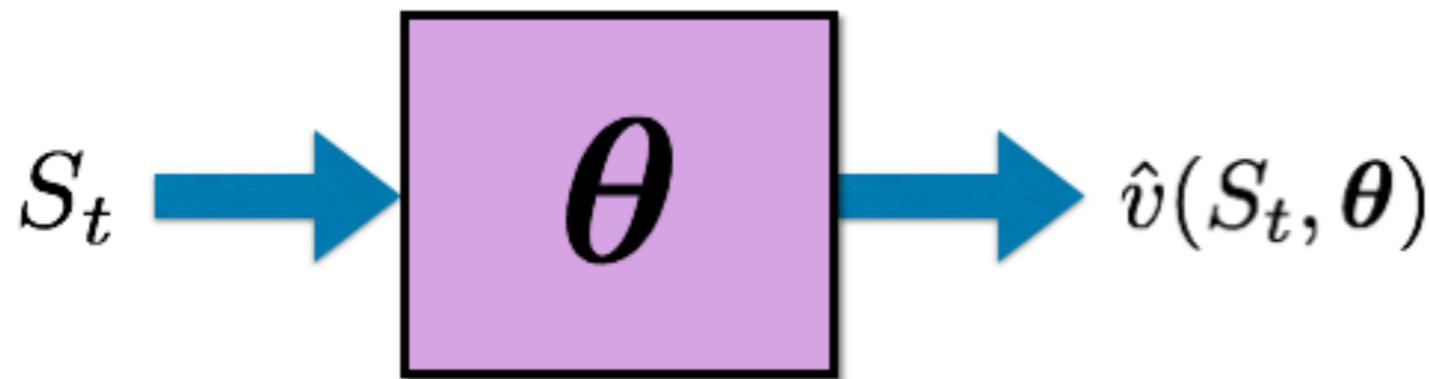
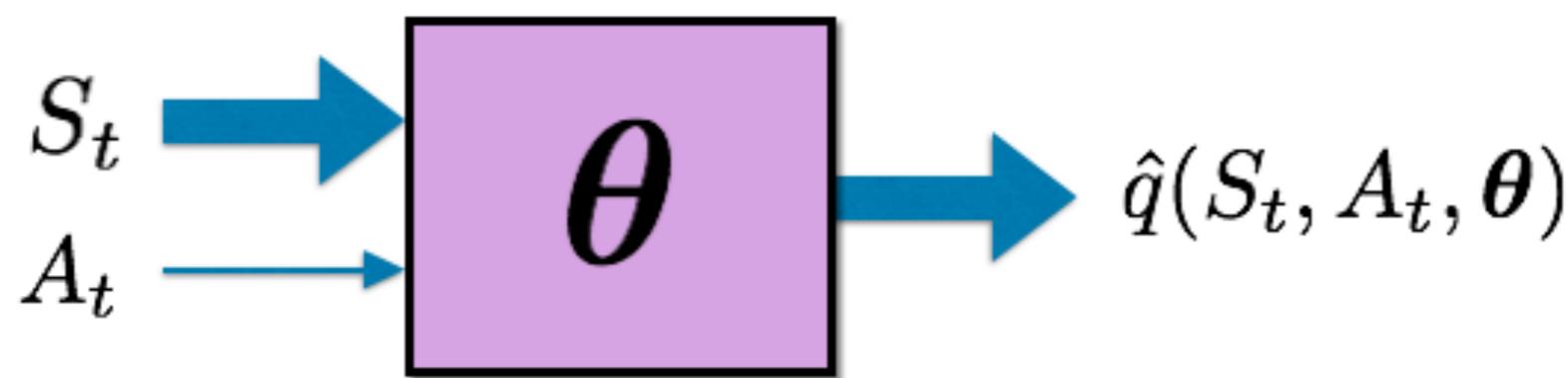
$$\hat{v}(s, \mathbf{w}) \approx v_\pi(s)$$

$$\text{or } \hat{q}(s, a, \mathbf{w}) \approx q_\pi(s, a)$$

- Generalize from seen states to unseen states

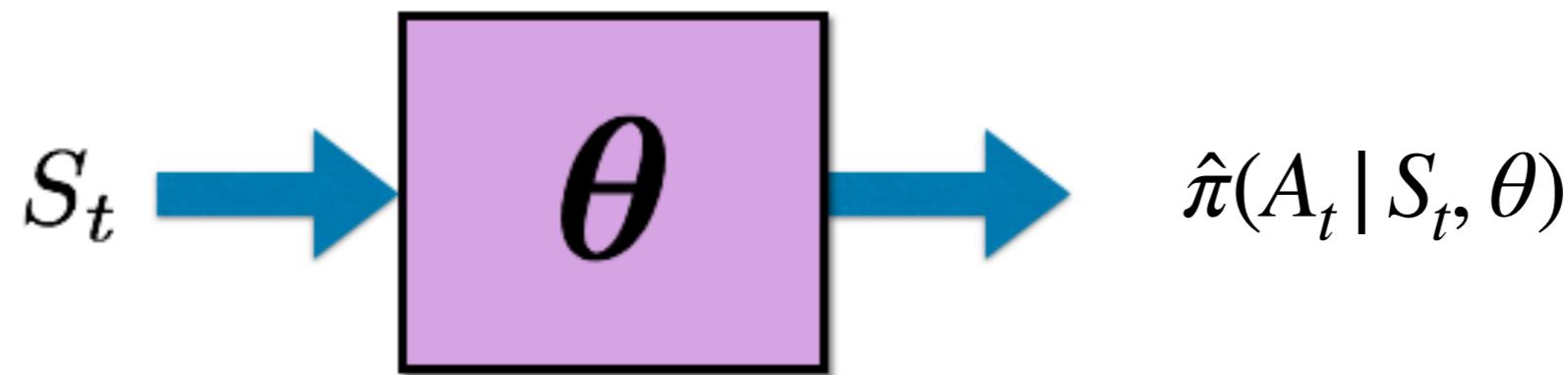
Value Function Approximation (VFA)

- Value function approximation (VFA) replaces the table with a general parameterized form:



Value Function Approximation (VFA)

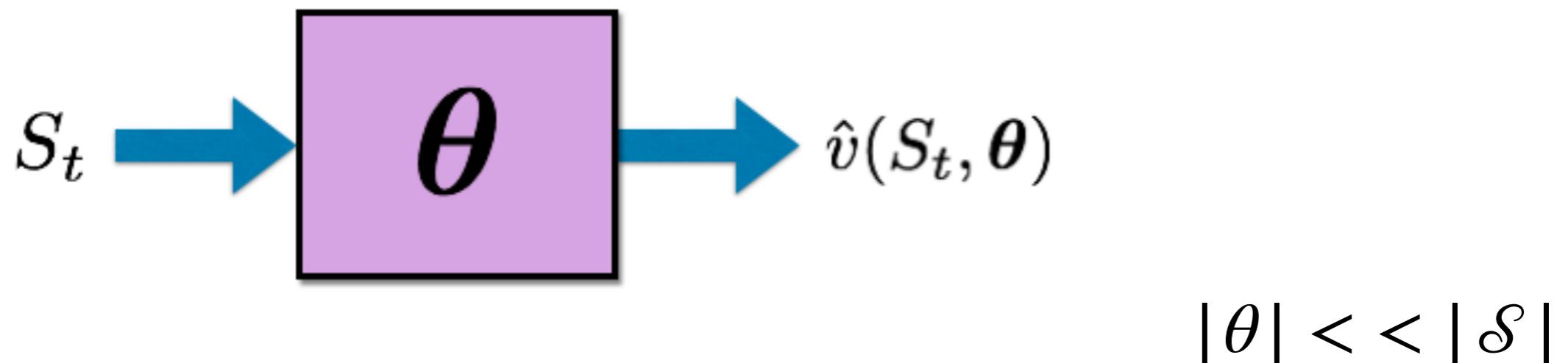
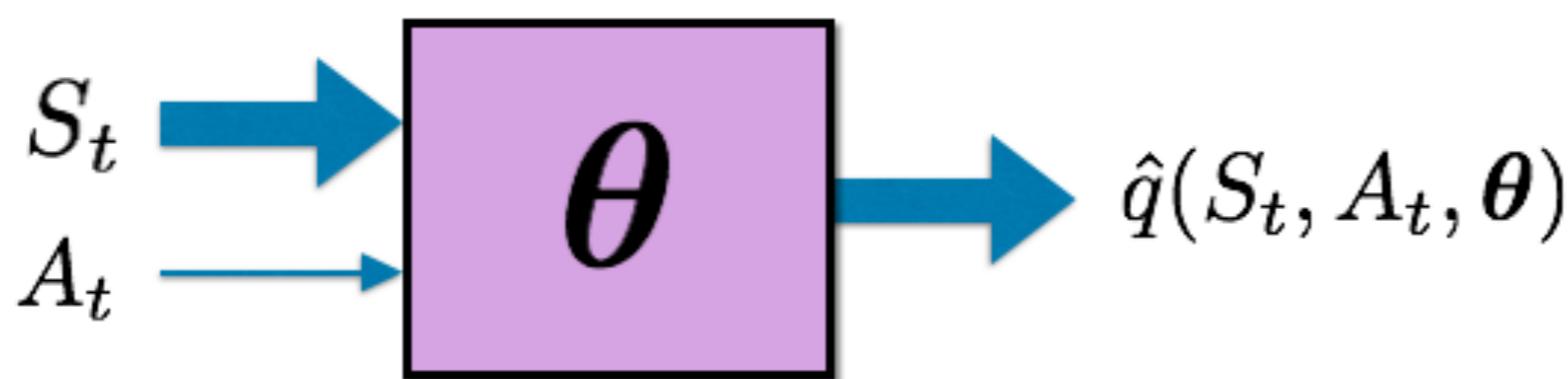
- Value function approximation (VFA) replaces the table with a general parameterized form:



Next week: we will see policies to have such parametric form, also over continuous actions

Value Function Approximation (VFA)

- Value function approximation (VFA) replaces the table with a general parameterized form:



When we update the parameters θ , the values of many states change simultaneously!

Which Function Approximation?

- ▶ There are many **function approximators**, e.g.
 - Linear combinations of features
 - Neural networks
 - Decision tree
 - Nearest neighbour
 - Fourier / wavelet bases
 - ...

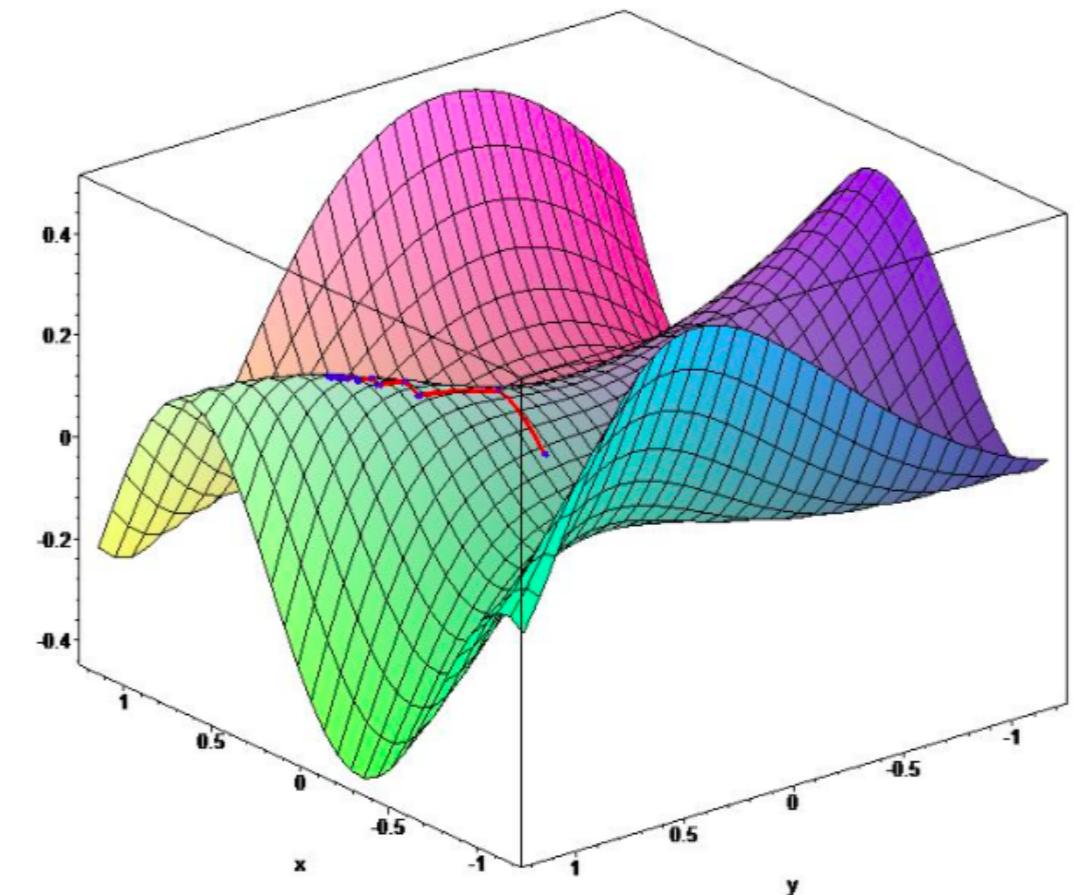
Which Function Approximation?

- ▶ There are many **function approximators**, e.g.
 - Linear combinations of features
 - Neural networks
 - Decision tree
 - Nearest neighbour
 - Fourier / wavelet bases
 - ...
- ▶ **differentiable function approximators**

Gradient Descent

- Let $J(w)$ be a **differentiable** function of parameter vector w
- Define the gradient of $J(w)$ to be:

$$\nabla_w J(w) = \begin{pmatrix} \frac{\partial J(w)}{\partial w_1} \\ \vdots \\ \frac{\partial J(w)}{\partial w_n} \end{pmatrix}$$



Gradient Descent

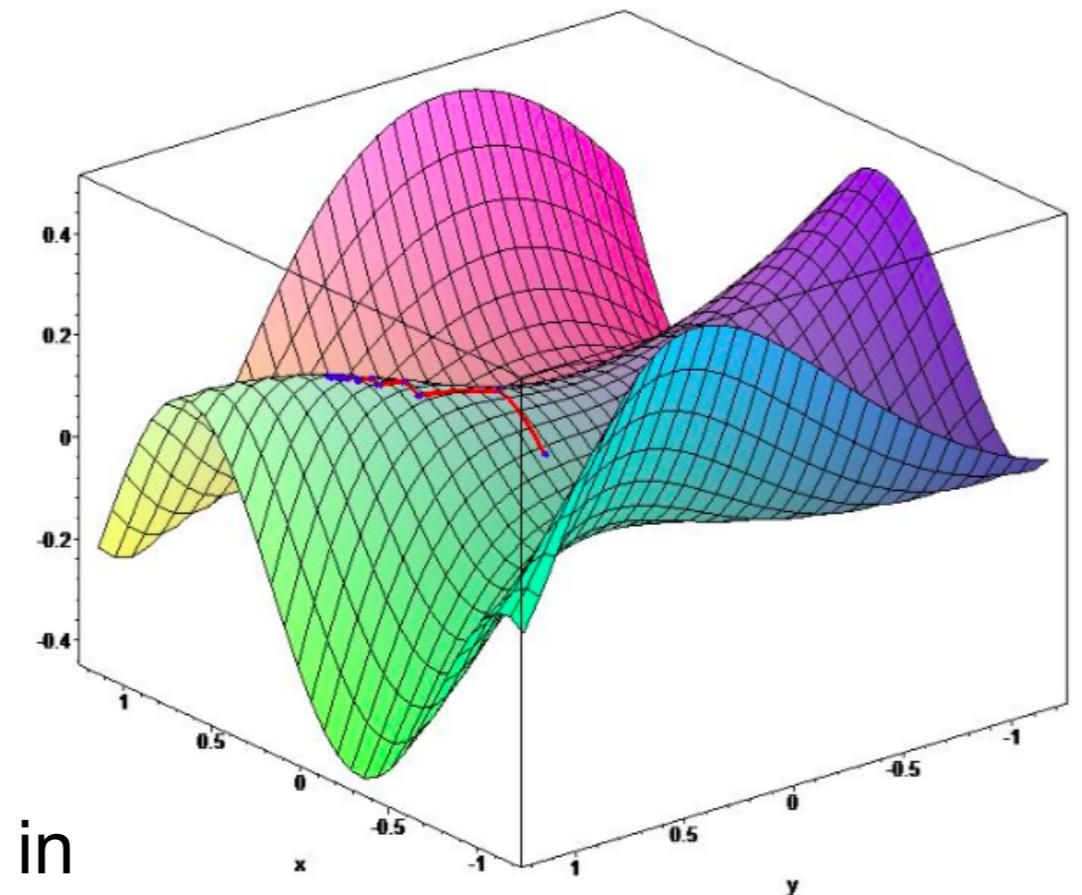
- Let $J(w)$ be a **differentiable** function of parameter vector w
- Define the gradient of $J(w)$ to be:

$$\nabla_w J(w) = \begin{pmatrix} \frac{\partial J(w)}{\partial w_1} \\ \vdots \\ \frac{\partial J(w)}{\partial w_n} \end{pmatrix}$$

- To find a local minimum of $J(w)$, adjust w in direction of the **negative** gradient:

$$\Delta w = -\frac{1}{2}\alpha \nabla_w J(w)$$

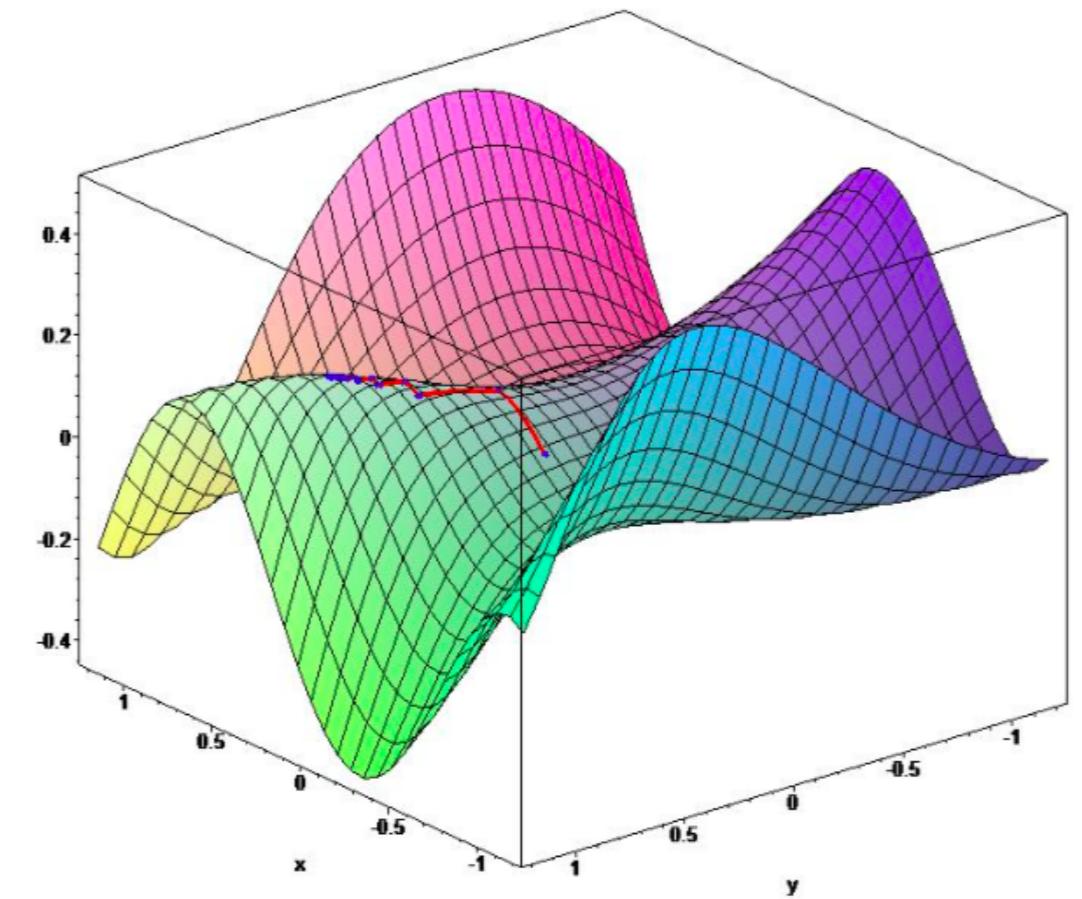
Step-size



Gradient Descent

- Let $J(w)$ be a **differentiable function** of parameter vector w
- Define the gradient of $J(w)$ to be:

$$\nabla_w J(w) = \begin{pmatrix} \frac{\partial J(w)}{\partial w_1} \\ \vdots \\ \frac{\partial J(w)}{\partial w_n} \end{pmatrix}$$



- Starting from a guess w_0
- We consider the sequence w_0, w_1, w_2, \dots s.t. :

$$w_{n+1} = w_n - \frac{1}{2}\alpha \nabla_w J(w_n)$$

- We then have $J(w_0) \geq J(w_1) \geq J(w_2) \geq \dots$

Our objective

- ▶ **Goal:** find parameter vector w minimizing mean-squared error between the true value function $v_\pi(S)$ and its approximation $\hat{v}(S, w)$

Our objective

- ▶ **Goal:** find parameter vector w minimizing mean-squared error between the true value function $v_\pi(S)$ and its approximation $\hat{v}(S, w)$

$$J(w) = \mathbb{E}_\pi [(v_\pi(S) - \hat{v}(S, w))^2]$$

Our objective

- ▶ **Goal:** find parameter vector w minimizing mean-squared error between the true value function $v_\pi(S)$ and its approximation $\hat{v}(S, w)$

$$J(w) = \mathbb{E}_\pi [(v_\pi(S) - \hat{v}(S, w))^2]$$

Let $\mu(S)$ denote how much time we spend in each state s under policy π , then:

$$J(w) = \sum_{n=1}^{|S|} \mu(S) [v_\pi(S) - \hat{v}(S, w)]^2 \quad \sum_{s \in S} \mu(s) = 1$$

Our objective

- ▶ **Goal:** find parameter vector w minimizing mean-squared error between the true value function $v_\pi(S)$ and its approximation $\hat{v}(S, w)$

$$J(w) = \mathbb{E}_\pi [(v_\pi(S) - \hat{v}(S, w))^2]$$

Let $\mu(S)$ denote how much time we spend in each state s under policy π , then:

$$J(w) = \sum_{n=1}^{|S|} \mu(S) [v_\pi(S) - \hat{v}(S, w)]^2 \quad \sum_{s \in S} \mu(s) = 1$$

In contrast to:

$$J_2(w) = \frac{1}{|S|} \sum_{s \in S} [v_\pi(s) - \hat{v}(s, w)]^2$$

Gradient Descent

- ▶ **Goal:** find parameter vector w minimizing mean-squared error between the true value function $v_\pi(S)$ and its approximation $\hat{v}(S, w)$

$$J(w) = \mathbb{E}_\pi [(v_\pi(S) - \hat{v}(S, w))^2]$$

- ▶ Gradient descent finds a local minimum:

$$\begin{aligned}\Delta w &= -\frac{1}{2}\alpha \nabla_w J(w) \\ &= \alpha \mathbb{E}_\pi [(v_\pi(S) - \hat{v}(S, w)) \nabla_w \hat{v}(S, w)]\end{aligned}$$

Stochastic Gradient Descent

- ▶ **Goal:** find parameter vector w minimizing mean-squared error between the true value function $v_\pi(S)$ and its approximation $\hat{v}(S, w)$

$$J(w) = \mathbb{E}_\pi [(v_\pi(S) - \hat{v}(S, w))^2]$$

- ▶ Gradient descent finds a local minimum:

$$\begin{aligned}\Delta w &= -\frac{1}{2}\alpha \nabla_w J(w) \\ &= \alpha \mathbb{E}_\pi [(v_\pi(S) - \hat{v}(S, w)) \nabla_w \hat{v}(S, w)]\end{aligned}$$

- ▶ Stochastic gradient descent (SGD) samples the gradient:

$$\Delta w = \alpha (v_\pi(S) - \hat{v}(S, w)) \nabla_w \hat{v}(S, w)$$

No summation over all states! One example at a time!

Feature Vectors

- ▶ Represent state by a **feature vector**

$$\mathbf{x}(S) = \begin{pmatrix} \mathbf{x}_1(S) \\ \vdots \\ \mathbf{x}_n(S) \end{pmatrix}$$

- ▶ For example
 - Distance of robot from landmarks
 - Trends in the stock market
 - Piece and pawn configurations in chess

Linear Value Function Approximation (VFA)

- Represent **value function** by a linear combination of features

$$\hat{v}(S, \mathbf{w}) = \mathbf{x}(S)^\top \mathbf{w} = \sum_{j=1}^n \mathbf{x}_j(S) \mathbf{w}_j$$

- Objective function is **quadratic** in parameters \mathbf{w}

$$J(\mathbf{w}) = \mathbb{E}_\pi \left[(v_\pi(S) - \mathbf{x}(S)^\top \mathbf{w})^2 \right]$$

- Update rule is particularly simple

$$\nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) = \mathbf{x}(S)$$

$$\Delta \mathbf{w} = \alpha (v_\pi(S) - \hat{v}(S, \mathbf{w})) \mathbf{x}(S)$$

- Update** = step-size \times prediction error \times feature value
- Later, we will look at the neural networks as function approximators.

Incremental Prediction Algorithms

- ▶ We have assumed the **true value function** $v_\pi(s)$ is given by a supervisor
- ▶ But in RL there is no supervisor, only rewards
- ▶ In practice, we substitute a target for $v_\pi(s)$
- ▶ For MC, the target is the **return** G_t

$$\Delta \mathbf{w} = \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$

- ▶ For TD(0), the target is the **TD target**: $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$

$$\Delta \mathbf{w} = \alpha(R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w})$$

Remember $\Delta \mathbf{w} = \alpha(v_\pi(S) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w})$

Monte Carlo with VFA

- Return G_t is an **unbiased**, noisy sample of true value $v_{\pi}(S_t)$
- Can therefore apply supervised learning to “**training data**”:

$$\langle S_1, G_1 \rangle, \langle S_2, G_2 \rangle, \dots, \langle S_T, G_T \rangle$$

- For example, using **linear Monte-Carlo policy evaluation**

$$\begin{aligned}\Delta \mathbf{w} &= \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S_t, \mathbf{w}) \\ &= \alpha(G_t - \hat{v}(S_t, \mathbf{w})) \mathbf{x}(S_t)\end{aligned}$$

- Monte-Carlo evaluation converges to a local optimum

Monte Carlo with VFA

Gradient Monte Carlo Algorithm for Approximating $\hat{v} \approx v_\pi$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v} : \mathcal{S} \times \mathbb{R}^n \rightarrow \mathbb{R}$

Initialize value-function weights θ as appropriate (e.g., $\theta = \mathbf{0}$)

Repeat forever:

 Generate an episode $S_0, A_0, R_1, S_1, A_1, \dots, R_T, S_T$ using π

 For $t = 0, 1, \dots, T - 1$:

$$\theta \leftarrow \theta + \alpha [G_t - \hat{v}(S_t, \theta)] \nabla \hat{v}(S_t, \theta)$$

TD Learning with VFA

- ▶ The TD-target $R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w})$ a **biased sample** of true value $v_\pi(S_t)$
- ▶ Can still apply supervised learning to “training data”:
 $\langle S_1, R_2 + \gamma \hat{v}(S_2, \mathbf{w}) \rangle, \langle S_2, R_3 + \gamma \hat{v}(S_3, \mathbf{w}) \rangle, \dots, \langle S_{T-1}, R_T \rangle$
- ▶ For example, using **linear TD(0)**:

$$\begin{aligned}\Delta \mathbf{w} &= \alpha(R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(S, \mathbf{w}) \\ &= \alpha \delta \mathbf{x}(S)\end{aligned}$$

We ignore the dependence of the target on \mathbf{w} !
We call it semi-gradient methods

TD Learning with VFA

Semi-gradient TD(0) for estimating $\hat{v} \approx v_\pi$

Input: the policy π to be evaluated

Input: a differentiable function $\hat{v} : \mathcal{S}^+ \times \mathbb{R}^n \rightarrow \mathbb{R}$ such that $\hat{v}(\text{terminal}, \cdot) = 0$

Initialize value-function weights $\boldsymbol{\theta}$ arbitrarily (e.g., $\boldsymbol{\theta} = \mathbf{0}$)

Repeat (for each episode):

 Initialize S

 Repeat (for each step of episode):

 Choose $A \sim \pi(\cdot | S)$

 Take action A , observe R, S'

$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha [R + \gamma \hat{v}(S', \boldsymbol{\theta}) - \hat{v}(S, \boldsymbol{\theta})] \nabla \hat{v}(S, \boldsymbol{\theta})$

$S \leftarrow S'$

 until S' is terminal

Control with VFA

- ▶ Policy evaluation Approximate policy evaluation: $\hat{q}(\cdot, \cdot, \mathbf{w}) \approx q_\pi$
- ▶ Policy improvement ϵ -greedy policy improvement

Action-Value Function Approximation

- ▶ Approximate the **action-value function**

$$\hat{q}(S, A, \mathbf{w}) \approx q_{\pi}(S, A)$$

- ▶ Minimize **mean-squared error** between the true action-value function $q_{\pi}(S, A)$ and the approximate action-value function:

$$J(\mathbf{w}) = \mathbb{E}_{\pi} [(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^2]$$

- ▶ Use **stochastic gradient descent** to find a local minimum

$$-\frac{1}{2} \nabla_{\mathbf{w}} J(\mathbf{w}) = (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})$$

$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})$$

Linear Action-Value Function Approximation

- Represent state and action by a **feature vector**

$$\mathbf{x}(S, A) = \begin{pmatrix} \mathbf{x}_1(S, A) \\ \vdots \\ \mathbf{x}_n(S, A) \end{pmatrix}$$

- Represent action-value function by **linear combination of features**

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^\top \mathbf{w} = \sum_{j=1}^n \mathbf{x}_j(S, A) \mathbf{w}_j$$

- Stochastic gradient descent update**

$$\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$

$$\Delta \mathbf{w} = \alpha(q_\pi(S, A) - \hat{q}(S, A, \mathbf{w})) \mathbf{x}(S, A)$$

Incremental Control Algorithms

- ▶ Like prediction, we must substitute a target for $q_{\pi}(S, A)$
- ▶ For MC, the target is the return G_t

$$\Delta \mathbf{w} = \alpha(G_t - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

- ▶ For TD(0), the target is the TD target: $R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

$$\Delta \mathbf{w} = \alpha(R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S_t, A_t, \mathbf{w})$$

Incremental Control Algorithms

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$

Input: a differentiable function $\hat{q} : \mathcal{S} \times \mathcal{A} \times \mathbb{R}^n \rightarrow \mathbb{R}$

Initialize value-function weights $\boldsymbol{\theta} \in \mathbb{R}^n$ arbitrarily (e.g., $\boldsymbol{\theta} = \mathbf{0}$)

Repeat (for each episode):

$S, A \leftarrow$ initial state and action of episode (e.g., ε -greedy)

 Repeat (for each step of episode):

 Take action A , observe R, S'

 If S' is terminal:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha [R - \hat{q}(S, A, \boldsymbol{\theta})] \nabla \hat{q}(S, A, \boldsymbol{\theta})$$

 Go to next episode

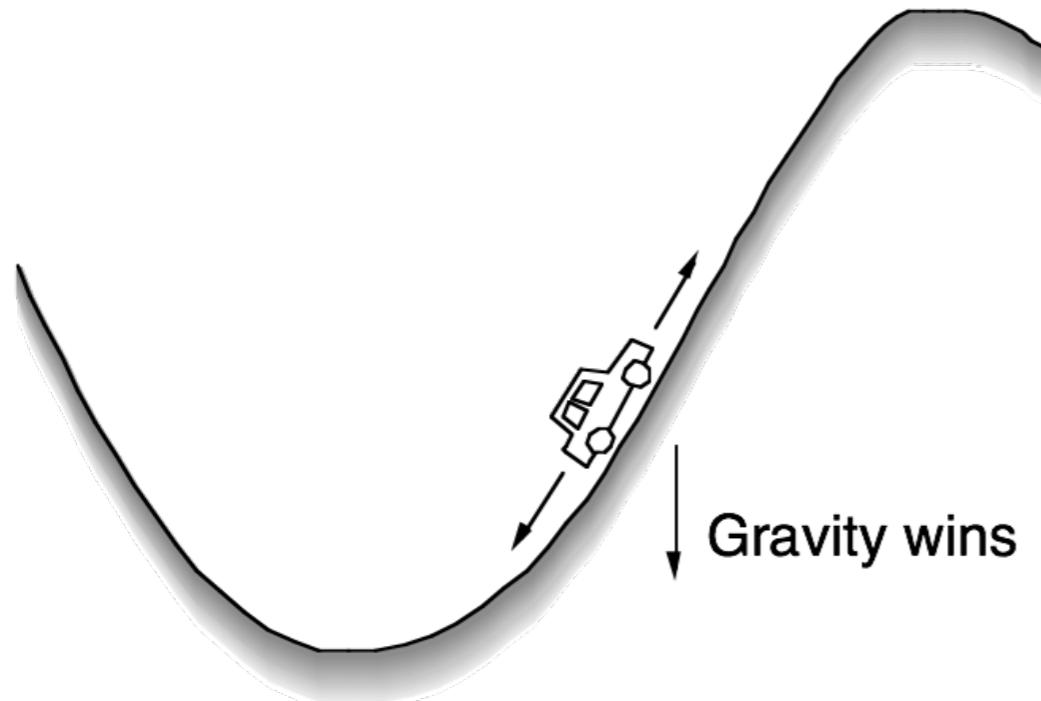
 Choose A' as a function of $\hat{q}(S', \cdot, \boldsymbol{\theta})$ (e.g., ε -greedy)

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha [R + \gamma \hat{q}(S', A', \boldsymbol{\theta}) - \hat{q}(S, A, \boldsymbol{\theta})] \nabla \hat{q}(S, A, \boldsymbol{\theta})$$

$$S \leftarrow S'$$

$$A \leftarrow A'$$

Example: The Mountain-Car problem



SITUATIONS:

car's position and velocity

ACTIONS:

three thrusts: forward, reverse, none

REWARDS:

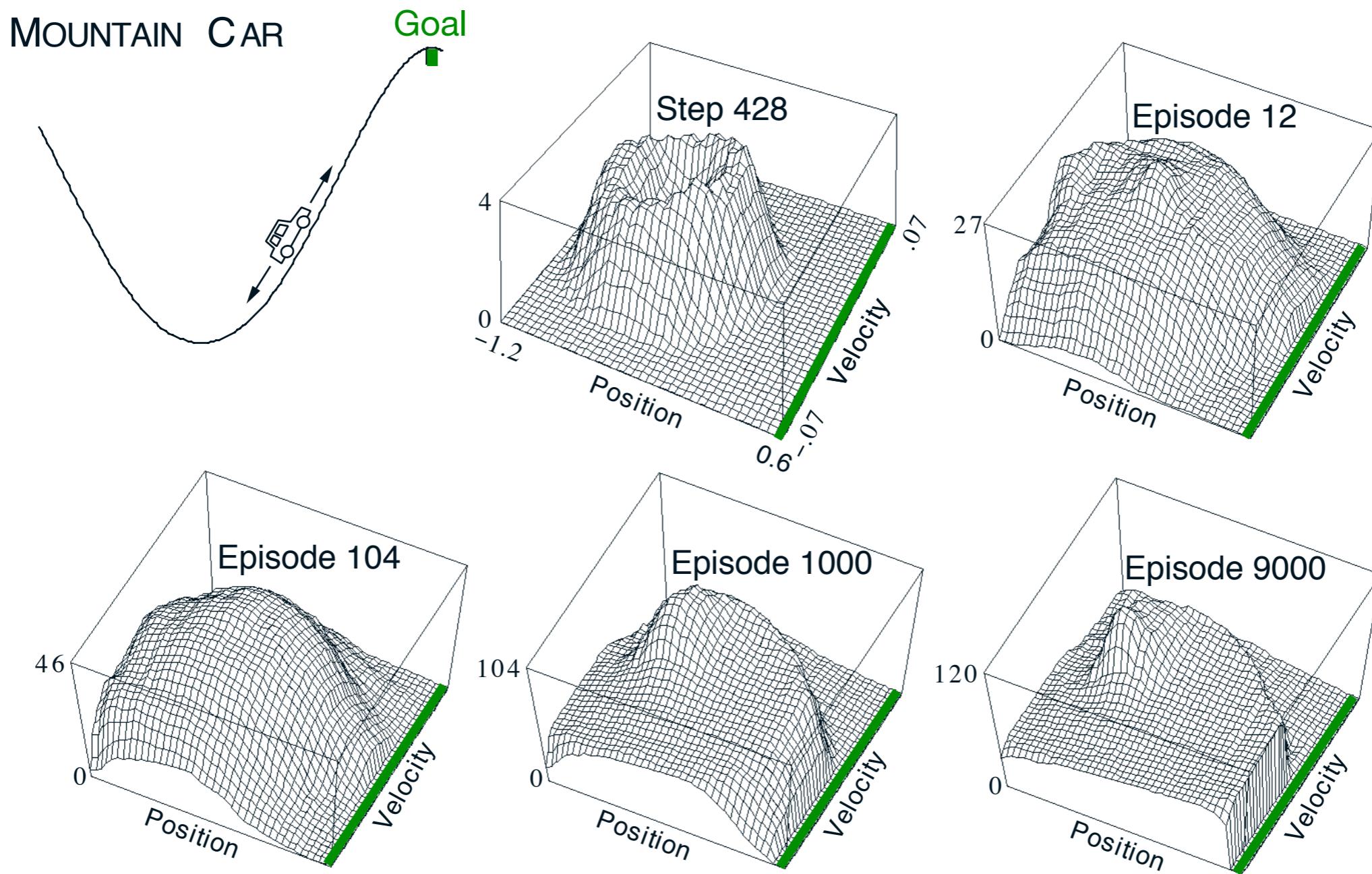
always -1 until car reaches the goal

Episodic, No Discounting, $\gamma=1$

Minimum-Time-to-Goal Problem

Example: The Mountain-Car problem

$$-\max_a \hat{q}(s, a, \theta)$$



Batch Reinforcement Learning

- ▶ Gradient descent is simple and appealing
- ▶ But it is not **sample efficient**
- ▶ Batch methods seek to find the best fitting value function
- ▶ Given the agent's **experience** ("training data")

Least Squares Prediction

- Given value function approximation: $\hat{v}(s, \mathbf{w}) \approx v_\pi(s)$
- And experience \mathcal{D} consisting of $\langle \text{state}, \text{value} \rangle$ pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, \dots, \langle s_T, v_T^\pi \rangle\}$$

- Find parameters \mathbf{w} that give the best fitting value function $v(s, \mathbf{w})$?
- Least squares algorithms find parameter vector \mathbf{w} minimizing sum-squared error between $v(s_t, \mathbf{w})$ and target values v_t^π :

$$\begin{aligned} LS(\mathbf{w}) &= \sum_{t=1}^T (v_t^\pi - \hat{v}(s_t, \mathbf{w}))^2 \\ &= \mathbb{E}_{\mathcal{D}} [(v^\pi - \hat{v}(s, \mathbf{w}))^2] \end{aligned}$$

SGD with Experience Replay

- Given **experience** consisting of $\langle \text{state}, \text{value} \rangle$ pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, \dots, \langle s_T, v_T^\pi \rangle\}$$

- Repeat

- Sample state, value from experience

$$\langle s, v^\pi \rangle \sim \mathcal{D}$$

- Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha(v^\pi - \hat{v}(s, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(s, \mathbf{w})$$

- Converges to least squares solution

- We will look at Deep Q-networks later.

Which Function Approximation?

- ▶ There are many **function approximators**, e.g.
 - Linear combinations of features
 - Neural networks
 - Decision tree
 - **Nearest neighbour**
 - Fourier / wavelet bases
 - ...

Nearest neighbors

- ▶ Save training examples in memory as they arrive $(s, v(s))$. (state, value)
- ▶ Then, given a new state s' , retrieve closest state examples from the memory and average their values based on similarity:

$$v(s') = \sum_{i=1}^K k(h_{s'}, h_{s_i}) v(s_i)$$

- ▶ Accuracy improves as more data accumulates.
- ▶ Agent's experience has an **immediate affect** on value estimates in the neighborhood of its environment's current state.
- ▶ Parametric methods need to incrementally adjust parameters of a global approximation.

Neural Episodic Control

Alexander Pritzel

APRITZEL@GOOGLE.COM

Benigno Uria

BURIA@GOOGLE.COM

Sriram Srinivasan

SRSRINIVASAN@GOOGLE.COM

Adrià Puigdomènech

ADRIAP@GOOGLE.COM

Oriol Vinyals

VINYALS@GOOGLE.COM

Demis Hassabis

DEMISHASSABIS@GOOGLE.COM

Daan Wierstra

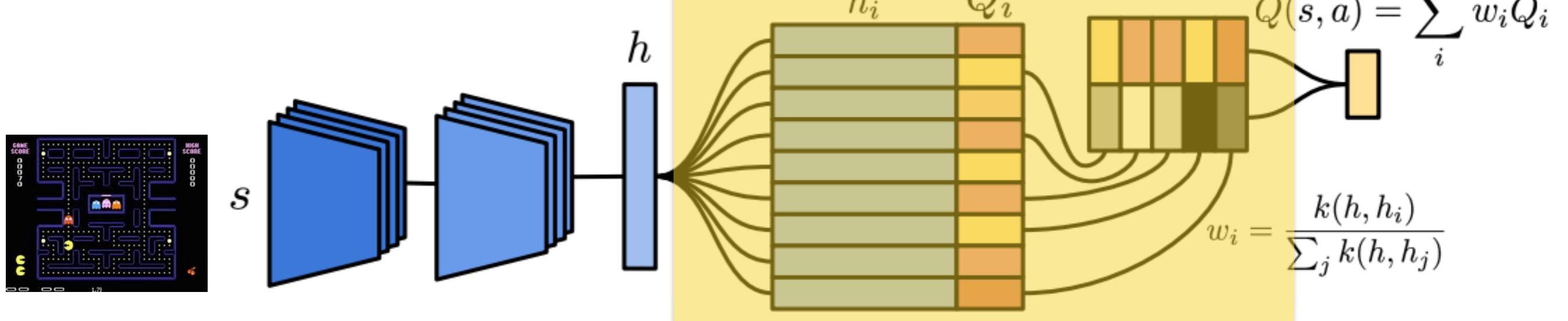
WIERSTRA@GOOGLE.COM

Charles Blundell

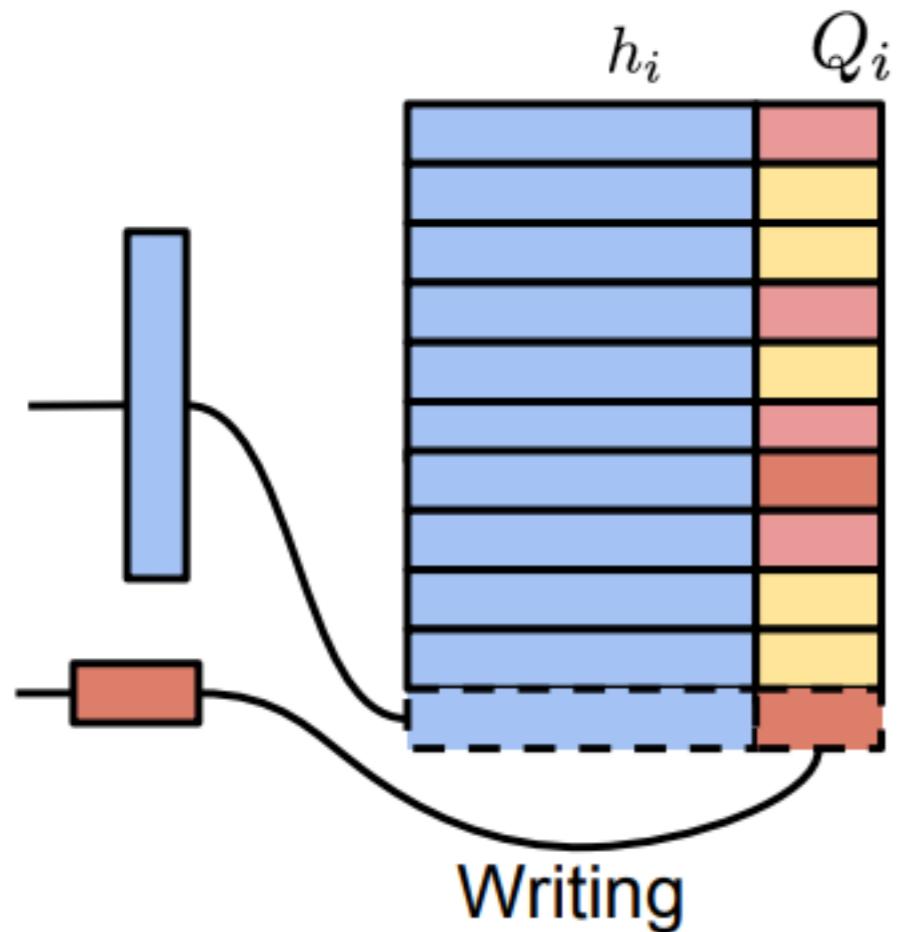
CBLUNDELL@GOOGLE.COM

DeepMind, London UK

Nearest neighbors Lookup



Writing in the memory

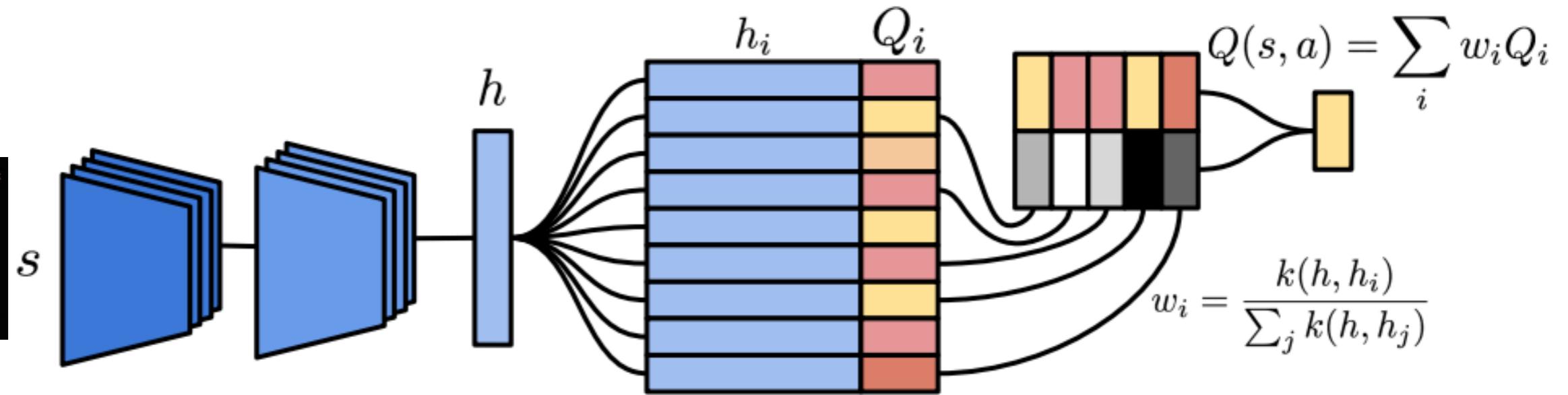


$$Q^{(N)}(s_t, a) = \sum_{j=0}^{N-1} \gamma^j r_{t+j} + \gamma^N \max_{a'} Q(s_{t+N}, a')$$

If identical key h present:

$$Q_i \leftarrow Q_i + \alpha(Q^{(N)}(s, a) - Q_i)$$

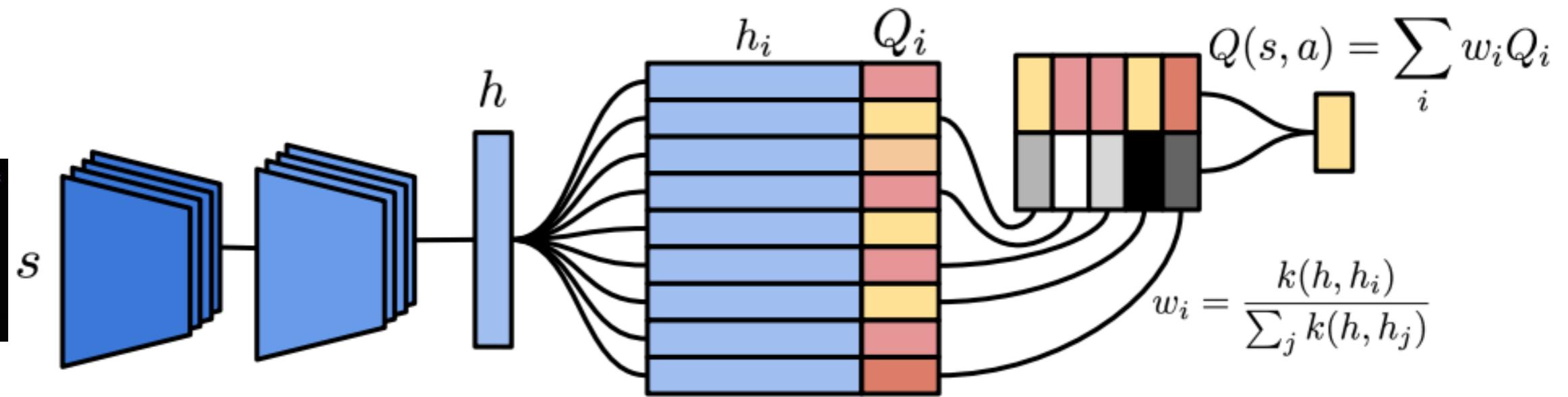
Else add row $(h, Q^N(s, a))$ to the memory



Algorithm 1 Neural Episodic Control

$$Q^{(N)}(s_t, a) = \sum_{j=0}^{N-1} \gamma^j r_{t+j} + \gamma^N \max_{a'} Q(s_{t+N}, a')$$

\mathcal{D} : replay memory.
 M_a : a DND for each action a .
 N : horizon for N -step Q estimate.
for each episode **do**
 for $t = 1, 2, \dots, T$ **do**
 Receive observation s_t from environment with embedding h .
 Estimate $Q(s_t, a)$ for each action a via (1) from M_a
 $a_t \leftarrow \epsilon$ -greedy policy based on $Q(s_t, a)$
 Take action a_t , receive reward r_{t+1}
 Append $(h, Q^{(N)}(s_t, a_t))$ to M_{a_t} .
 Append $(s_t, a_t, Q^{(N)}(s_t, a_t))$ to \mathcal{D} .
 Train on a random minibatch from \mathcal{D} .
 end for
end for



Algorithm 1 Neural Episodic Control

$$Q^{(N)}(s_t, a) = \sum_{j=0}^{N-1} \gamma^j r_{t+j} + \gamma^N \max_{a'} Q(s_{t+N}, a')$$

$$-\frac{1}{2} \nabla_{\mathbf{w}} J(\mathbf{w}) = (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})$$

$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w})$$

\mathcal{D} : replay memory.
 M_a : a DND for each action a .
 N : horizon for N -step Q estimate.
for each episode **do**
 for $t = 1, 2, \dots, T$ **do**
 Receive observation s_t from environment with embedding h .
 Estimate $Q(s_t, a)$ for each action a via (1) from M_a
 $a_t \leftarrow \epsilon$ -greedy policy based on $Q(s_t, a)$
 Take action a_t , receive reward r_{t+1}
 Append $(h, Q^{(N)}(s_t, a_t))$ to M_{a_t} .
 Append $(s_t, a_t, Q^{(N)}(s_t, a_t))$ to \mathcal{D} .
 Train on a random minibatch from \mathcal{D} .
 end for
end for

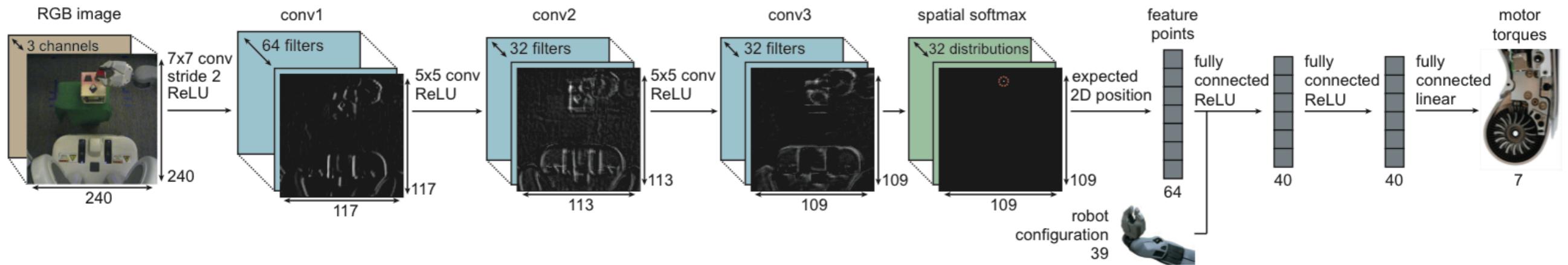
Deep Reinforcement Learning and Control

Neural Networks Architectures for RL

CMU 10703

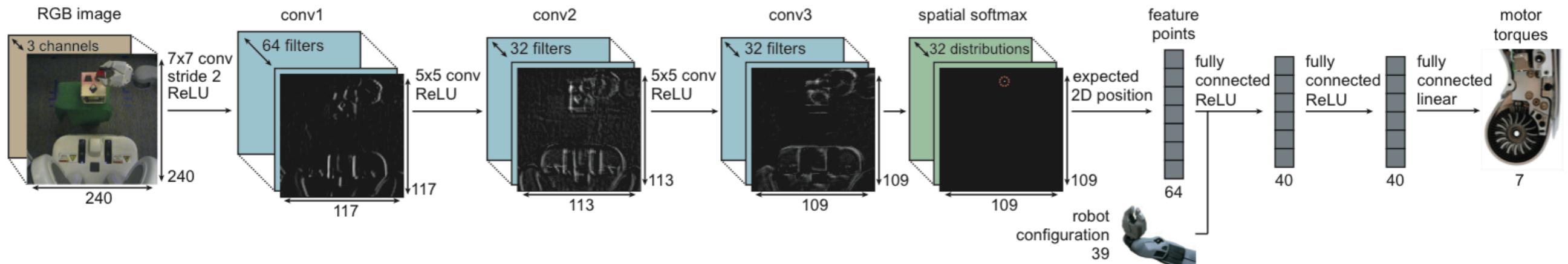
Katerina Fragkiadaki

Spatial Softmax



End-to-end learning of visuomotor policies, Levine et al. 2015

Spatial Softmax

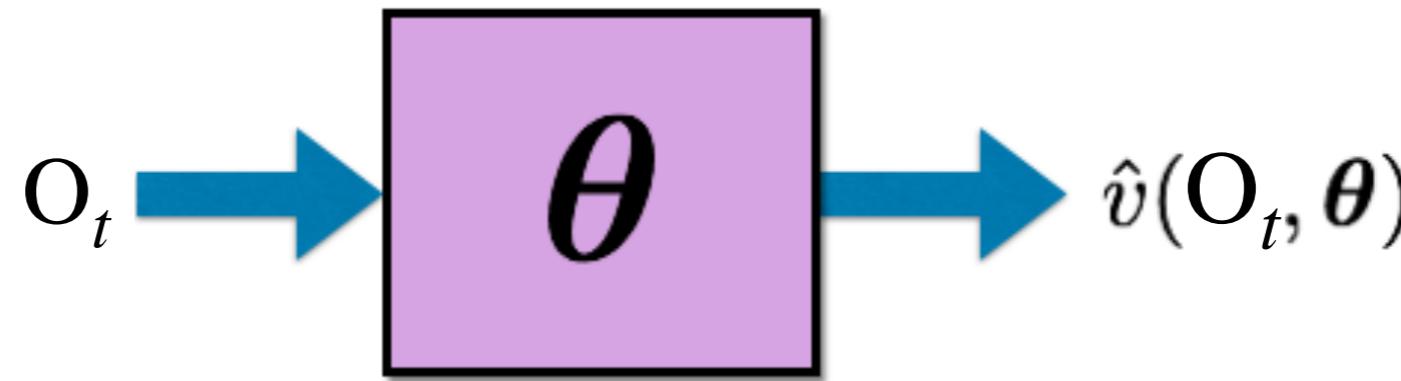
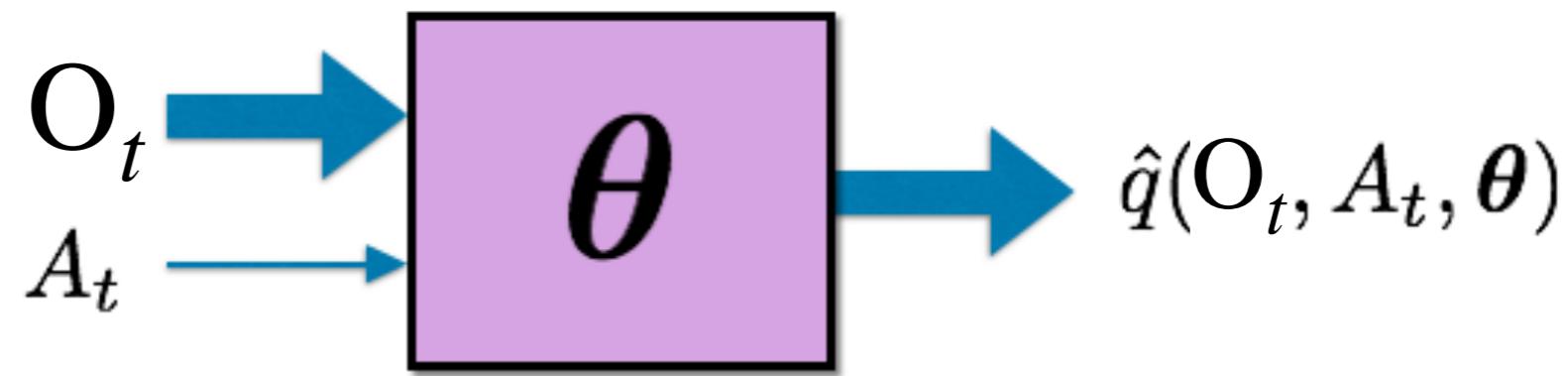


End-to-end learning of visuomotor policies, Levine et al. 2015

- For each feature map, ``flatten'' it and compute a softmax
- Then take X and Y grid coordinates and compute the corresponding weighted averages
- Imposes a very tight bottleneck and avoids overfitting

End-to-End RL

- End-to-end RL methods replace the hand-designed state representation with raw observations.



- We get rid of manual design of state representations :-)
- We need tons of data to train the network since O_t usually WAY more high dimensional than hand-designed S_t :-()
- We can pre-train or jointly train with additional losses (auxiliary tasks) :-)

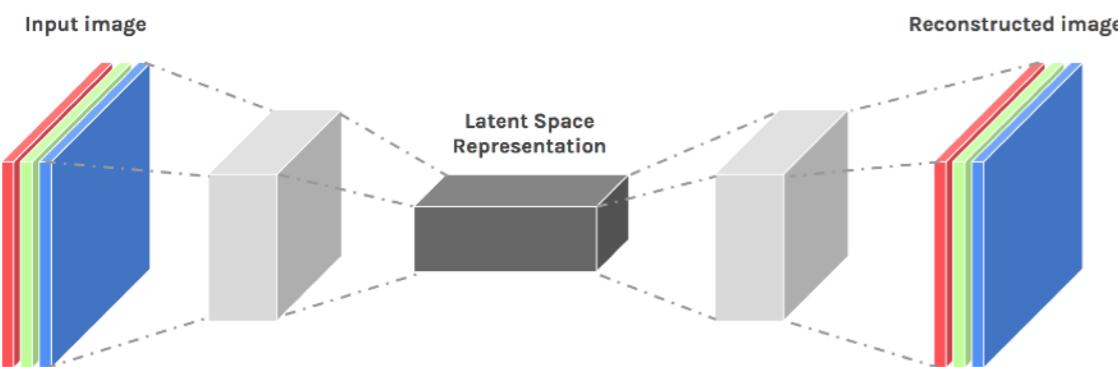
For example?

Unsupervised Losses / Pretraining

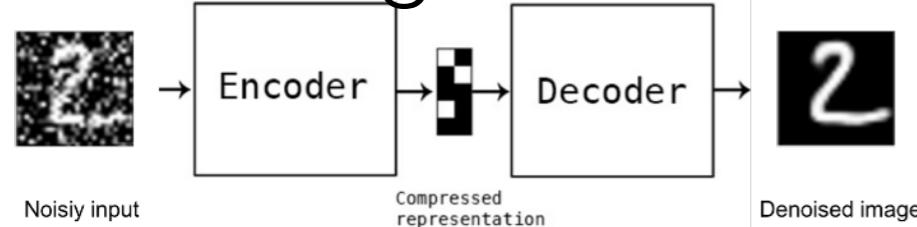
- We can always fine-tune from weights trained on a supervised visual task.
- We can use auxiliary tasks, e.g., autoencoders
- We can use prediction of gripper key points (we know where they are using forward kinematics and camera calibration)
- We can use inverse model learning

Autoencoders

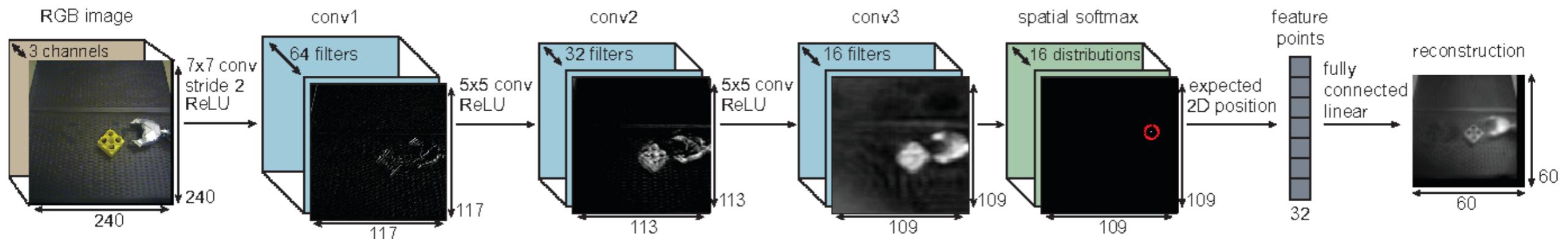
autoencoder



denoising autoencoder



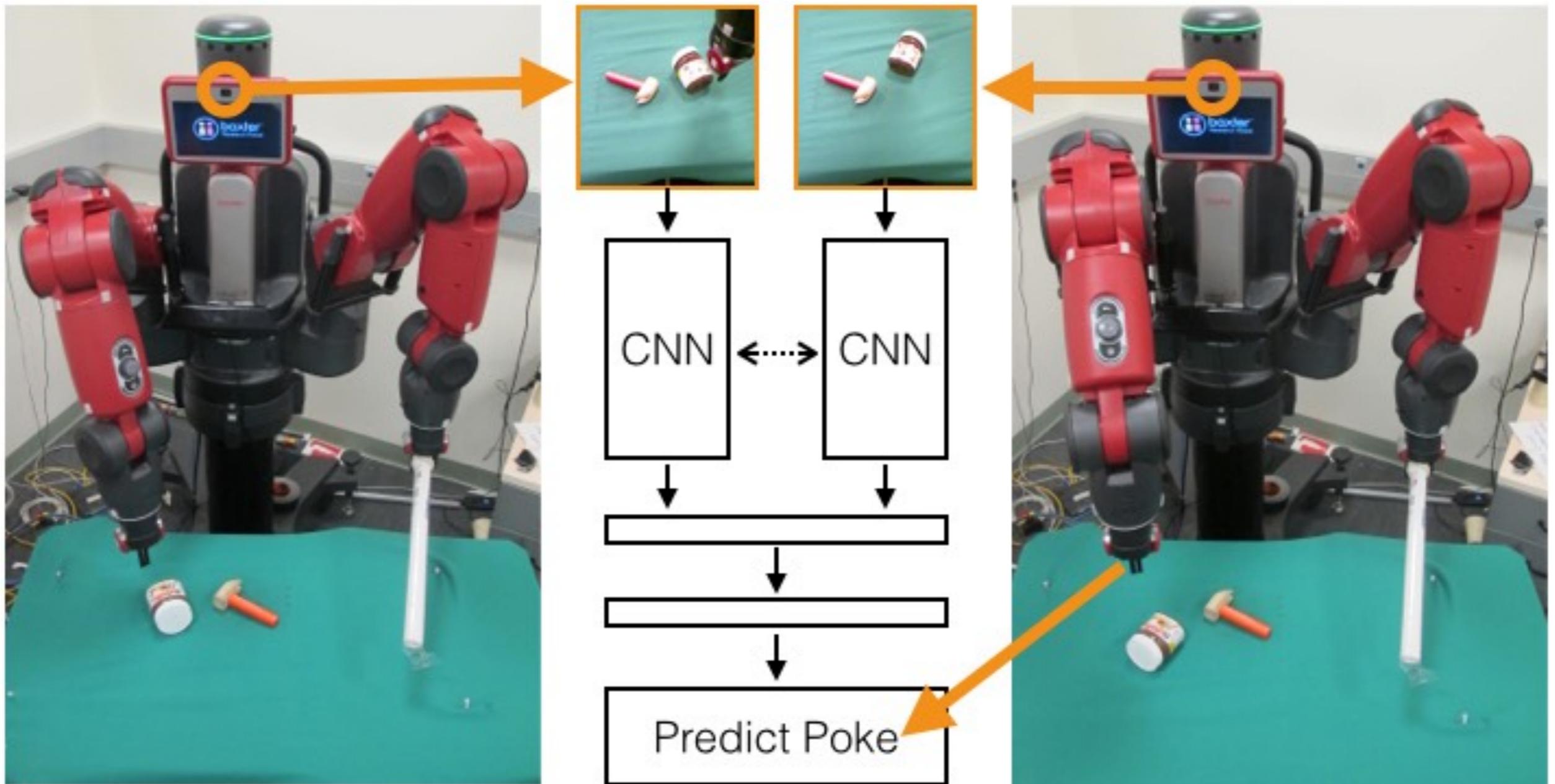
what/where autoencoder



Autoencoders are trained to reconstruct the input (e.g., L2 pixel loss) after they pass through a tight bottleneck layer (the state representation)

What can go wrong?

Train to predict the robotic action



Learning to poke by poking, Agrawal et al., 2015