

Deep Reinforcement Learning and Control

Deep Q Learning

CMU 10703

Katerina Fragkiadaki

Parts of slides borrowed from Russ Salakhutdinov, Rich Sutton, David Silver

Components of an RL Agent

- ▶ An RL agent may include one or more of these components:
 - **Policy**: agent's behavior function
 - **Value function**: how good is each state and/or action
 - **Model**: agent's representation of the environment
- ▶ A policy is the agent's behavior
- ▶ It is a map from state to action:
 - **Deterministic** policy: $a = \pi(s)$
 - **Stochastic** policy: $\pi(a|s) = P[a|s]$

Review: Value Function

- ▶ A value function is a prediction of **future reward**
 - How much reward will I get from action a in state s ?
- ▶ Q-value function gives **expected total reward**
 - from state s and action a
 - under policy π
 - with discount factor γ

$$Q^\pi(s, a) = \mathbb{E} [r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s, a]$$

- ▶ Value functions decompose into a **Bellman equation**

$$Q^\pi(s, a) = \mathbb{E}_{s', a'} [r + \gamma Q^\pi(s', a') \mid s, a]$$

$$q_\pi(s, a) = r(s, a) + \gamma \sum_{s' \in S} T(s'|s, a) \sum_{a' \in \mathcal{A}} \pi(a'|s') q_\pi(s', a')$$

Optimal Value Function

- An optimal value function is the **maximum achievable value**

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$$

- Once we have Q^* , the agent can act optimally

$$\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$$

- Formally, optimal values decompose into a **Bellman equation**

$$Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right]$$

Optimal Value Function

- ▶ An optimal value function is the **maximum achievable value**

$$Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$$

- ▶ Formally, optimal values decompose into a **Bellman equation**

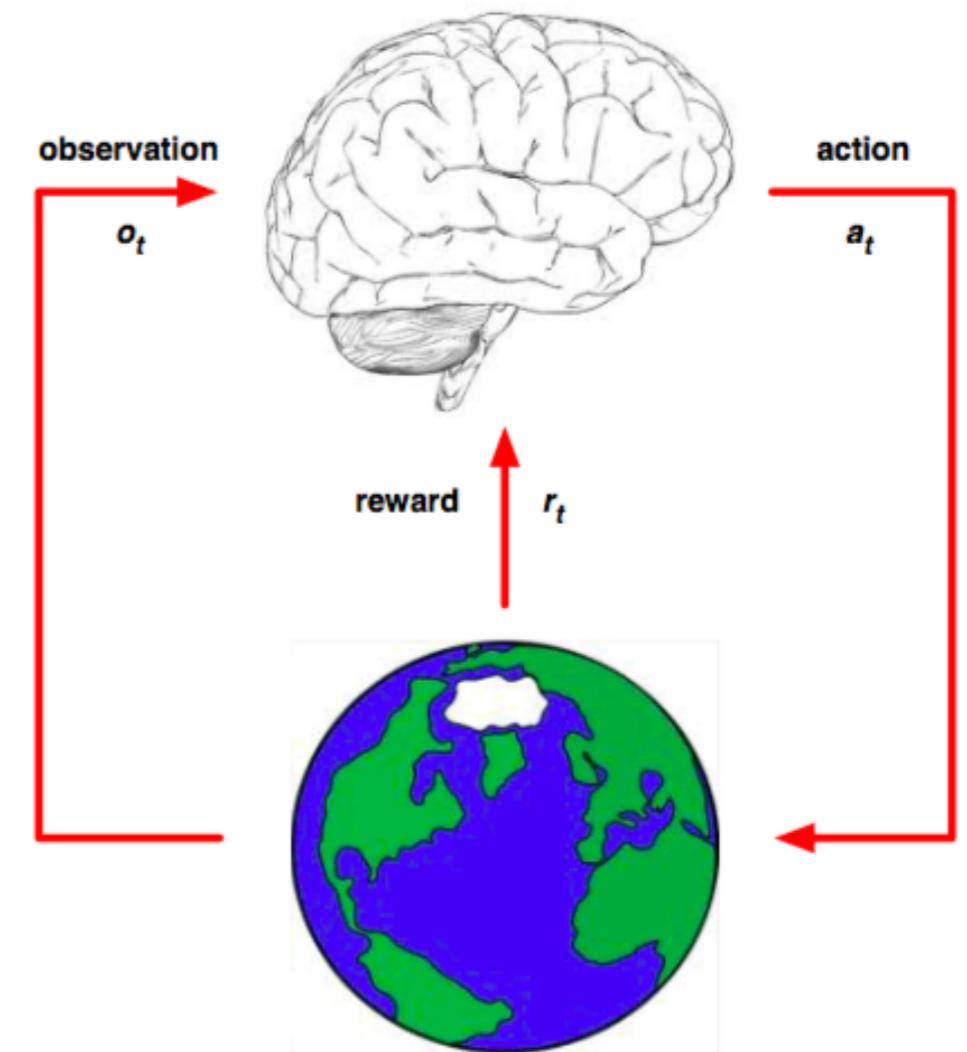
$$Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q^*(s', a') \mid s, a \right]$$

- ▶ **Informally**, optimal value maximizes over all decisions

$$\begin{aligned} Q^*(s, a) &= r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots \\ &= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1}) \end{aligned}$$

Model

- ▶ Model is learned from **experience**
- ▶ Acts as proxy for environment
- ▶ Planner interacts with model, e.g. using look-ahead search



Approaches to RL

- ▶ **Value-based RL** (this is what we have looked at so far)
 - Estimate the optimal value function $Q^*(s,a)$
 - This is the maximum value achievable under any policy
- ▶ **Policy-based RL (next week)**
 - Search directly for the optimal policy π^*
 - This is the policy achieving maximum future reward
- ▶ **Model-based RL (later)**
 - Build a model of the environment
 - Plan (e.g. by look-ahead) using model

Deep Reinforcement Learning

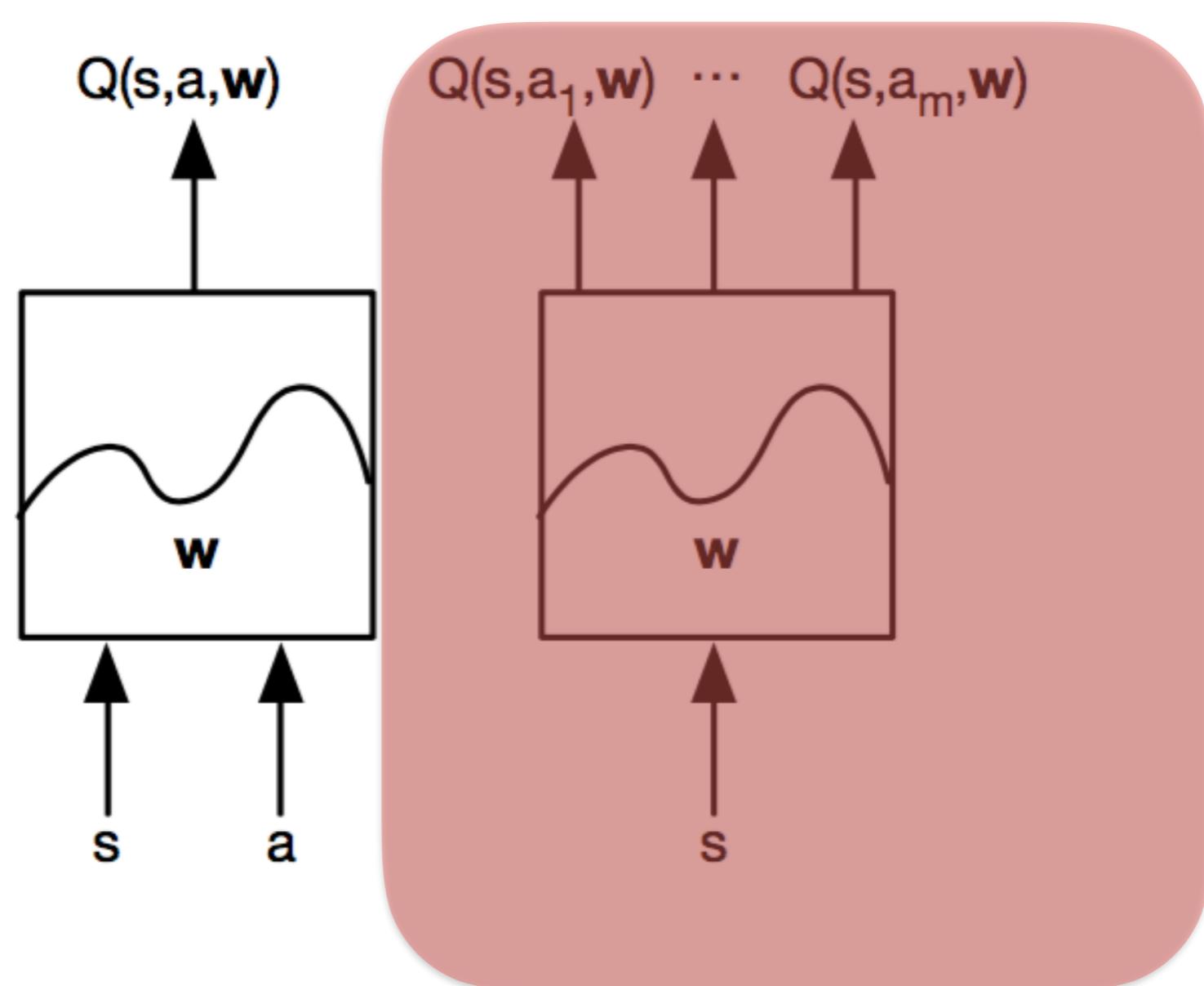
- ▶ Use deep neural networks to represent
 - Value function
 - Policy
 - Model
- ▶ Optimize loss function by stochastic gradient descent (SGD)

Deep Q-Networks (DQNs)

- Represent action-state value function by Q-network with weights w

$$Q(s, a, w) \approx Q^*(s, a)$$

When would this be preferred?



Q-Learning

- Optimal Q-values should obey Bellman equation

$$Q^*(s, a) = \mathbb{E}_{s'} \left[r + \gamma \max_{a'} Q(s', a')^* \mid s, a \right]$$

- Treat right-hand $r + \gamma \max_{a'} Q(s', a', \mathbf{w})$ as a target
- Minimize MSE loss by stochastic gradient descent

$$l = \left(r + \gamma \max_a Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}) \right)^2$$

- Remember VFA lecture: Minimize mean-squared error between the true action-value function $q_{\pi}(S, A)$ and the approximate Q function:

$$J(\mathbf{w}) = \mathbb{E}_{\pi} [(q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w}))^2]$$

Q-Learning

- ▶ Minimize MSE loss by stochastic gradient descent

$$l = \left(r + \gamma \max_a Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}) \right)^2$$

- ▶ Converges to Q^* using **table lookup representation**

Q-Learning: Off-Policy TD Control

- ▶ One-step Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Initialize $Q(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$
Repeat (for each episode):

 Initialize S

 Repeat (for each step of episode):

 Choose A from S using policy derived from Q (e.g., ϵ -greedy)

 Take action A , observe R, S'

$Q(S, A) \leftarrow Q(S, A) + \alpha[R + \gamma \max_a Q(S', a) - Q(S, A)]$

$S \leftarrow S'$;

 until S is terminal

Q-Learning

- ▶ Minimize MSE loss by stochastic gradient descent

$$l = \left(r + \gamma \max_a Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}) \right)^2$$

- ▶ Converges to Q^* using **table lookup representation**
- ▶ But diverges using neural networks due to:
 1. Correlations between samples
 2. Non-stationary targets

Q-Learning

- ▶ Minimize MSE loss by stochastic gradient descent

$$l = \left(r + \gamma \max_a Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}) \right)^2$$

- ▶ Converges to Q^* using **table lookup representation**
- ▶ But diverges using neural networks due to:
 1. Correlations between samples
 2. Non-stationary targets

Solution to both problems in DQN:

Playing Atari with Deep Reinforcement Learning

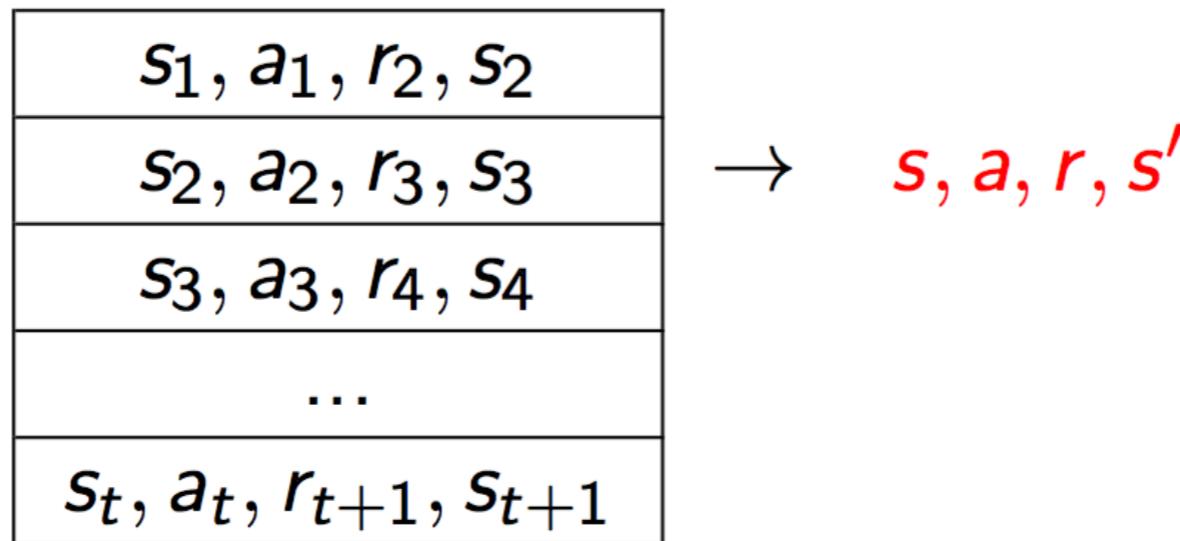
Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

DeepMind Technologies

DQN

- ▶ To remove correlations, build data-set from agent's own experience



- ▶ Sample experiences from data-set and apply update

$$l = \left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}^-) - Q(s, a, \mathbf{w}) \right)^2$$

- ▶ To deal with non-stationarity, target parameters \mathbf{w}^- are held fixed

Experience Replay

- Given **experience** consisting of $\langle \text{state}, \text{value} \rangle$, or $\langle \text{state}, \text{action/value} \rangle$ pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, \dots, \langle s_T, v_T^\pi \rangle\}$$

- Repeat
 - Sample state, value from experience

$$\langle s, v^\pi \rangle \sim \mathcal{D}$$

- Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha(v^\pi - \hat{v}(s, \mathbf{w})) \nabla_{\mathbf{w}} \hat{v}(s, \mathbf{w})$$

DQNs: Experience Replay

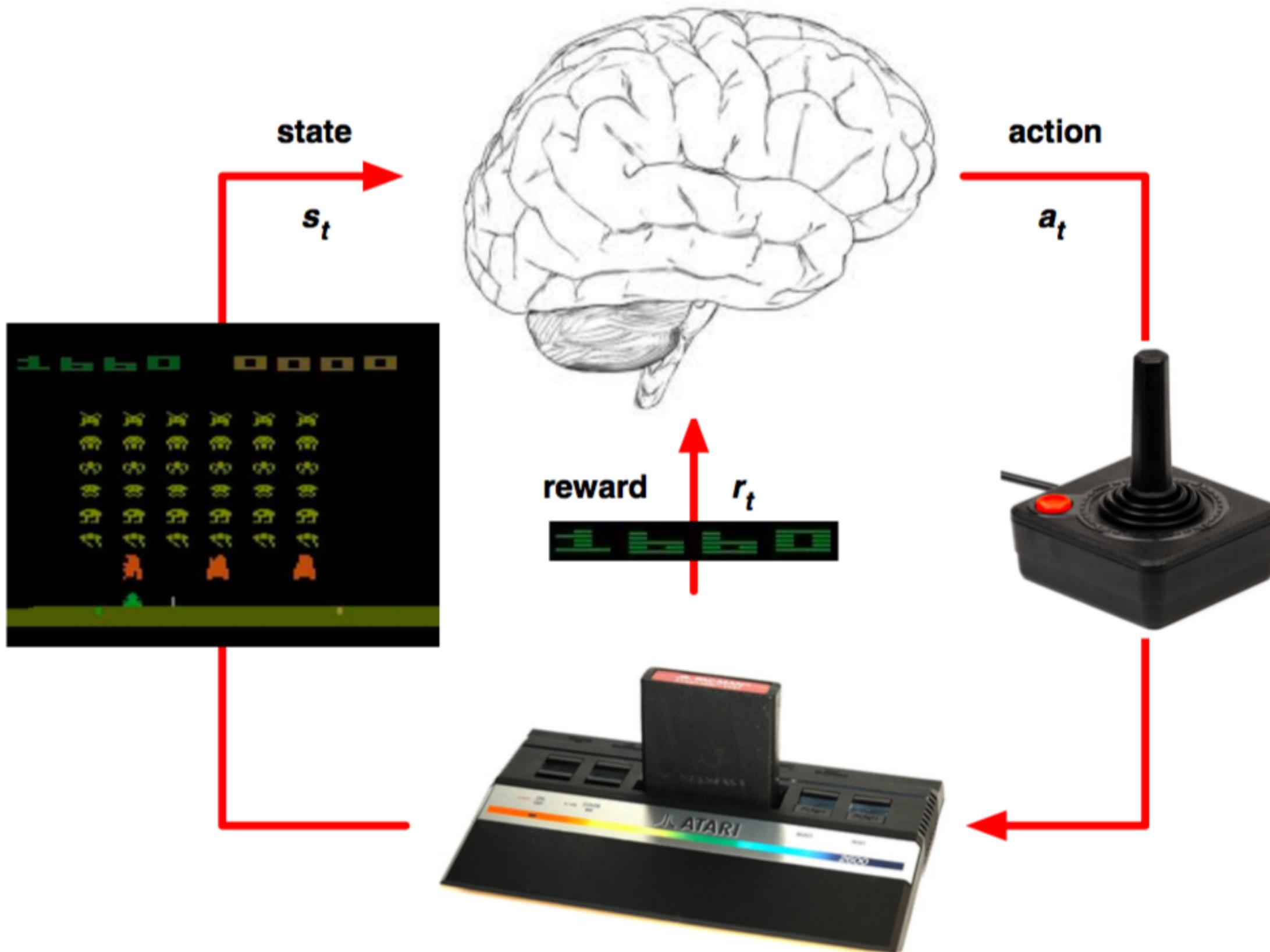
- ▶ DQN uses experience replay and fixed Q-targets
- ▶ Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
- ▶ Sample **random mini-batch** of transitions (s, a, r, s') from D
- ▶ Compute Q-learning targets w.r.t. old, fixed parameters w-
- ▶ Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s', a'; w_i^-) - Q(s, a; w_i) \right)^2 \right]$$

Q-learning target
Q-network

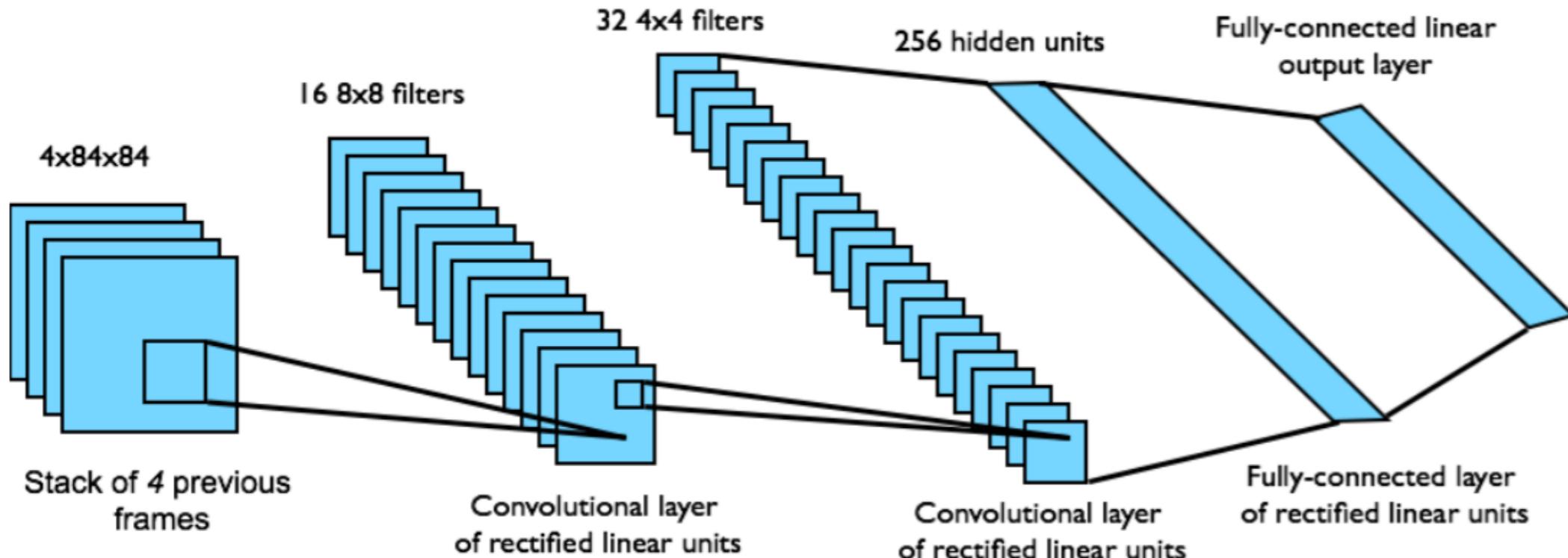
- ▶ Use stochastic gradient descent

DQNs in Atari



DQNs in Atari

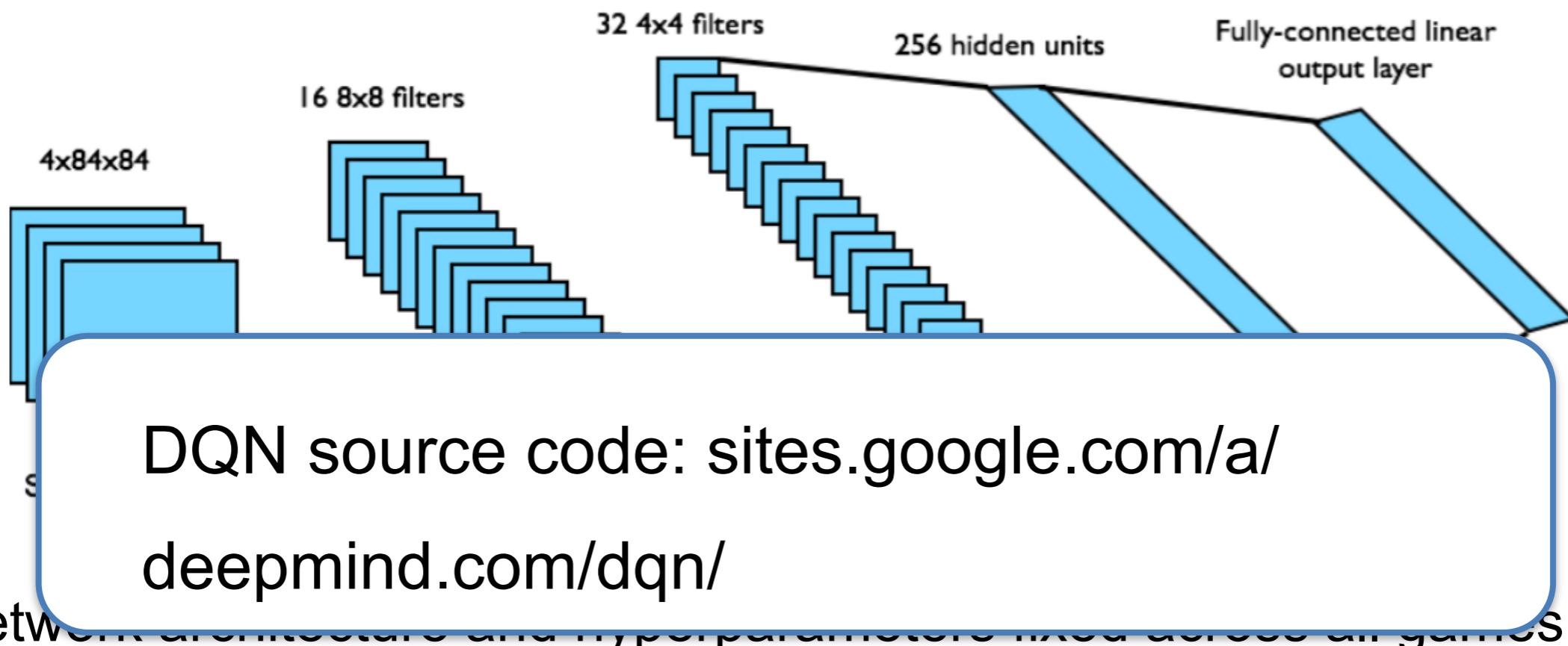
- › End-to-end learning of values $Q(s,a)$ from pixels
- › Input observation is stack of raw pixels from last 4 frames
- › Output is $Q(s,a)$ for 18 joystick/button positions
- › Reward is change in score for that step



- › Network architecture and hyperparameters fixed across all games

DQNs in Atari

- › End-to-end learning of values $Q(s, a)$ from pixels s
- › Input observation is stack of raw pixels from last 4 frames
- › Output is $Q(s, a)$ for 18 joystick/button positions
- › Reward is change in score for that step

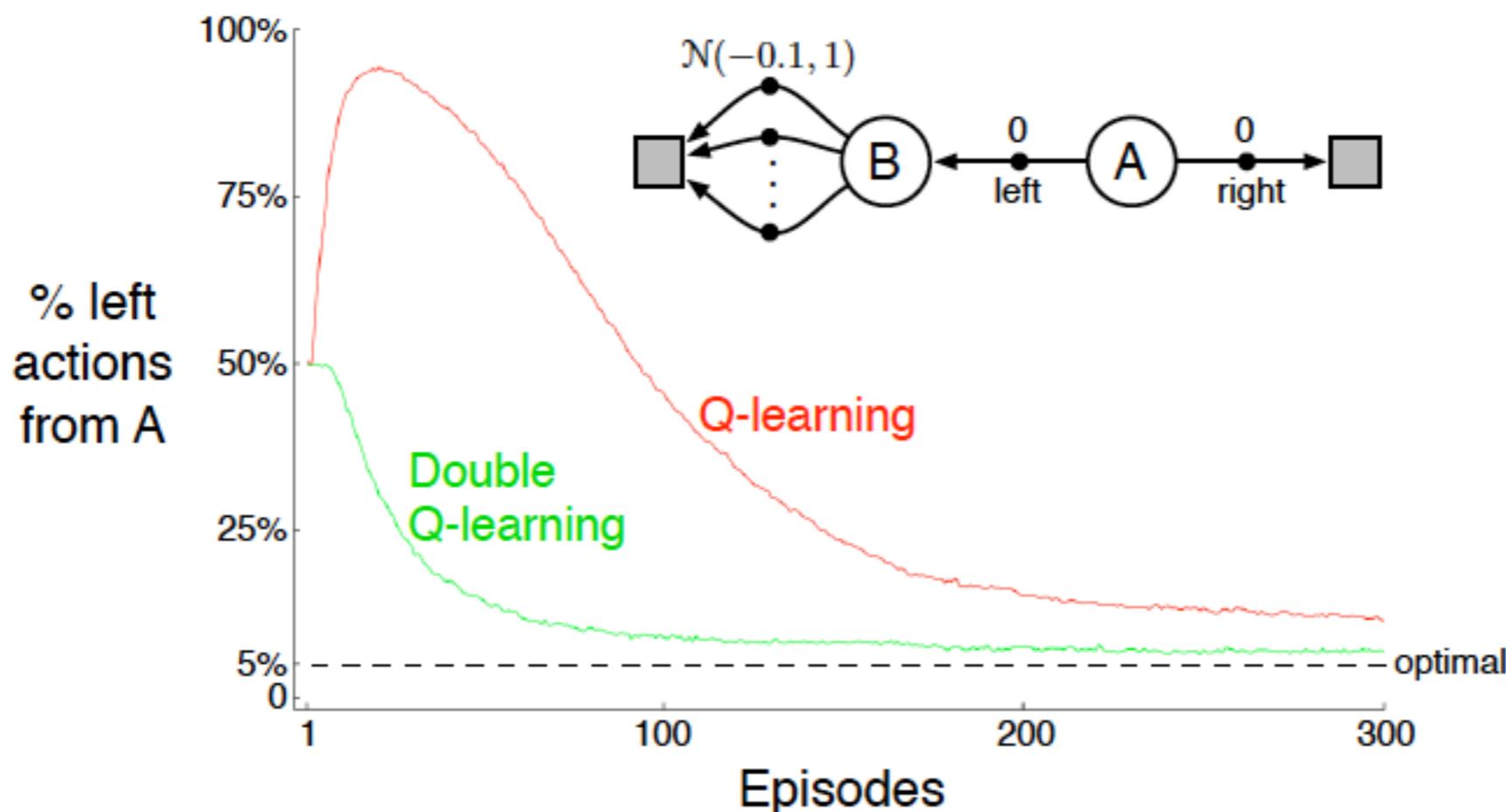


Extensions

- ▶ Double Q-learning for fighting maximization bias
- ▶ Prioritized experience replay
- ▶ Dueling Q networks
- ▶ Multistep returns
- ▶ Value distribution
- ▶ Stochastic nets for explorations instead of \backslash epsilon-greedy

Maximization Bias

- ▶ We often need to maximize over our value estimates. The estimated maxima suffer from maximization bias
- ▶ Consider a state for which all ground-truth $q(s,a)=0$. Our estimates $Q(s,a)$ are uncertain, some are positive and some negative. $Q(s,\text{argmax}_a(Q(s,a)))$ is positive while $q(s,\text{argmax}_a(q(s,a)))=0$.



Double Q-Learning

- ▶ Train 2 action-value functions, Q_1 and Q_2
- ▶ Do Q-learning on both, but
 - never on the same time steps (Q_1 and Q_2 are independent)
 - pick Q_1 or Q_2 at random to be updated on each step
- ▶ If updating Q_1 , use Q_2 for the value of the next state:

$$Q_1(S_t, A_t) \leftarrow Q_1(S_t, A_t) + \\ + \alpha \left(R_{t+1} + Q_2(S_{t+1}, \operatorname{argmax}_a Q_1(S_{t+1}, a)) - Q_1(S_t, A_t) \right)$$

- ▶ Action selections are ε -greedy with respect to the sum of Q_1 and Q_2

Double Q-Learning in Tabular Form

Initialize $Q_1(s, a)$ and $Q_2(s, a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$, arbitrarily

Initialize $Q_1(\text{terminal-state}, \cdot) = Q_2(\text{terminal-state}, \cdot) = 0$

Repeat (for each episode):

 Initialize S

 Repeat (for each step of episode):

 Choose A from S using policy derived from Q_1 and Q_2 (e.g., ε -greedy in $Q_1 + Q_2$)

 Take action A , observe R, S'

 With 0.5 probability:

$$Q_1(S, A) \leftarrow Q_1(S, A) + \alpha \left(R + \gamma Q_2(S', \arg \max_a Q_1(S', a)) - Q_1(S, A) \right)$$

 else:

$$Q_2(S, A) \leftarrow Q_2(S, A) + \alpha \left(R + \gamma Q_1(S', \arg \max_a Q_2(S', a)) - Q_2(S, A) \right)$$

$S \leftarrow S'$;

until S is terminal

Double DQN

- ▶ Current Q-network w is used to **select** actions
- ▶ Older Q-network w^- is used to **evaluate** actions

Action evaluation: w^-

$$I = \left(r + \gamma \underbrace{Q(s', \operatorname{argmax}_{a'} Q(s', a', w), w^-)}_{\text{Action selection: } w} - Q(s, a, w) \right)^2$$

Action selection: w

Prioritized Replay

- Weight experience according to ``surprise'' (or error)
- Store experience in priority queue according to DQN error

$$\left| r + \gamma \max_{a'} Q(s', a', \mathbf{w}^-) - Q(s, a, \mathbf{w}) \right|$$

- Stochastic Prioritization

p_i is proportional to DQN error

$$P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha}$$

- α determines how much prioritization is used, with $\alpha = 0$ corresponding to the uniform case.

Dueling Networks

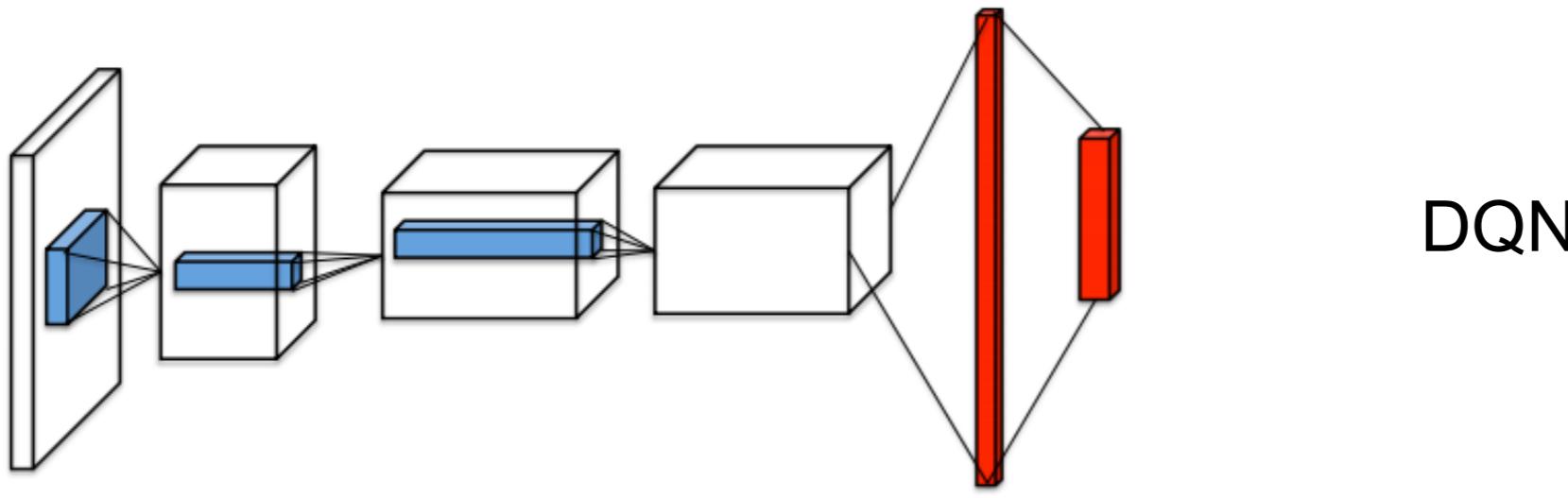
- ▶ Split Q-network into two channels
- ▶ Action-independent value function $V(s; \mathbf{w})$
- ▶ Action-dependent advantage function $A(s, a; \mathbf{w})$

$$Q(s, a; \mathbf{w}) = V(s; \mathbf{w}) + A(s, a; \mathbf{w})$$

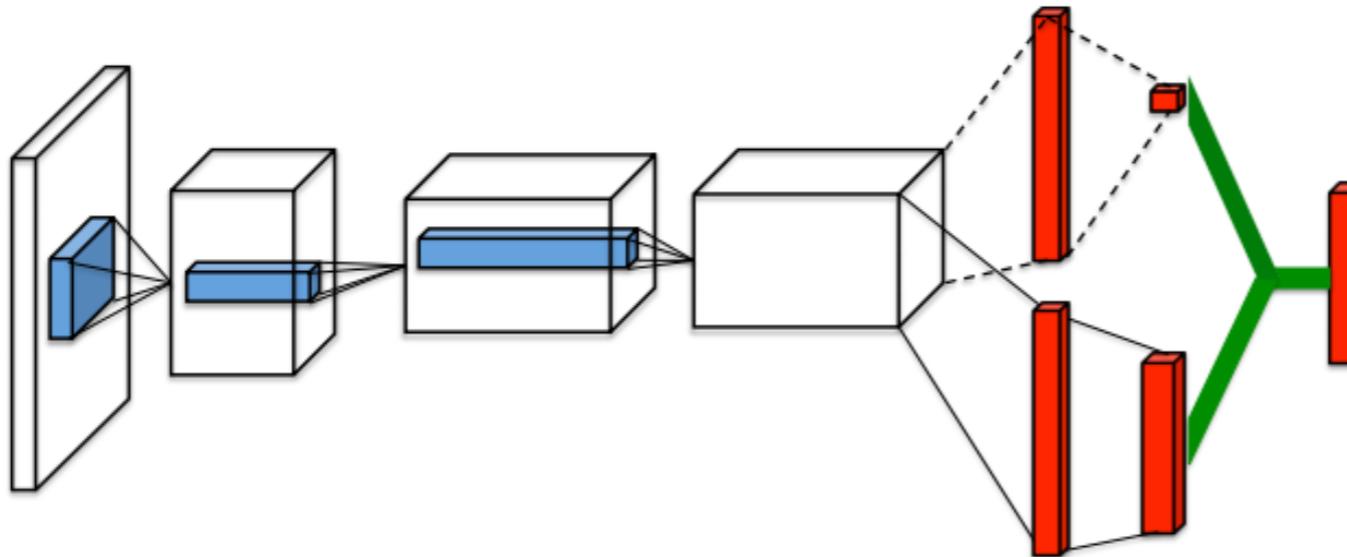
- ▶ Advantage function is defined as:

$$A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s).$$

Dueling Networks vs. DQNs



DQN



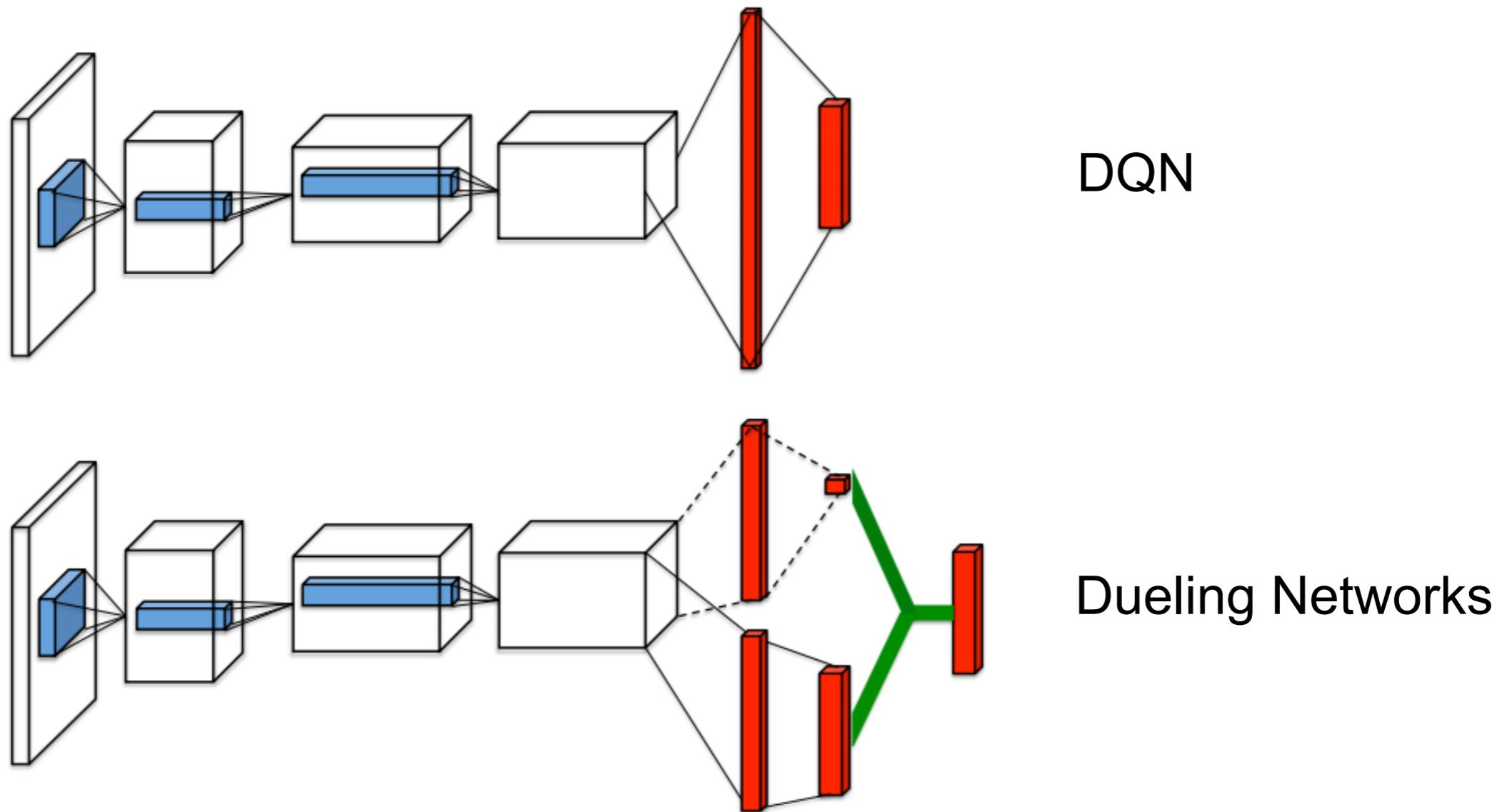
Dueling Networks

$$Q(s, a; \mathbf{w}) = V(s; \mathbf{w}) + A(s, a; \mathbf{w})$$

Unidentifiability : given Q , I cannot recover V, A

Wang et.al., ICML, 2016

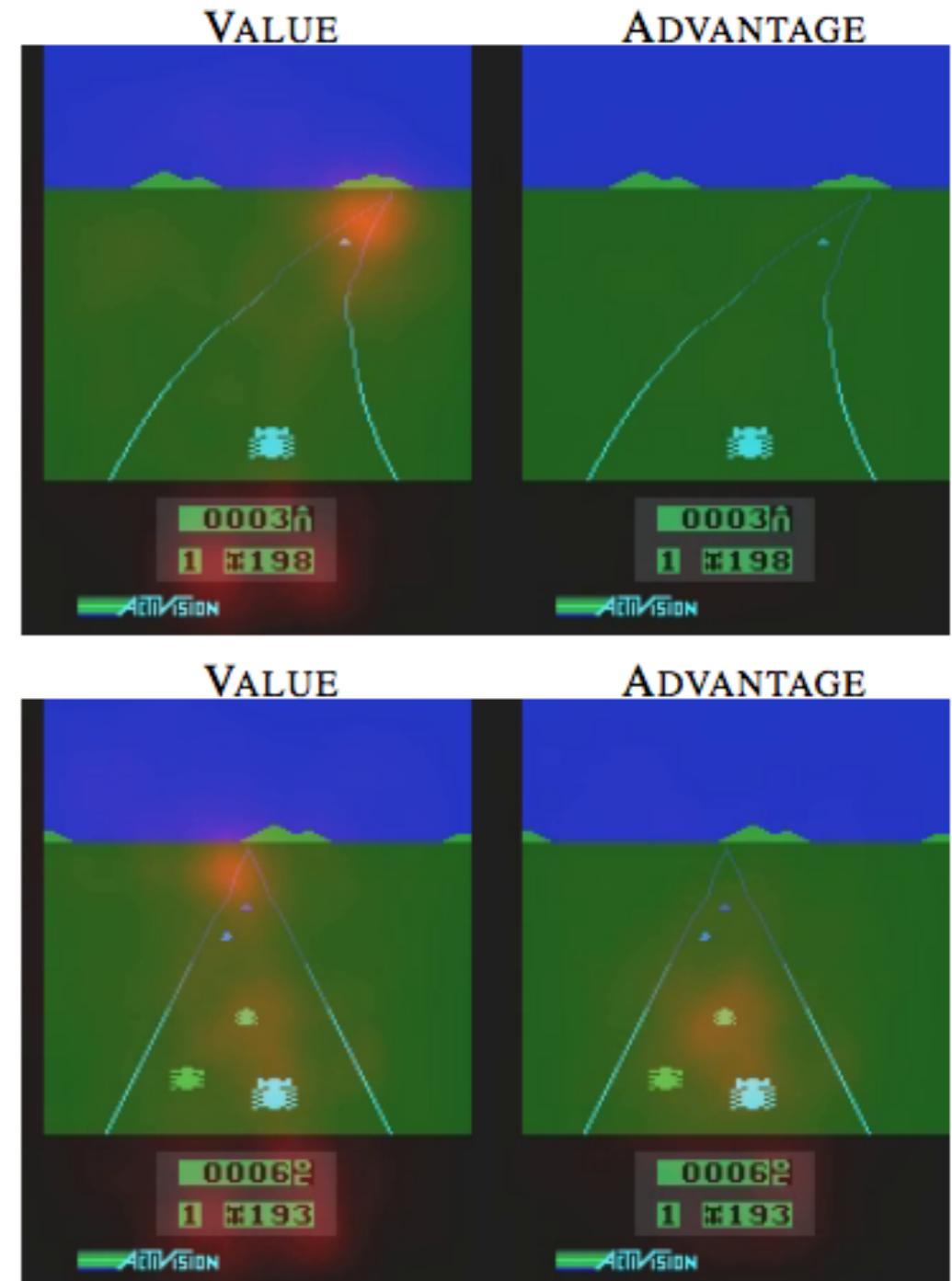
Dueling Networks vs. DQNs



$$Q(s, a; \mathbf{w}) = V(s; \mathbf{w}) + \left(A(s, a; \mathbf{w}) - \frac{1}{|\mathcal{A}|} \sum_{a'} A(s, a'; \mathbf{w}) \right)$$

Dueling Networks

- ▶ The **value stream** learns to pay attention to the road
- ▶ The **advantage stream**: pay attention only when there are cars immediately in front, so as to avoid collisions



Visualizing neural saliency maps

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Karen Simonyan

Andrea Vedaldi

Andrew Zisserman

Visual Geometry Group, University of Oxford

{karen, vedaldi, az}@robots.ox.ac.uk

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

Karen Simonyan

Andrea Vedaldi

Andrew Zisserman

Visual Geometry Group, University of Oxford

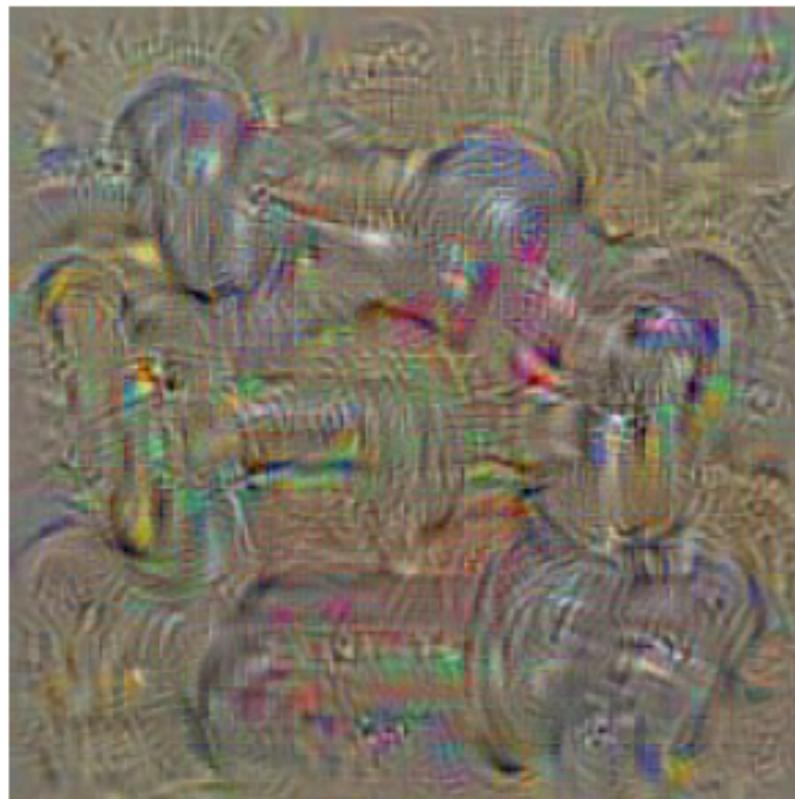
{karen, vedaldi, az}@robots.ox.ac.uk

Task: Generate an image that maximizes a classification score.

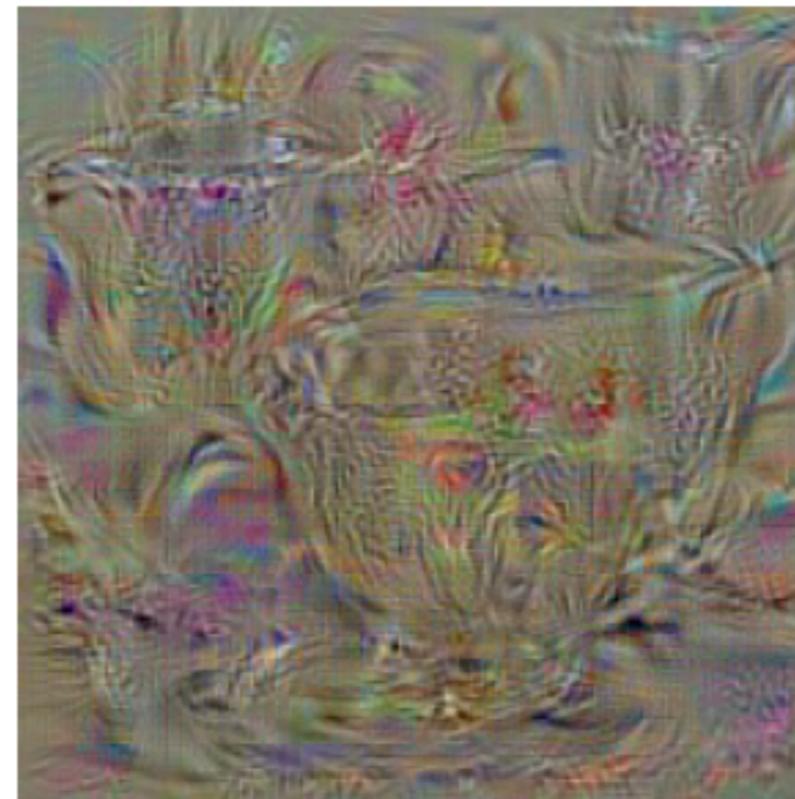
Starting from a zero image, backpropagate to update the image pixel values, having fixed weights, maximizing the objective:

$$\arg \max_I S_c(I) - \lambda \|I\|_2^2,$$

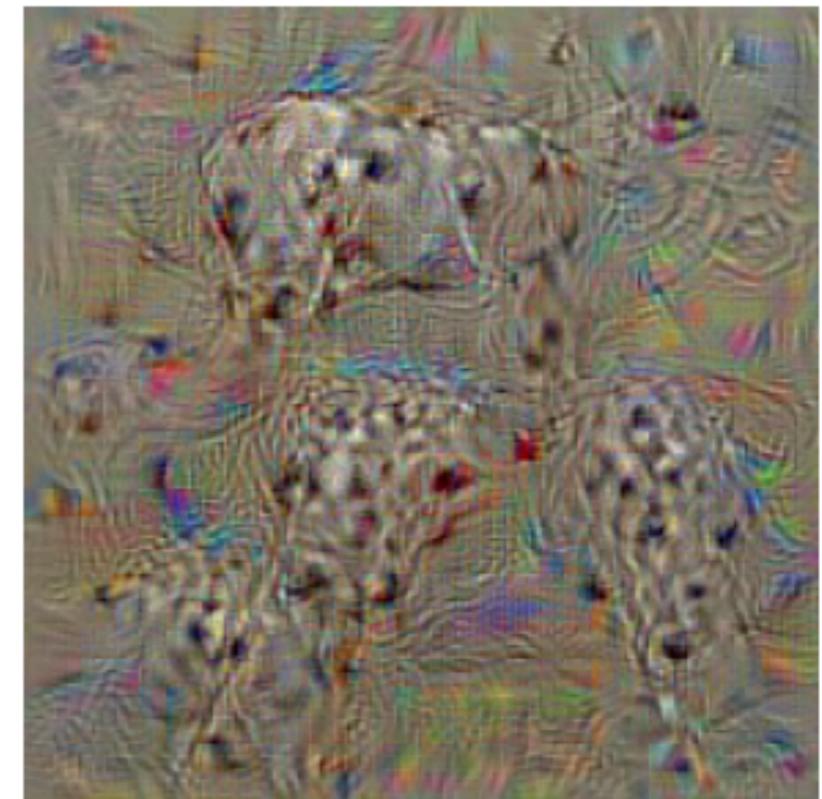
Add the mean image to the final result.



dumbbell

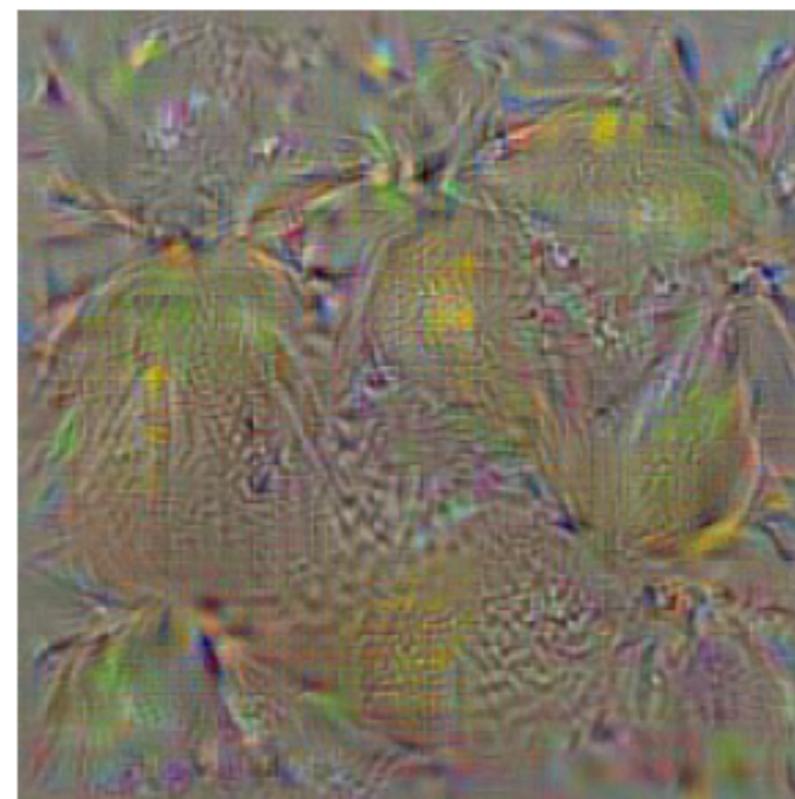


cup



dalmatian

bell pepper



lemon

husky

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

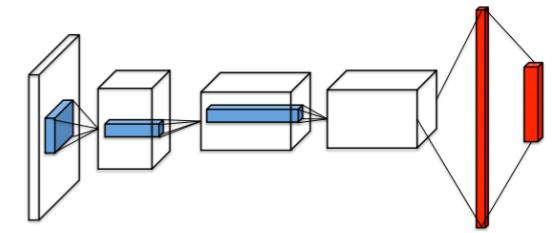
Karen Simonyan

Andrea Vedaldi

Andrew Zisserman

Visual Geometry Group, University of Oxford

{karen, vedaldi, az}@robots.ox.ac.uk



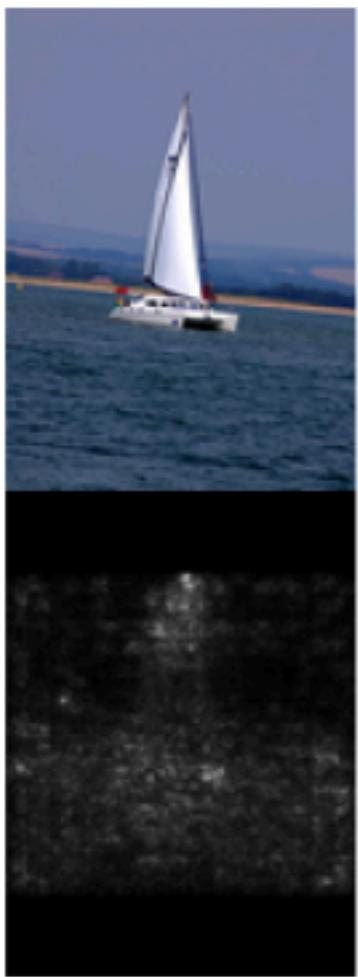
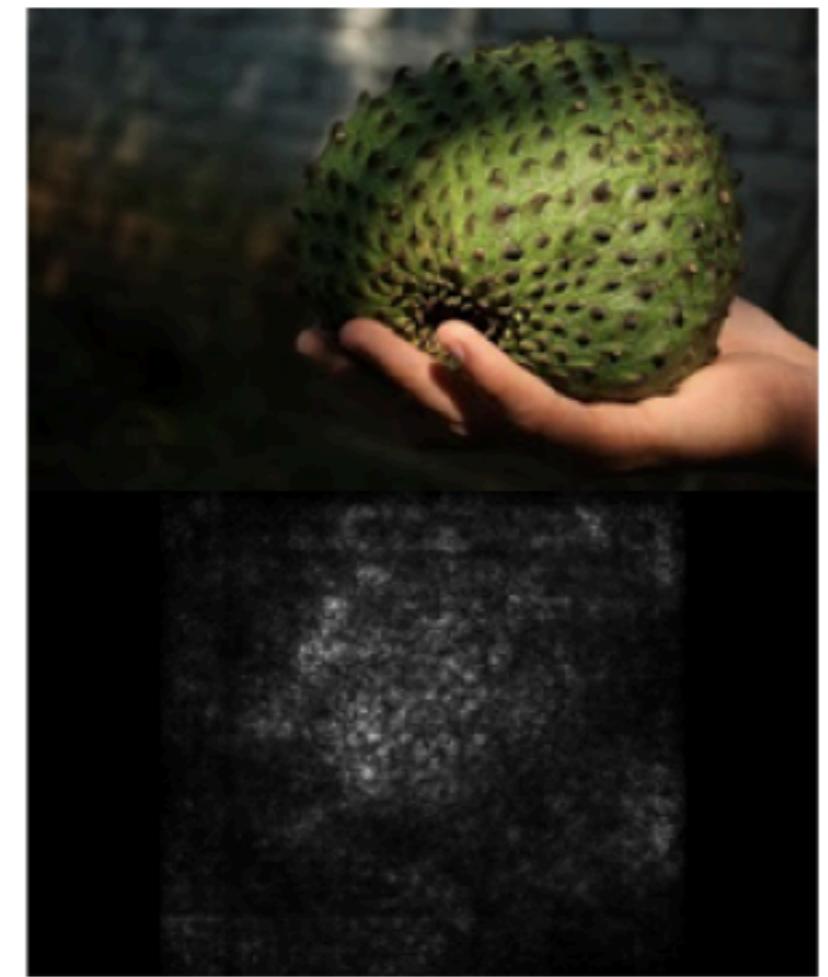
Task: Generate a saliency map for a particular category

$S_c(I)$ is a non-linear function of I . We can create a first order approximation:

$$S_c(I) \approx w^T I + b$$

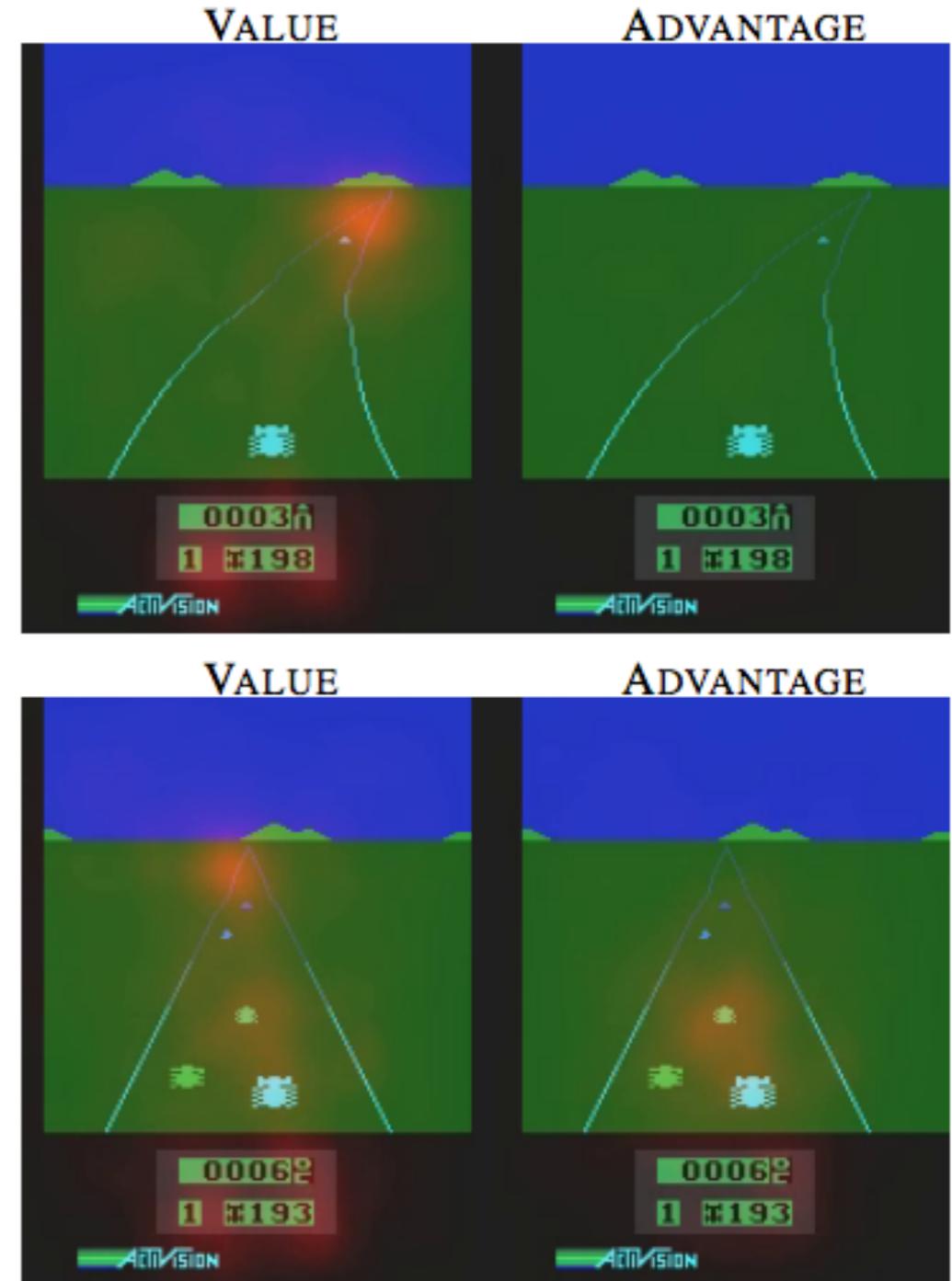
$$w = \frac{\partial S_c}{\partial I} \Big|_{I_0}$$

I use the largest magnitude derivatives across R,G,B channels for each pixel to be its saliency value.



Dueling Networks

- ▶ The **value stream** learns to pay attention to the road
- ▶ The **advantage stream**: pay attention only when there are cars immediately in front, so as to avoid collisions



Multistep Returns

- Truncated n-step return from a state s_t :

$$R_t^{(n)} = \sum_{k=0}^{n-1} \gamma_t^{(k)} R_{t+k+1}$$

- Multistep Q-learning update rule:

$$I = (R_t^{(n)} + \gamma_t^{(n)} \max_a Q(S_{t+n}, a', \mathbf{w}) - Q(s, a, \mathbf{w}))^2$$

- Singlestep Q-learning update rule:

$$I = (r + \gamma \max_a Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}))^2$$

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel
DeepMind

Joseph Modayil
DeepMind

Hado van Hasselt
DeepMind

Tom Schaul
DeepMind

Georg Ostrovski
DeepMind

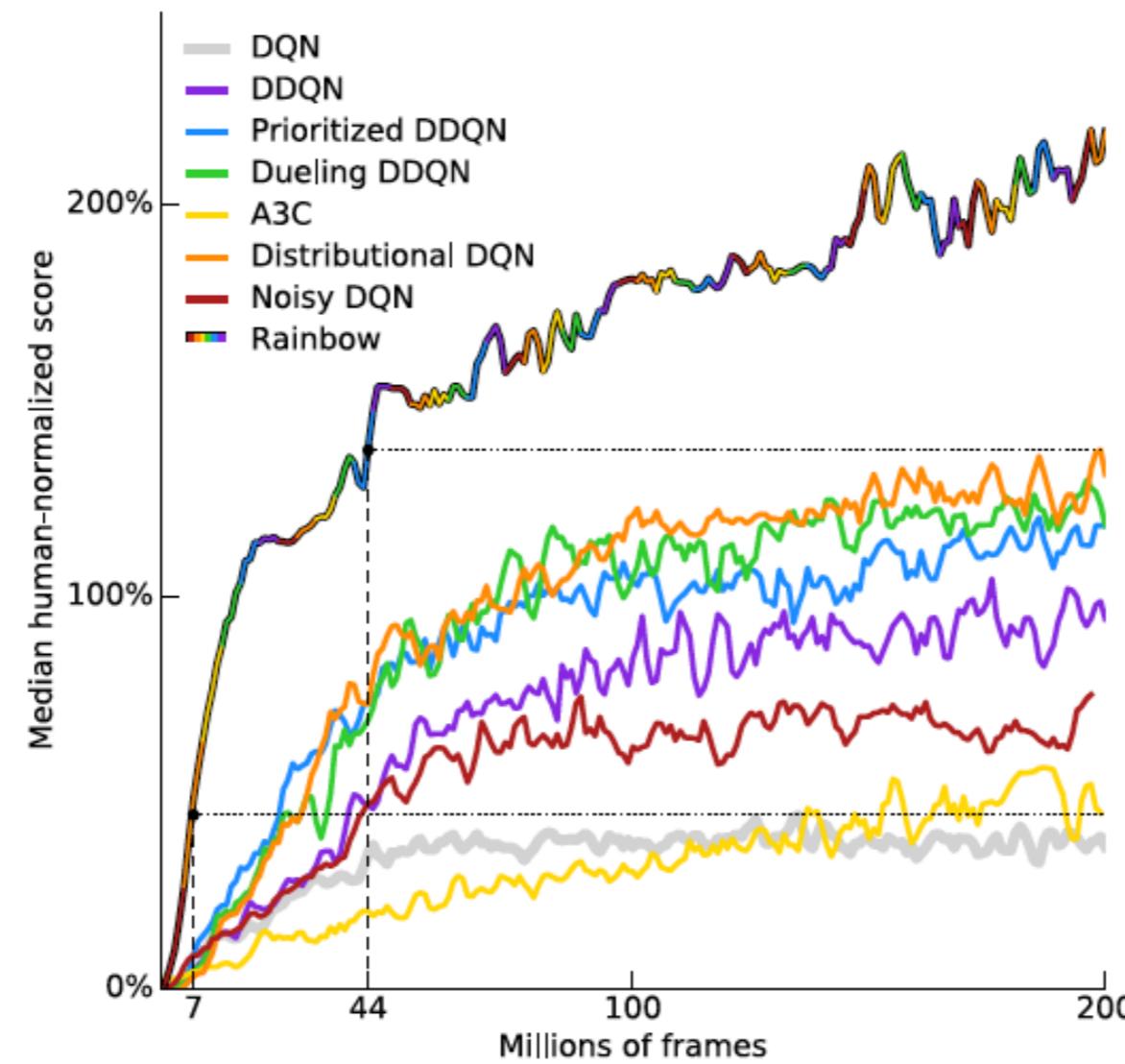
Will Dabney
DeepMind

Dan Horgan
DeepMind

Bilal Piot
DeepMind

Mohammad Azar
DeepMind

David Silver
DeepMind



Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel
DeepMind

Joseph Modayil
DeepMind

Hado van Hasselt
DeepMind

Tom Schaul
DeepMind

Georg Ostrovski
DeepMind

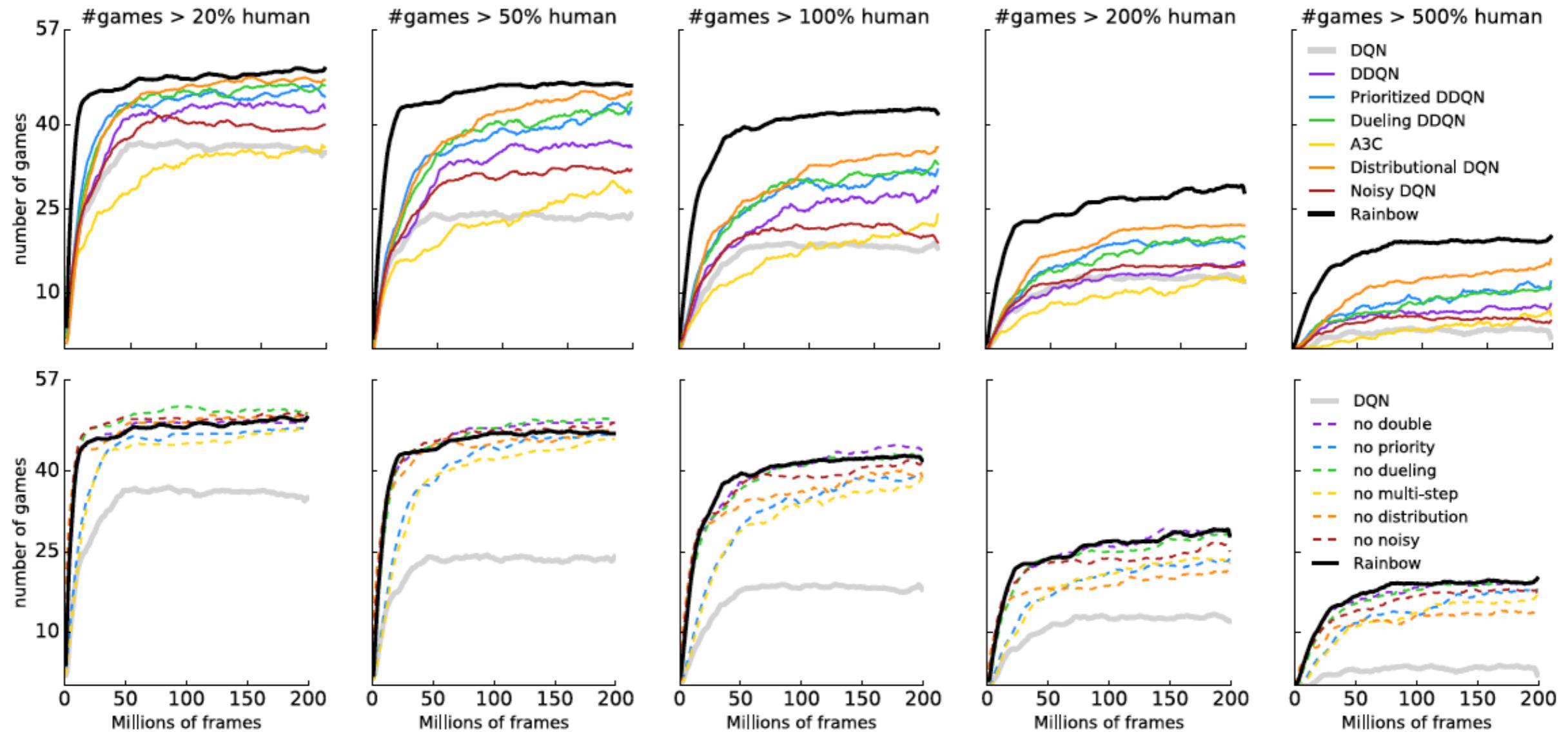
Will Dabney
DeepMind

Dan Horgan
DeepMind

Bilal Piot
DeepMind

Mohammad Azar
DeepMind

David Silver
DeepMind



Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel
DeepMind

Joseph Modayil
DeepMind

Hado van Hasselt
DeepMind

Tom Schaul
DeepMind

Georg Ostrovski
DeepMind

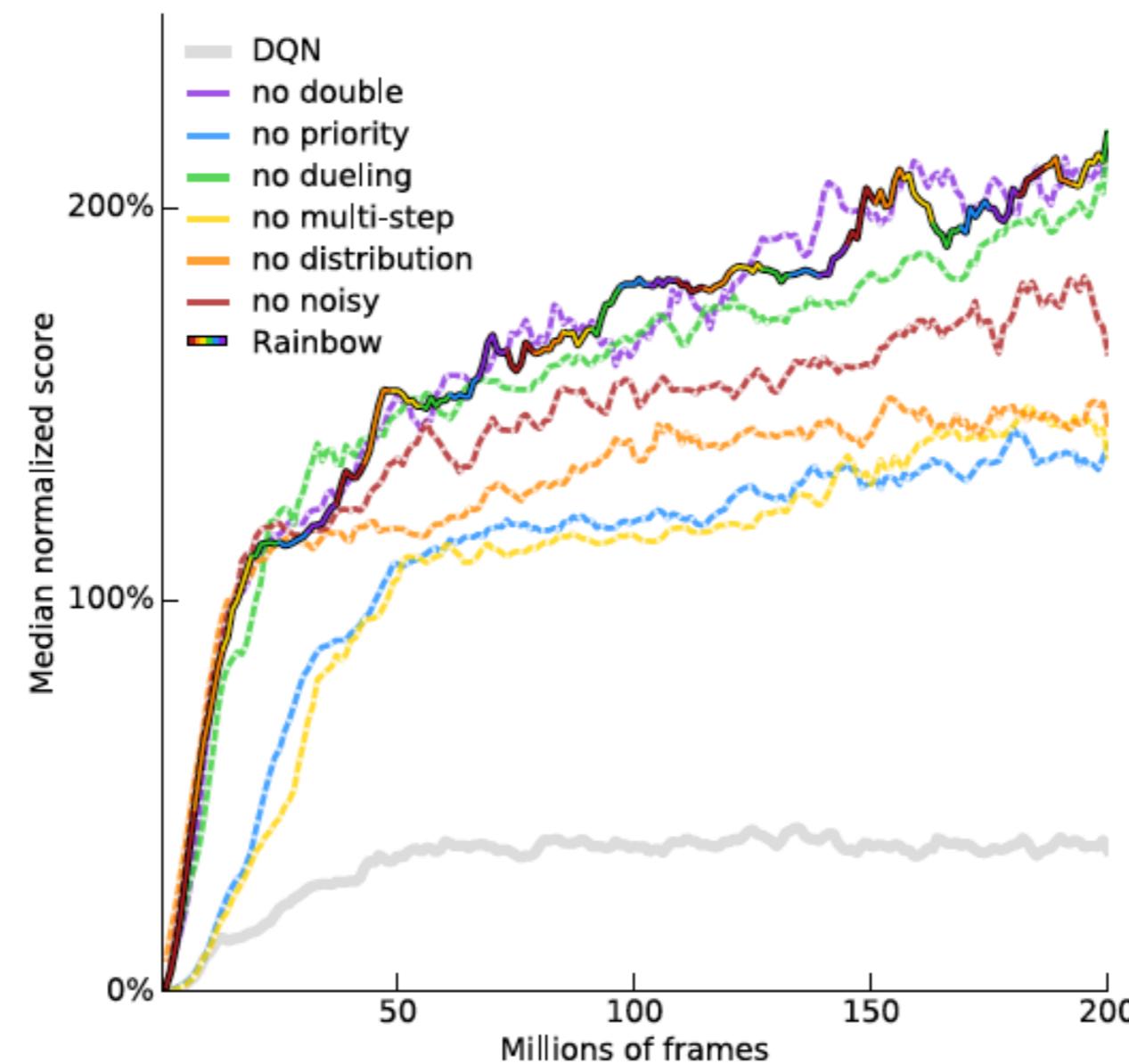
Will Dabney
DeepMind

Dan Horgan
DeepMind

Bilal Piot
DeepMind

Mohammad Azar
DeepMind

David Silver
DeepMind



Question

- ▶ Imagine we have access to the internal state of the Atari simulator. Would online planning (e.g., using MCTS), outperform the trained DQN policy?

Question

- ▶ Imagine we have access to the internal state of the Atari simulator. Would online planning (e.g., using MCTS), outperform the trained DQN policy?
 - With enough resources, yes.
 - Resources = number of simulations (rollouts) and maximum allowed depth of those rollouts.
 - There is always an amount of resources when a vanilla MCTS (not assisted by any deep nets) will outperform the learned with RL policy.

Question

- ▶ Then why we do not use MCTS with online planning to play Atari instead of learning a policy?

Question

- ▶ Then why we do not use MCTS with online planning to play Atari instead of learning a policy?
 - Because using vanilla (not assisted by any deep nets) MCTS is very very slow, definitely very far away from real time game playing that humans are capable of.

Question

- ▶ If we used MCTS during training time to suggest actions using online planning, and we would try to mimic the output of the planner, would we do better than DQN that learns a policy without using any model while playing in real time?

Question

- ▶ If we used MCTS during training time to suggest actions using online planning, and we would try to mimic the output of the planner, would we do better than DQN that learns a policy without using any model while playing in real time?
 - That would be a very sensible approach!

Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo

Computer Science and Eng.
University of Michigan
guoxiao@umich.edu

Satinder Singh

Computer Science and Eng.
University of Michigan
baveja@umich.edu

Honglak Lee

Computer Science and Eng.
University of Michigan
honglak@umich.edu

Richard Lewis

Department of Psychology
University of Michigan
rickl@umich.edu

Xiaoshi Wang

Computer Science and Eng.
University of Michigan
xiaoshiw@umich.edu

Offline MCTS to train online fast reactive policies

- **AlphaGo**: train policy and value networks at training time, combine them with MCTS at test time
- **AlphaGoZero**: train policy and value networks with MCTS in the training loop and at test time (same method used at train and test time)
- **Offline MCTS**: train policy and value networks with MCTS in the training loop, but at test time use the (reactive) policy network, without any lookahead planning.
 - **Where does the benefit come from?**

Revision: Monte-Carlo Tree Search

1. Selection

- Used for nodes we have seen before
- Pick according to UCB

2. Expansion

- Used when we reach the frontier
- Add one node per playout

3. Simulation

- Used beyond the search frontier
- Don't bother with UCB, just play randomly

4. Backpropagation

- After reaching a terminal node
- Update value and visits for states expanded in selection and expansion

Upper-Confidence Bound

Sample actions according to the following score:

$$v_i + C \times \sqrt{\frac{\ln(N)}{n_i}}$$

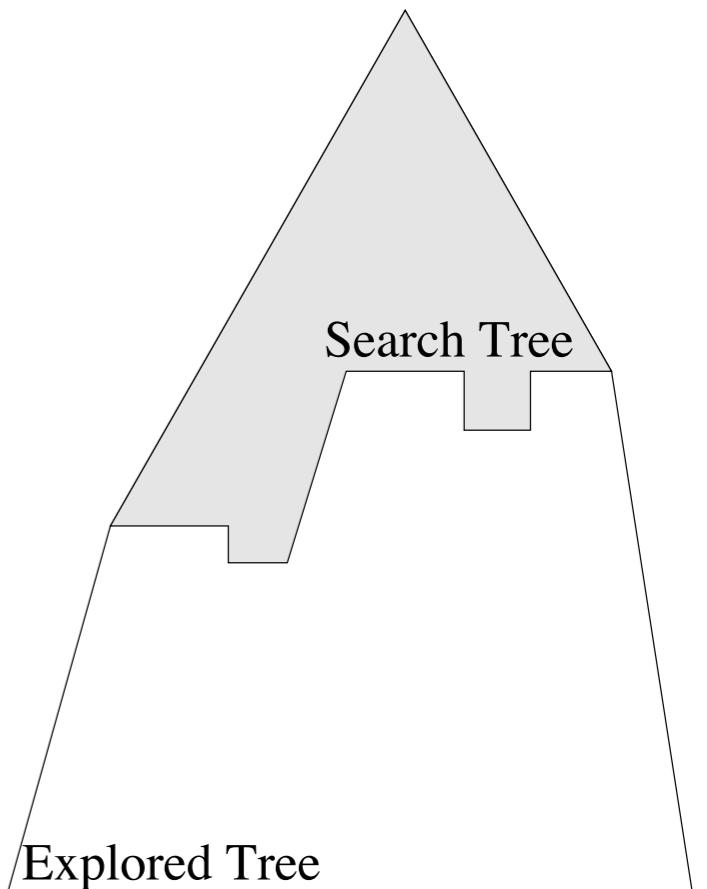
Diagram illustrating the UCB formula components:

- v_i (value estimate) is highlighted in a blue box.
- C (tunable parameter) is highlighted in a green box.
- $\sqrt{\frac{\ln(N)}{n_i}}$ is highlighted in a red box.
- $\ln(N)$ (parent node visits) is highlighted in a red box.
- n_i (number of visits) is highlighted in a purple box.

- score is decreasing in the number of visits (explore)
- score is increasing in a node's value (exploit)
- always tries every option once

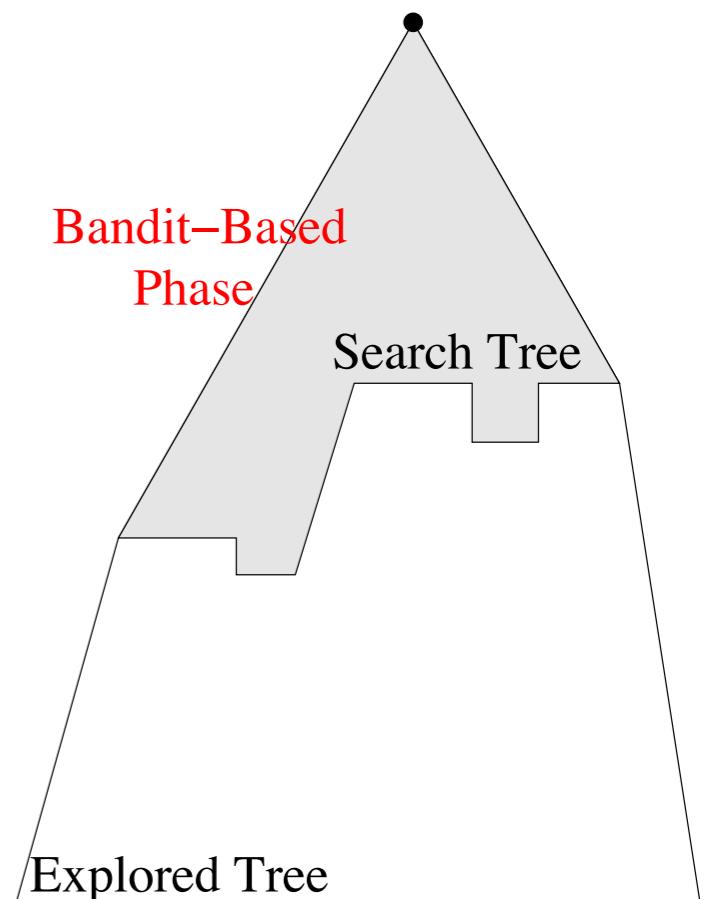
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)
```



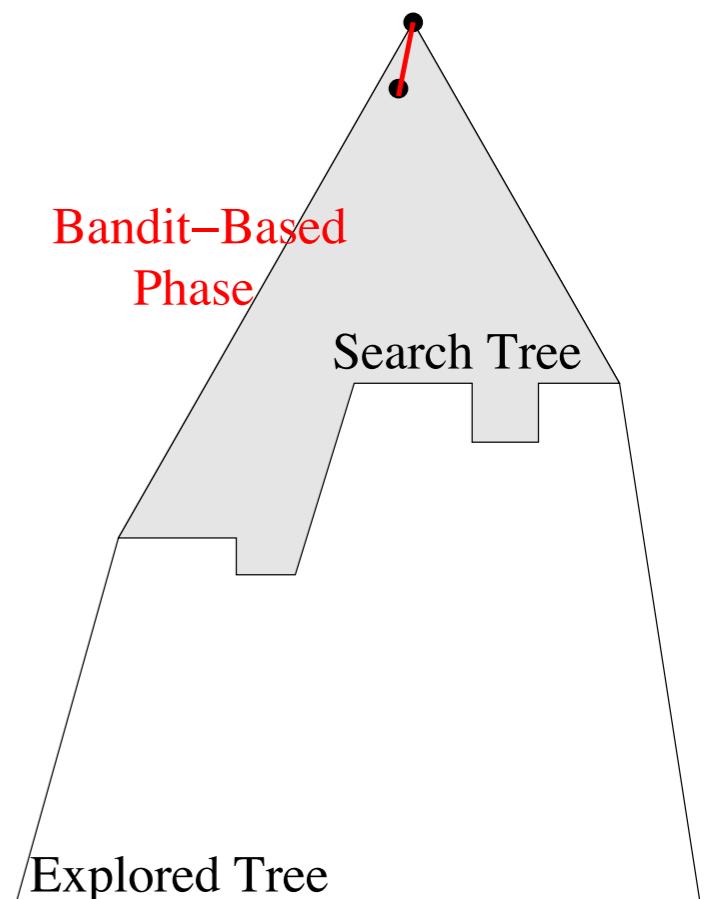
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)
```



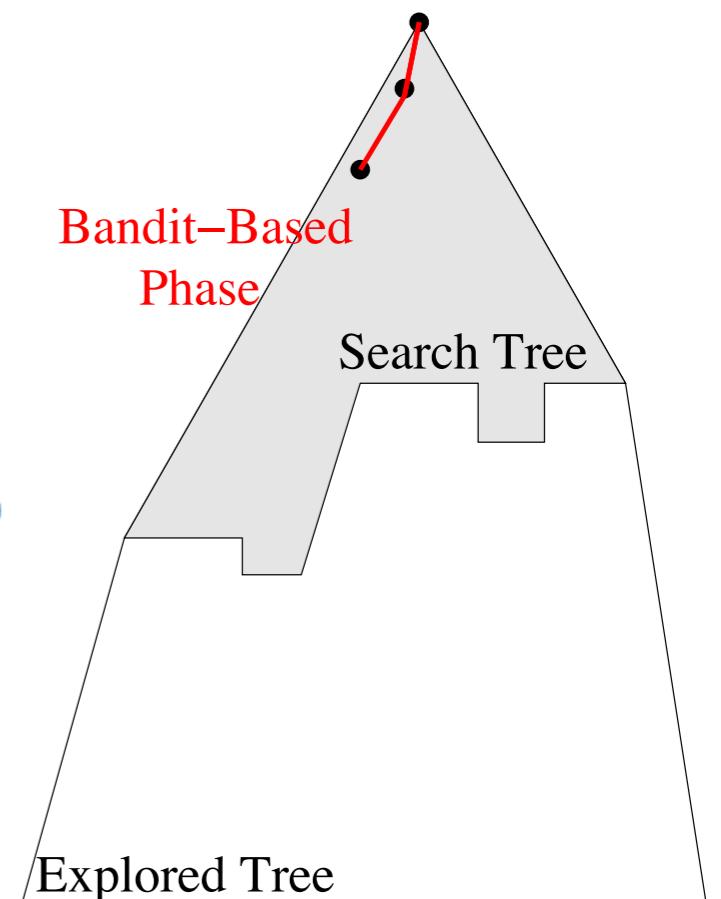
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)
```



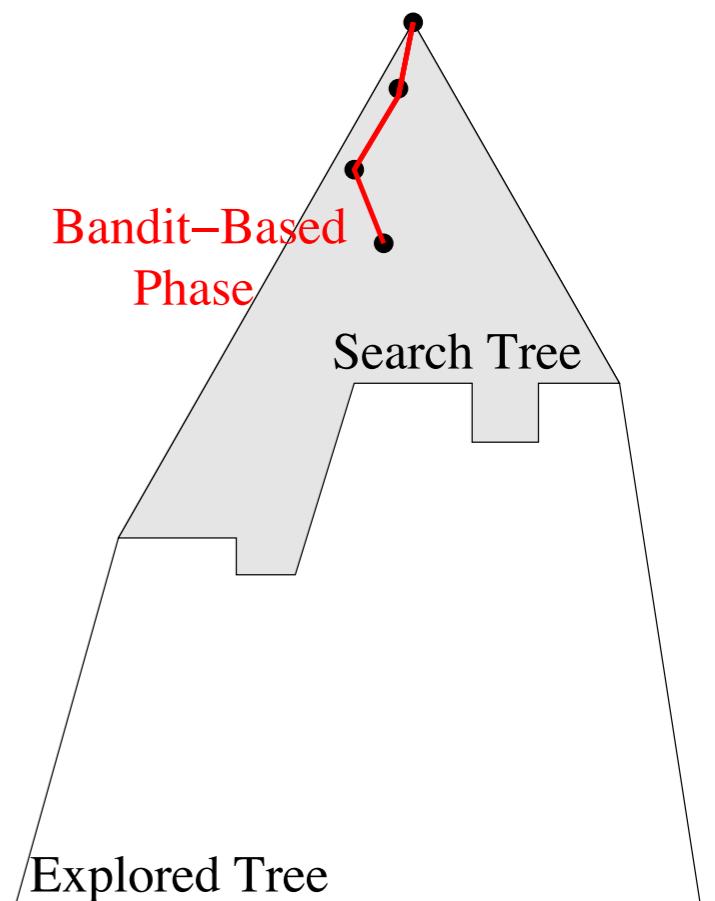
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
            winner = random_playout(next_state)
    update_value(state, winner)
```



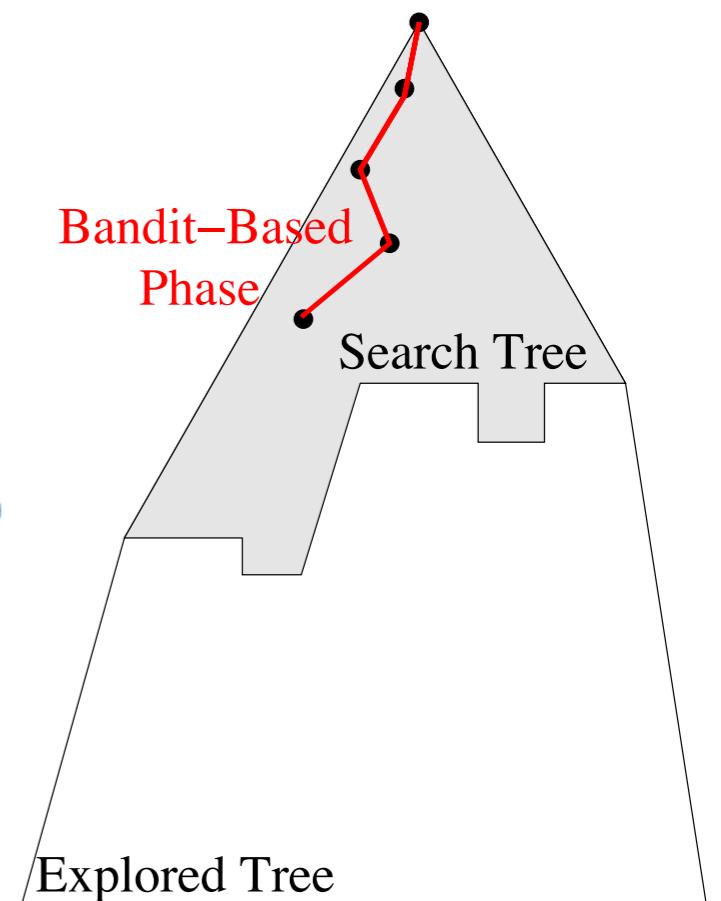
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
            winner = random_playout(next_state)
    update_value(state, winner)
```



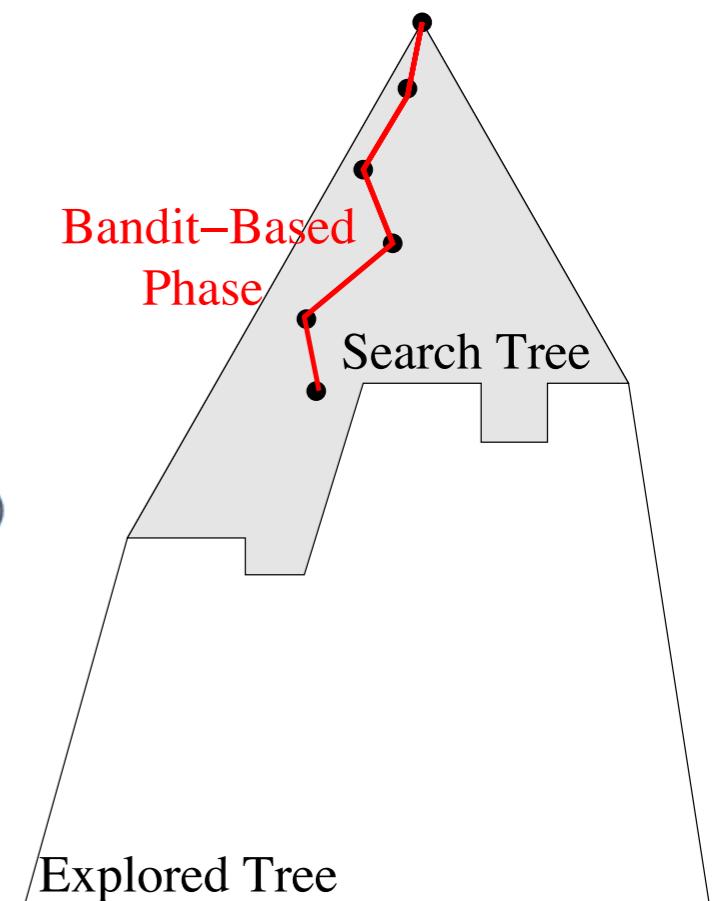
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
            winner = random_playout(next_state)
    update_value(state, winner)
```



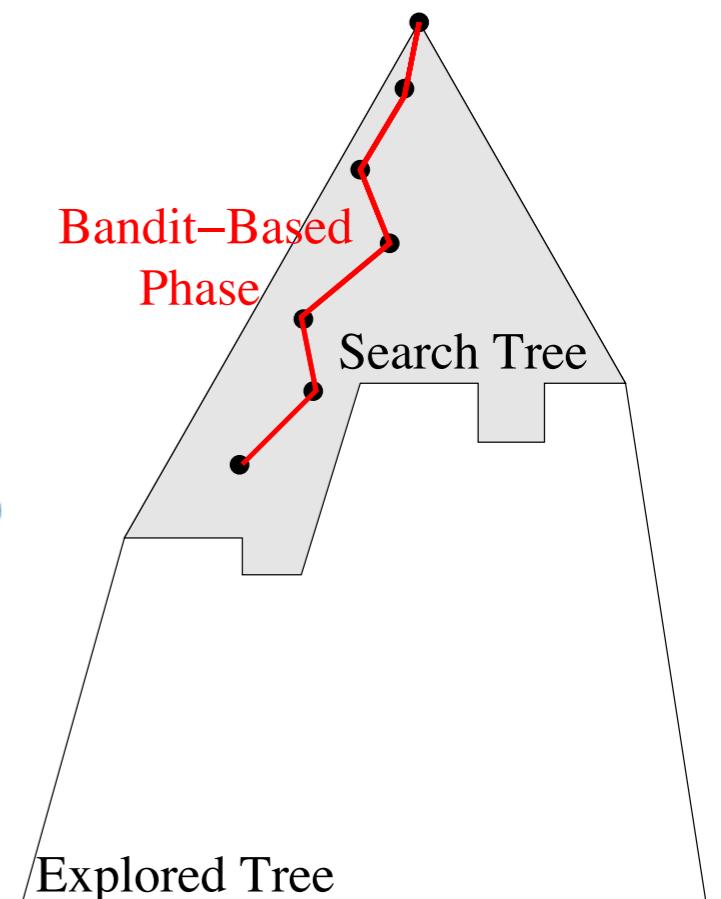
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
            winner = random_playout(next_state)
    update_value(state, winner)
```



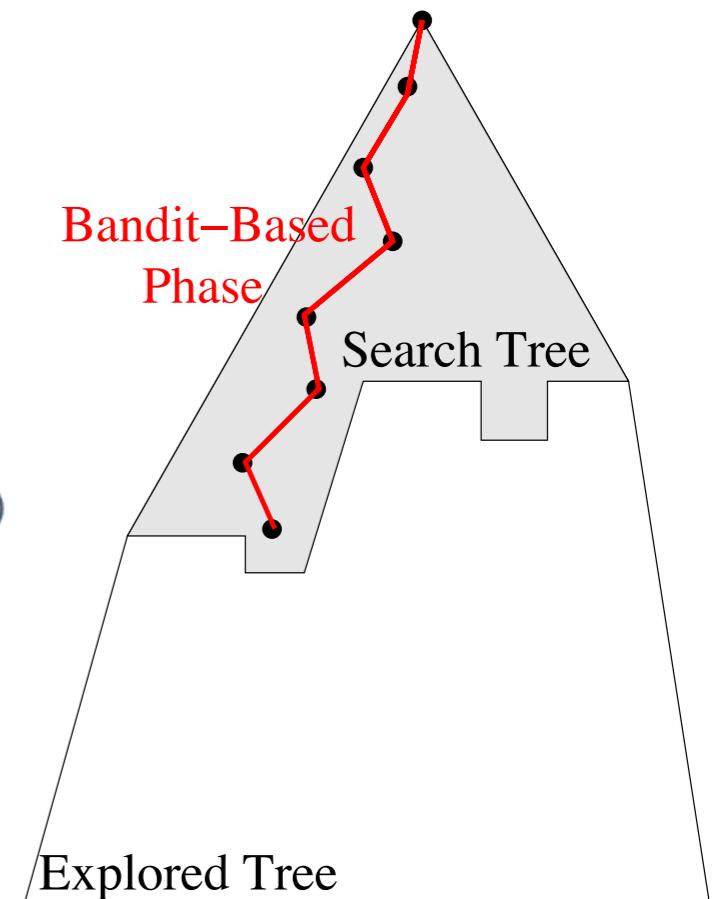
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
            winner = random_playout(next_state)
    update_value(state, winner)
```



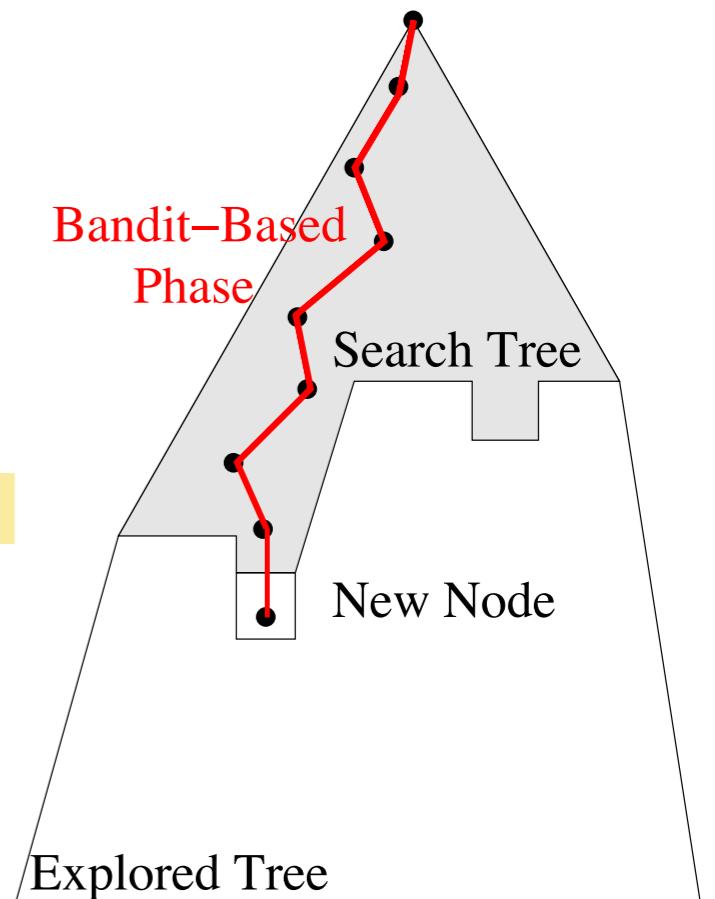
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
            winner = random_playout(next_state)
    update_value(state, winner)
```



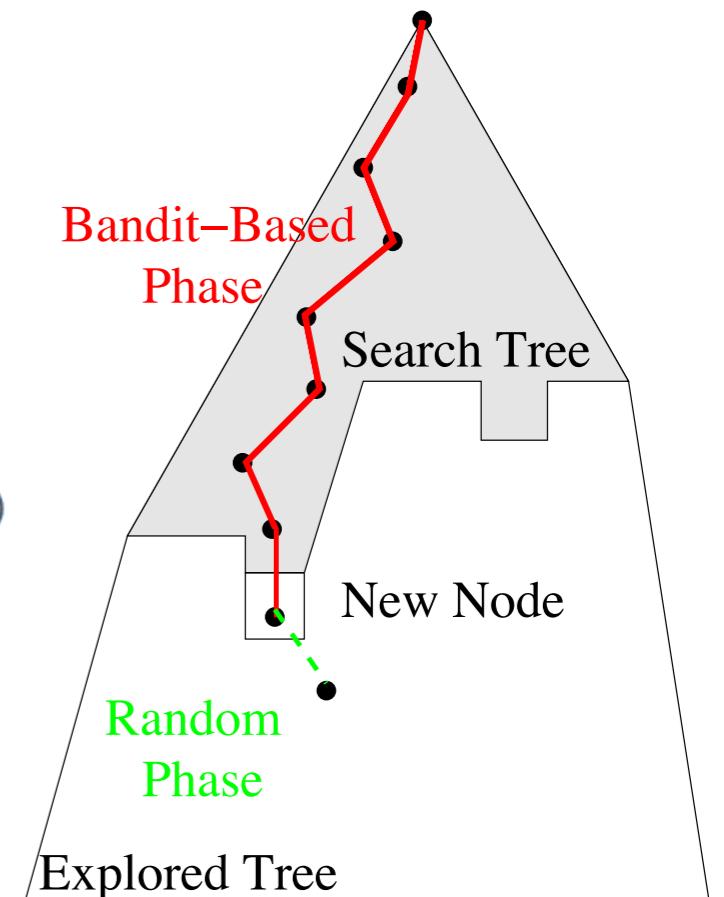
Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)
```



Basic MCTS pseudocode

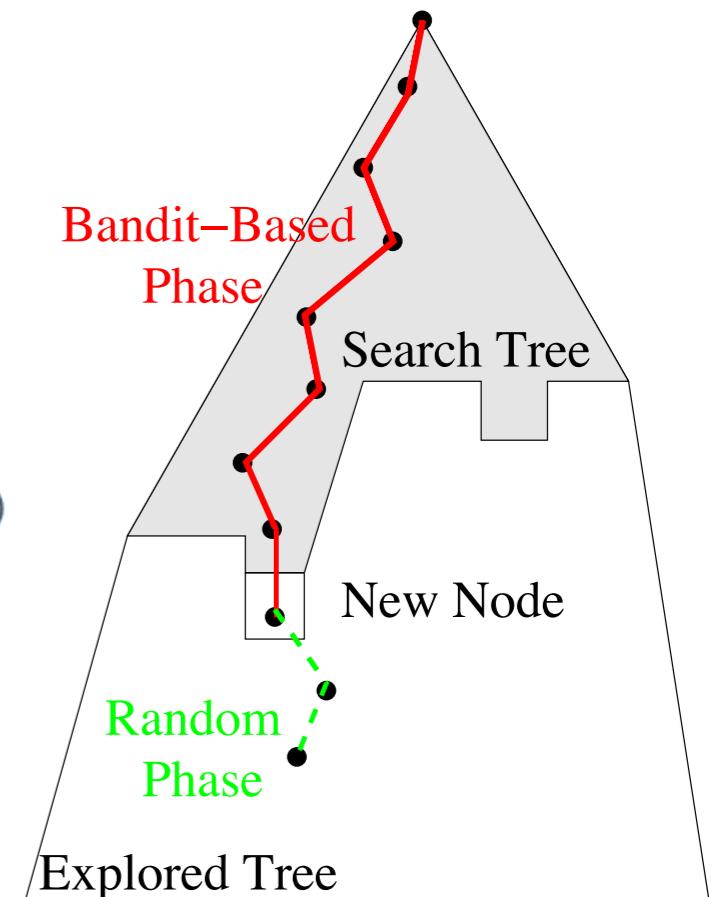
```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
            winner = random_playout(next_state)
    update_value(state, winner)
```



```
function random_playout(state):
    if is_terminal(state):
        return winner
    else: return random_playout(random_move(state))
```

Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)
```

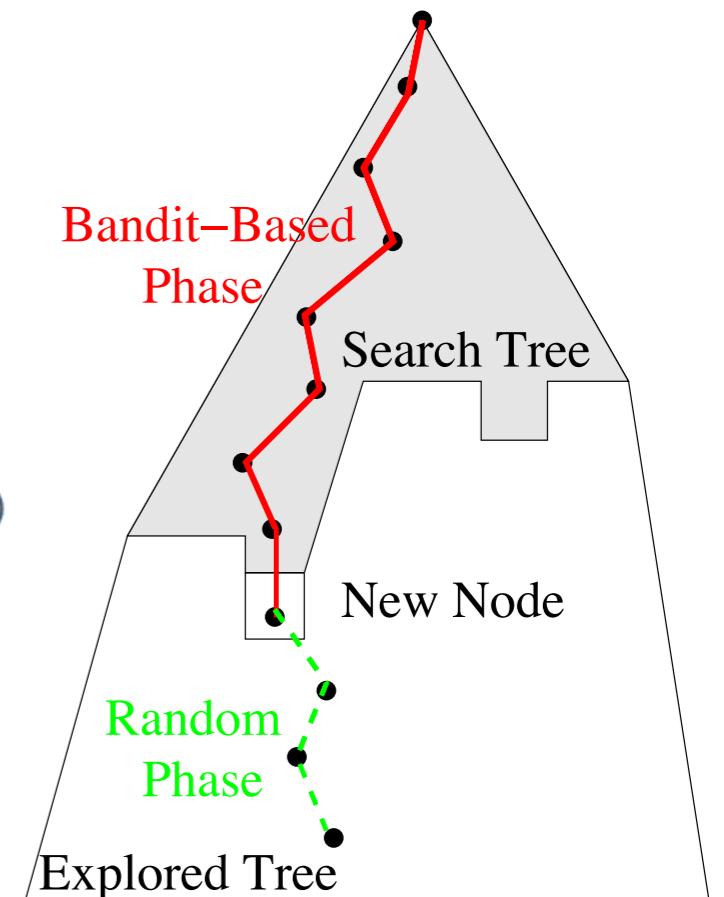


```
function random_playout(state):
    if is_terminal(state):
        return winner
    else: return random_playout(random_move(state))
```

Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
            winner = random_playout(next_state)
    update_value(state, winner)

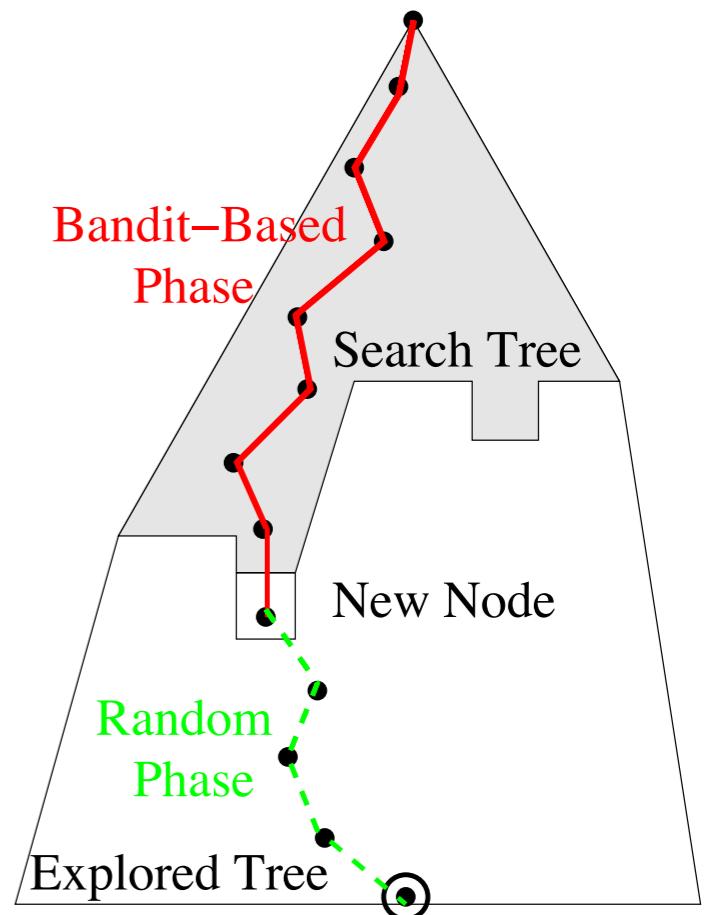
function random_playout(state):
    if is_terminal(state):
        return winner
    else: return random_playout(random_move(state))
```



Basic MCTS pseudocode

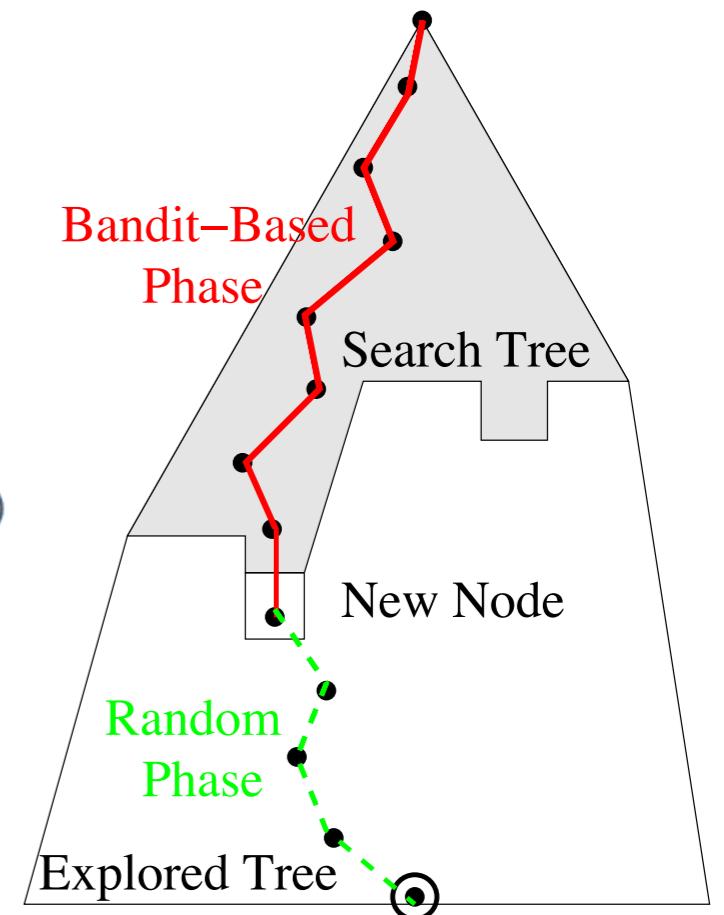
```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)

function random_playout(state):
    if is_terminal(state):
        return winner
    else: return random_playout(random_move(state))
```



Basic MCTS pseudocode

```
function MCTS_sample(state)
    state.visits++
    if all children of state expanded:
        next_state = UCB_sample(state)
        winner = MCTS_sample(next_state)
    else:
        if some children of state expanded:
            next_state = expand(random unexpanded child)
        else:
            next_state = state
        winner = random_playout(next_state)
    update_value(state, winner)
```



Learning from MCTS

- ▶ The MCTS agent plays against himself and generates $(s, Q(s,a))$ pairs. Use this data to train:
 - ▶ **UCTtoRegression:** A regression network, that given 4 frames regresses to $Q(s,a)$ for all actions
 - ▶ **UCTtoClassification:** A classification network, that given 4 frames predicts the best action through multiclass classification
- ▶ The state distribution visited using actions of the MCTS planner will not match the state distribution obtained from the learned policy.
 - ▶ **UCTtoClassification-Interleaved:** Interleave UCTtoClassification with data collection: Start from 200 runs with MCTS as before, train UCTtoClassification, deploy it for 200 runs allowing 5% of the time a random action to be sampled, use MCTS to decide best action for those states, train UCTtoClassification and so on and so forth.

Results

Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
DQN	4092	168	470	20	1952	1705	581
<i>-best</i>	5184	225	661	21	4500	1740	1075
UCC	5342 (20)	175(5.63)	558(14)	19(0.3)	11574(44)	2273(23)	672(5.3)
<i>-best</i>	10514	351	942	21	29725	5100	1200
<i>-greedy</i>	5676	269	692	21	19890	2760	680
UCC-I	5388(4.6)	215(6.69)	601(11)	19(0.14)	13189(35.3)	2701(6.09)	670(4.24)
<i>-best</i>	10732	413	1026	21	29900	6100	910
<i>-greedy</i>	5702	380	741	21	20025	2995	692
UCR	2405(12)	143(6.7)	566(10.2)	19(0.3)	12755(40.7)	1024 (13.8)	441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
UCT	7233	406	788	21	18850	3257	2354

Results

Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
DQN	4092	168	470	20	1952	1705	581
<i>-best</i>	5184	225	661	21	4500	1740	1075
UCC	5342 (20)	175(5.63)	558(14)	19(0.3)	11574(44)	2273(23)	672(5.3)
<i>-best</i>	10514	351	942	21	29725	5100	1200
<i>-greedy</i>	5676	269	692	21	19890	2760	680
UCC-I	5388(4.6)	215(6.69)	601(11)	19(0.14)	13189(35.3)	2701(6.09)	670(4.24)
<i>-best</i>	10732	413	1026	21	29900	6100	910
<i>-greedy</i>	5702	380	741	21	20025	2995	692
UCR	2405(12)	143(6.7)	566(10.2)	19(0.3)	12755(40.7)	1024 (13.8)	441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
UCT	7233	406	788	21	18850	3257	2354

Online planning (without aided by any neural net!) outperforms DQN policy. It takes though ``a few days on a recent multicore computer to play for each game".

Results

Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
DQN	4092	168	470	20	1952	1705	581
<i>-best</i>	5184	225	661	21	4500	1740	1075
UCC	5342 (20)	175(5.63)	558(14)	19(0.3)	11574(44)	2273(23)	672(5.3)
<i>-best</i>	10514	351	942	21	29725	5100	1200
<i>-greedy</i>	5676	269	692	21	19890	2760	680
UCC-I	5388(4.6)	215(6.69)	601(11)	19(0.14)	13189(35.3)	2701(6.09)	670(4.24)
<i>-best</i>	10732	413	1026	21	29900	6100	910
<i>-greedy</i>	5702	380	741	21	20025	2995	692
UCR	2405(12)	143(6.7)	566(10.2)	19(0.3)	12755(40.7)	1024 (13.8)	441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
UCT	7233	406	788	21	18850	3257	2354

Classification is doing much better than regression! indeed, we are training for exactly what we care about.

Results

Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
DQN	4092	168	470	20	1952	1705	581
<i>-best</i>	5184	225	661	21	4500	1740	1075
UCC	5342 (20)	175(5.63)	558(14)	19(0.3)	11574(44)	2273(23)	672(5.3)
<i>-best</i>	10514	351	942	21	29725	5100	1200
<i>-greedy</i>	5676	269	692	21	19890	2760	680
UCC-I	5388(4.6)	215(6.69)	601(11)	19(0.14)	13189(35.3)	2701(6.09)	670(4.24)
<i>-best</i>	10732	413	1026	21	29900	6100	910
<i>-greedy</i>	5702	380	741	21	20025	2995	692
UCR	2405(12)	143(6.7)	566(10.2)	19(0.3)	12755(40.7)	1024 (13.8)	441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
UCT	7233	406	788	21	18850	3257	2354

Interleaving is important to prevent mismatch between the training data and the data that the trained policy will see at test time.

Results

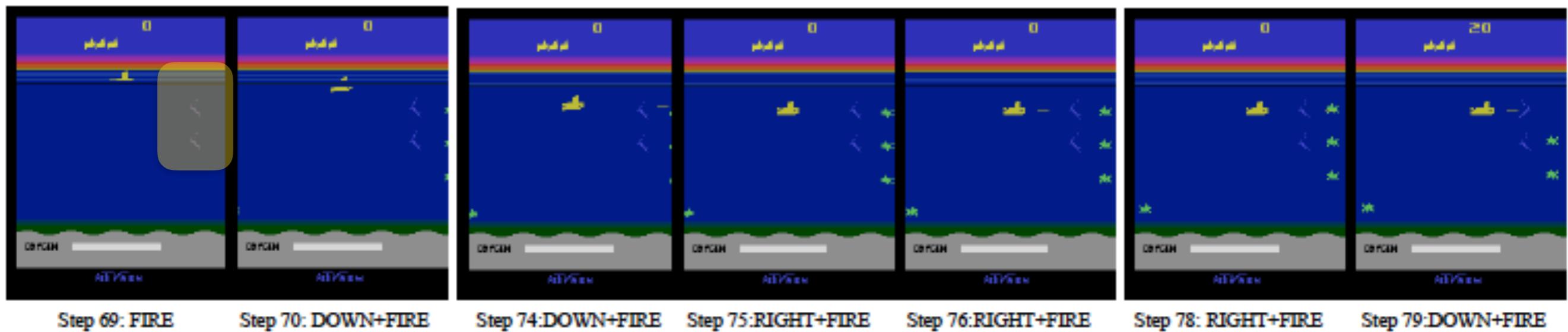
Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
DQN	4092	168	470	20	1952	1705	581
<i>-best</i>	5184	225	661	21	4500	1740	1075
UCC	5342 (20)	175(5.63)	558(14)	19(0.3)	11574(44)	2273(23)	672(5.3)
<i>-best</i>	10514	351	942	21	29725	5100	1200
<i>-greedy</i>	5676	269	692	21	19890	2760	680
UCC-I	5388(4.6)	215(6.69)	601(11)	19(0.14)	13189(35.3)	2701(6.09)	670(4.24)
<i>-best</i>	10732	413	1026	21	29900	6100	910
<i>-greedy</i>	5702	380	741	21	20025	2995	692
UCR	2405(12)	143(6.7)	566(10.2)	19(0.3)	12755(40.7)	1024 (13.8)	441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent	<i>B.Rider</i>	<i>Breakout</i>	<i>Enduro</i>	<i>Pong</i>	<i>Q*bert</i>	<i>Seaquest</i>	<i>S.Invaders</i>
UCT	7233	406	788	21	18850	3257	2354

Results improve further if you allow MCTS planner to have more simulations and build more reliable Q estimates.

Problem



We do not learn to save the divers. Saving 6 divers brings very high reward, but exceeds the depth of our MCTS planner, thus it is ignored.

Question

- ▶ Why don't we always use MCTS (or some other planner) as supervision for reactive policy learning?
 - Because in many domains we do not have access to the dynamics.
 - In later lectures we will see how we will use online trajectory optimizers which learn (linear) dynamics on-the-fly as supervisors