Carnegie Mellon
School of Computer Science

Deep Reinforcement Learning and Control

Deep Q Learning

CMU 10703

Katerina Fragkiadaki

Parts of slides borrowed from Russ Salakhutdinov, Rich Sutton, David Silver

v

Components of an RL Agent

» An RL agent may include one or more of these components:
- Policy: agent’s behavior function
- Value function: how good is each state and/or action

- Model: agent’s representation of the environment

» A policy is the agent’s behavior

» Itis a map from state to action:
- Deterministic policy: a = 11(s)

- Stochastic policy: (als) = P[als]

Review: Value Function

» A value function is a prediction of future reward

- How much reward will | get from action a in state s?

» Q-value function gives expected total reward
- from state s and action a
- under policy

- with discount factor y

Q" (s,a) =E [ft+1 Nreio + Vreiz + ... | s, a]

» Value functions decompose into a Bellman equation
Q™(s,a) =Eg [r+~vQ"(s',d") | s, a

ar(s,a) = 7(s,a) +v) T(s's,a)) w(a'|s)gn(s",a’)

s'esS a’'e A

Optimal Value Function

» An optimal value function is the maximum achievable value

Q*(s,a) = max Q™(s,a) = Q™ (s, a)

» Once we have Q*, the agent can act optimally

m*(s) = argmax Q™(s, a)

d

» Formally, optimal values decompose into a Bellman equation

Q"(s;a) =

¥

<4

Js,

r+v max Q*(s',a’) | s,a
a

Optimal Value Function

» An optimal value function is the maximum achievable value

Q*(s,a) = max Q™(s,a) = Q™ (s, a)

» Formally, optimal values decompose into a Bellman equation

Q*(s,a) =Eg |r+v max Q*(s',a’) | s, a
a

» Informally, optimal value maximizes over all decisions

Q" (s, a)

2
re41 + 7y max rgyo + 7y~ Max rg43 + ...
dt+41 dt42

req1 + v max Q*(Sga1,arr1)
dt+1

Modael

observation /7 . 5; action

» Model is learned from experience
» Acts as proxy for environment

» Planner interacts with model, e.g. using
look-ahead search

Approaches to RL

» Value-based RL (this is what we have looked at so far)

- Estimate the optimal value function Q*(s,a)

- This is the maximum value achievable under any policy

» Policy-based RL (next week)
- Search directly for the optimal policy 1r*

- This is the policy achieving maximum future reward

» Model-based RL (later)
- Build a model of the environment

- Plan (e.g. by look-ahead) using model

Deep Reinforcement Learning

» Use deep neural networks to represent
- Value function
- Policy
- Model

» Optimize loss function by stochastic gradient descent (SGD)

Deep Q-Networks (DQNSs)

» Represent action-state value function by Q-network with weights w

Q(s,a,w) =~ Q*(s, a)

When would this be preferred?

Q(s,a,w)

1

Q-Learning

v

Optimal Q-values should obey Bellman equation

— —

Q*(s,a) =Eg [r+ 7~ max Q(s',a)* | s,a
a

» Treat right-hand r + 7y max Q(S', a’, w) as a target
d

» Minimize MSE loss by stochastic gradient descent
/ / 2
| = (r+7 max Q(s’,a,w) — Q(s,a,w))
a

» Remember VFA lecture: Minimize mean-squared error between the true
action-value function g-(S,A) and the approximate Q function:

J(W) = E; [(qW(SaA) — @(S»Aa W))z]

Q-Learning

» Minimize MSE loss by stochastic gradient descent

2
| = (I’ + maax Q(S,a alaw) o Q(Sa d, W))

» Converges to Q* using table lookup representation

Q-Learning: Off-Policy TD Control

» One-step Q-learning:

Q(St, Ar) + Q(St. Ar) + a [RH—I + max Q(St+1,a) — Q(S:. 1t)]

Initialize Q)(s,a), Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S. A) + Q(S,A) + a[R + ymax, Q(S".a) — Q(S, A)]
S« 5"
until S is terminal

Q-Learning

» Minimize MSE loss by stochastic gradient descent

2
| = (r—l— Y max Q(s',a',w) — Q(s, a,w))
» Converges to Q* using table lookup representation

» But diverges using neural networks due to:
1. Correlations between samples

2. Non-stationary targets

Q-Learning

» Minimize MSE loss by stochastic gradient descent

2
| = (r—l— Y max Q(s',a',w) — Q(s, a,w))
» Converges to Q* using table lookup representation

» But diverges using neural networks due to:
1. Correlations between samples

2. Non-stationary targets

: . Playing Atari with Deep Reinforcement Learnin
Solution to both problems in DQN: e P g

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves loannis Antonoglou
Daan Wierstra Martin Riedmiller

DeepMind Technologies

DQN

» To remove correlations, build data-set from agent’s own experience

51,41, 2,52
/
52,d2, 3,53 — S5,a,r,s

53, d3, 4, 54

Sty dty Mt+15 St+1

» Sample experiences from data-set and apply update

2
| = (r+ v max Q(s',a’,w™) — Q(s, a,w))

a/

» To deal with non-stationarity, target parameters w— are held fixed

Experience Replay

» Given experience consisting of (state, value), or <state, action/value> pairs

D = {<517 V{T>7 <527 V§T>7 tee <5T7 VZIT')}

» Repeat

- Sample state, value from experience
(s,v") ~D
- Apply stochastic gradient descent update

Aw = a(v™ — V(s,w))V, (s, w)

DQNSs: Experience Replay

» DQN uses experience replay and fixed Q-targets

» Store transition (s;,a;,r+1,S1+4) in replay memory D
» Sample random mini-batch of transitions (s,a,r,s’) from D

» Compute Q-learning targets w.r.t. old, fixed parameters w-

» Optimize MSE between Q-network and Q-learning targets

d

AN AN
Y

i 2
Li(w;) = s a.r,s'~D; (r Y max Q(s’, 3 w,._) — Q(s, a; W;))
/

Q-learning target Q-network

» Use stochastic gradient descent

DQNs in Atari

DQNs in Atari

End-to-end learning of values Q(s,a) from pixels

v

v

Input observation is stack of raw pixels from last 4 frames

v

Output is Q(s,a) for 18 joystick/button positions

v

Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear

output layer
|6 8x8 filters
4x84x84 IFL‘
-- I
Stack of 4 previous % Fully-connected layer

frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

» Network architecture and hyperparameters fixed across all games

Mnih et.al., Nature, 2014

DQNs in Atari

End-to-end learning of values Q(s,a) from pixels s

v

v

Input observation is stack of raw pixels from last 4 frames

v

Output is Q(s,a) for 18 joystick/button positions

v

Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear

output layer
|6 8x8 filters
— Fl l% %‘
l
1
]
— —

DQN source code: sites.google.com/a/

deepmind.com/dqgn/

Mnih et.al., Nature, 2014

Extensions

» Double Q-learning for fighting maximization bias
» Prioritized experience replay

» Dueling Q networks

» Multistep returns

» Value distribution

» Stochastic nets for explorations instead of \epsilon-greedy

Maximization Bias

» We often need to maximize over our value estimates. The estimated
maxima suffer from maximization bias

» Consider a state for which all ground-truth q(s,a)=0. Our estimates
Q(s,a) are uncertain, some are positive and some negative.
Q(s,argmax_a(Q(s,a)) is positive while g(s,argmax_a(q(s,a))=0.

100%

o (B)— 0
75%) | : left right

% left
actions 50%
from A Q-learning
Double
25% Q-learning
O o e e e e e e o optimal
0! ,
1 100 200 300

Episodes

Double Q-Learning

» Train 2 action-value functions, Q, and Q,

» Do Q-learning on both, but

- never on the same time steps (Q, and Q, are independent)

- pick Q or Q, at random to be updated on each step

» If updating Q4, use Q, for the value of the next state:

Q1(St, At) Q1(St, Ar) +

+ « (Rt+1 —+ QQ (St+1, argmax QI(SH—I; a)) — Ql(Sta At))

» Action selections are e-greedy with respect to the sum of Q, and Q,

Double Q-Learning in Tabular Form

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Q2(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from)1 and Q)2 (e.g., e-greedy in Q1 + Q)2)
Take action A, observe R, S’
With 0.5 probabilility:

Ql(Sv A) — Ql(sa A) + Oé(R =+ ’YQQ (Sla argmax, Ql(sla a)) o Ql(S7 A))
else:

QQ(Sa A) A Q2(S7 A) =+ Oé(R + ’le (Sla argimnax , QQ(Sla CL)) o QZ(Sv A))
S« 5

until .S is terminal

Hado van Hasselt 2010

Double DQN

» Current Q-network w is used to select actions

» Older Q-network w— is used to evaluate actions

Action evaluation: w—

A
/ \ ,
| = (r vQ(s',argmax Q(s’,a’,w),w™) — Q(s, a,w))
-
~

Action selection: w

van Hasselt, Guez, Silver, 2015

Prioritized Replay

» Weight experience according to surprise” (or error)

» Store experience in priority queue according to DQN error

’r+7 max Q(s’,a’,w™) — Q(s, a, w)

a/

. J
Y
» Stochastic Prioritization p; IS proportional to
DQN error
(87
P(i) = <
Zk P

» o determines how much prioritization is used, with a = 0 corresponding to
the uniform case.

Schaul, Quan, Antonoglou, Silver, ICLR 2016

Dueling Networks

» Split Q-network into two channels

» Action-independent value function V(s;w)

v

Action-dependent advantage function A(s, a; w)
O(s,a; w) = V(s; W) + A(s,a, W)

Advantage function is defined as:

A" (s,a) = Q" (s,a) — V" (s).

v

Wang et.al., ICML, 2016

Dueling Networks vs. DQNs

%ﬁ, DQN

% . Dueling Networks

O(s,a;w) = V(s;w) +A(s,a; w)

Unidentifiability : given Q, | cannot recover V, A Wang et.al., ICML, 2016

Dueling Networks vs. DQNs

i Eé. DQN
% >_I Dueling Networks

O(s,a;w) = V(s; w) + <A(S a,w) — —— ZA(S a’ W))

Wang et.al., ICML, 2016

Dueling Networks

» The value stream learns to pay
attention to the road

VALUE ADVANTAGE

» The advantage stream: pay attention
only when there are cars immediately
in front, so as to avoid collisions

VALUE ADVANTAGE

Wang et.al., ICML, 2016

Visualizing neural saliency maps

Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps

Karen Simonyan Andrea Vedaldi Andrew Zisserman

Visual Geometry Group, University of Oxford
{karen, vedaldi,az}@robots.ox.ac.uk

Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps

Karen Simonyan Andrea Vedaldi Andrew Zisserman

Visual Geometry Group, University of Oxford
{karen, vedaldi,az}@robots.ox.ac.uk

Task: Generate an image that maximizes a classification score.

Starting from a zero image, backpropagate to update the image pixel valiues,
having fixed weights, maximizing the objective:

arg max 5,(1) — A|T[3

Add the mean image to the final result.

bell pepper

Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps

Karen Simonyan Andrea Vedaldi Andrew Zisserman

Visual Geometry Group, University of Oxford
{karen, vedaldi,az}@robots.ox.ac.uk

Task: Generate a saliency map for a particular category @

S _c(l) is a non-linear function of I. We can create a first order approximation:

S.(I)~wlI+b w =

| use the largest magnitude derivatives across R,G,B channels for each pixel to
be its saliency value.

Dueling Networks

» The value stream learns to pay
attention to the road

VALUE ADVANTAGE

» The advantage stream: pay attention
only when there are cars immediately
in front, so as to avoid collisions

VALUE ADVANTAGE

Wang et.al., ICML, 2016

Multistep Returns

n—1
» Truncated n-step return from a state s _t: Rt(n) = Z }’t(k)R;+k+1
k=0

» Multistep Q-learning update rule:

2
[= (Rt(”) + yt(”)maxa,Q(St @S W) — 0(s, a, W))
» Singlestep Q-learning update rule:

2
/= (r+7 max Q(s, 2, w) — Qs, 2, w))

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel Joseph Modayil Hado van Hasselt Tom Schaul Georg Ostrovski
DeepMind DeepMind DeepMind DeepMind DeepMind
Will Dabney Dan Horgan Bilal Piot Mohammad Azar David Silver
DeepMind DeepMind DeepMind DeepMind DeepMind

DQN
== DDQN
- Prioritized DDQN
oo o 2;§Img DDQN / |
v - Distributional DQN .
S == Noisy DQN
- == Rainbow ' f
8 e
E) : 0 J“Mﬁh ”
€ 100%}- | ,M’*"’“’ "~ I
= | P WA
E / (‘ M
Yy
/ |
0% 7 4|4 1(1)0 2(I)O

Millions of frames

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel

DeepMind

Will Dabney

number of games

57

oY
o

N
(9

number of games

10

DeepMind

~ #games > 20% human

Joseph Modayil

DeepMind

Dan Horgan

DeepMind

~ #games > 50% human

Hado van Hasselt
DeepMind

Bilal Piot
DeepMind

#games > 100% human

Tom Schaul
DeepMind

Mohammad Azar
DeepMind

#games > 200% human

50 100 150 200

Millions of frames

T s ™
A -

50 100 150 200

Millions of frames

50 100 150 200

Millions of frames

50 100 150 200

Millions of frames

Georg Ostrovski
DeepMind

David Silver
DeepMind

#games > 500% human

DQN
— DDQN
—— Prioritized DDQN
—— Dueling DDQN
A3C
—— Distributional DQN
— Noisy DQN
[=== Rainbow

DQN
- = no double
= = no priority
- = = no dueling
no multi-step
- = no distribution
= = No noisy
| = Rainbow

0 50 100 150 200
Millions of frames

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel Joseph Modayil Hado van Hasselt Tom Schaul Georg Ostrovski
DeepMind DeepMind DeepMind DeepMind DeepMind

Will Dabney Dan Horgan Bilal Piot Mohammad Azar David Silver
DeepMind DeepMind DeepMind DeepMind DeepMind

DQN
- no double
- NO priority
=== Nno dueling .
200% no multi-step
no distribution
Nno noisy
Rainbow

'''''''''
ar”

100%

Median normalized score

0%

| 1 |
50 100 150 200
Millions of frames

» Imagine we have access to the internal state of the Atari simulator. Would
online planning (e.g., using MCTS), outperform the trained DQN policy?

Question

» Imagine we have access to the internal state of the Atari simulator. Would
online planning (e.g., using MCTS), outperform the trained DQN policy?

- With enough resources, yes.

- Resources = number of simulations (rollouts) and maximum
allowed depth of those rollouts.

- There is always an amount of resources when a vanilla MCTS (not
assisted by any deep nets) will outperform the learned with RL

policy.

» Then why we do not use MCTS with online planning to play Atari instead of
learning a policy?

» Then why we do not use MCTS with online planning to play Atari instead of
learning a policy?

- Because using vanilla (not assisted by any deep nets) MCTS is
very very slow, definitely very far away from real time game
playing that humans are capable of.

» If we used MCTS during training time to suggest actions using online
planning, and we would try to mimic the output of the planner, would we do
better than DQIN that learns a policy without using any model while playing
in real time?

» If we used MCTS during training time to suggest actions using online
planning, and we would try to mimic the output of the planner, would we do
better than DQIN that learns a policy without using any model while playing
in real time?

- That would be a very sensible approach!

Deep Learning for Real-Time Atari Game Play
Using Offline Monte-Carlo Tree Search Planning

Xiaoxiao Guo Satinder Singh
Computer Science and Eng. Computer Science and Eng.
University of Michigan University of Michigan
guoxiao@umich.edu bave ja@umich.edu
Honglak Lee Richard Lewis Xiaoshi Wang
Computer Science and Eng. Department of Psychology Computer Science and Eng.
University of Michigan University of Michigan University of Michigan

honglak@umich.edu rickl@umich.edu Xiaoshiw@umich.edu

Offline MCTS to train online fast reactive policies

« AlphaGo: train policy and value networks at training time, combine
them with MCTS at test time

 AlphaGoZero: train policy and value networks with MCTS in the
training loop and at test time (same method used at train and test
time)

« Offline MCTS: train policy and value networks with MCTS in the
training loop, but at test time use the (reactive) policy network,
without any lookahead planning.

Revision: Monte-Carlo Tree Search

1. Selection
-+ Used for nodes we have seen before
- Pick according to UCB
2. Expansion
- Used when we reach the frontier
-+ Add one node per playout
3. Simulation
-+ Used beyond the search frontier
 Don’t bother with UCB, just play randomly
4. Backpropagation
- After reaching a terminal node
- Update value and visits for states expanded in selection and expansion

Bandit based Monte-Carlo Planning, Kocsis and Szepesvari, 2006

Upper-Contidence Bound

Sample actions according to the following score:

parent node visits

v; + O X In(/V.

\ TV

tunable parameter

value estimate number of visits

*score is decreasing in the number of visits (explore)
* score is increasing in a node’s value (exploit)

- always tries every option once

Finite-time Analysis of the Multiarmed Bandit Problem, Auer, Cesa-Bianchi,
Fischer, 2002

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample(state)

winner = MCTS sample (next state)
else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)
Explored Tree

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase,

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase

else: Search Tree

1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++

1if all children of state expanded:
next state = UCB sample(state) Bandit—Baséd

winner = MCTS sample (next state) Phase
else: Search Tree
1f some children of state expanded:
next state = expand(random unexpanded child)
else: New Node
next state = state
winner = random playout (next state)

update value (state, winner)

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:

next state = UCB sample(state) Bandit—Baséd
winner = MCTS sample (next state)
else:

1f some children of state expanded:

next state = expand(random unexpanded child)
else: I
next state = state "\
winner = random playout (next state) Random ©
update value (state, winner) Phase
Explored Tree

function random playout (state):
if is terminal (state):
return winner
else: return random playout (random move (state))

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample (state)
winner = MCTS sample (next state)
else:
1f some children of state expanded:

next state = expand(random unexpanded
else:

next state = state
winner = random playout (next state)

update value (state, winner)

function random playout (state):
if is terminal (state):
return winner

else: return random playout (random move (state))

child)

Bandit—Based

Search Tree

New Node

l“
Random b

Phase

Explored Tree

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample (state)
winner = MCTS sample (next state)
else:
1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)

function random playout (state):
if is terminal (state):
return winner

else: return random playout (random move (state))

Bandit—Based

1“
Random b

Phase (\

Explored Tree

Search Tree

New Node

°

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample (state)
winner = MCTS sample (next state)
else:
1f some children of state expanded:

next state = expand(random unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)

function random playout (state):
if is terminal (state):
return winner

else: return random playout (random move (state))

Bandit—Based

1“
Random b

Phase (\

Search Tree

New Node

Basic MCTS pseudocode

function MCTS sample (state)
state.visits++
1if all children of state expanded:
next state = UCB sample(state)
winner = MCTS sample (next state)

else:
1f some children of state expanded:
next state = expand(random unexpanded
else:
next state = state
winner = random playout (next state)

update value (state, winner)

child)

Bandit—Based

l“
Random b

Phase (\

e
Explored Tree

Search Tree

New Node

S

|_earning from MCTS

» The MCTS agent plays against himself and generates (s, Q(s,a)) pairs. Use
this data to train:

» UCTtoRegression: A regression network, that given 4 frames

regresses to Q(s,a) for all actions

» UCTtoClassification: A classification network, that given 4 frames

predicts the best action through multiclass classification

» The state distribution visited using actions of the MCTS planner will not
match the state distribution obtained from the learned policy.

>

UCTtoClassification-Interleaved: Interleave UCTtoClassification
with data collection: Start from 200 runs with MCTS as before, train
UCTtoClassification, deploy it for 200 runs allowing 5% of the time a
random action to be sampled, use MCTS to decide best action for
those states, train UCTtoClassification and so on and so forth.

Results

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 5388(4.6) 215(6.69) 601(11) 19(0.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12) 143(6.7) 566(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent B.Rider Breakout Enduro Pong Q%*bert Seaquest S.Invaders
UCT 7233 406 788 21 18850 3257 2354

Results

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20) 1952 1705 581
-best 5184 223 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 5388(4.6) 215(6.69) 601(11) 19(0.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12) 143(6.7) 566(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent B.Rider Breakout Enduro Pong Q%*bert Seaquest S.Invaders
UCT 7233 406 788 21 18850 3257 2354

Online planning (without aided by any neural net!) outperforms DQN policy. It takes though ""a few
days on a recent multicore computer to play for each game”.

Results

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 5388(4.6) 215(6.69) 601(11) 19(0.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12) 143(6.7) 566(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent B.Rider Breakout Enduro Pong Q%*bert Seaquest S.Invaders

UCT 7233 406 788 21 18850 3257 2354

Classification is doing much better than regression! indeed, we are training for exactly what we care

about.

Results

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 5388(4.6) 215(6.69) 601(11) 19(0.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12) 143(6.7) 566(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent B.Rider Breakout Enduro Pong Q%*bert Seaquest S.Invaders
UCT 7233 406 788 21 18850 3257 2354

Interleaving is important to prevent mismatch between the training data and the data that the trained
policy will see at test time.

Results

Agent B.Rider Breakout Enduro Pong Q*bert Seaquest S.Invaders
DQN 4092 168 470 20 1952 1705 581
-best 5184 225 661 21 4500 1740 1075
UCC 5342 (20) 175(5.63) 558(14) 19(0.3) 11574(44) 2273(23) 672(5.3)
-best 10514 351 942 21 29725 5100 1200
-greedy 5676 269 692 21 19890 2760 680
UCC-1 5388(4.6) 215(6.69) 601(11) 19(0.14) 13189(35.3) 2701(6.09) 670(4.24)
-best 10732 413 1026 21 29900 6100 910
-greedy 5702 380 741 21 20025 2995 692
UCR 2405(12) 143(6.7) 566(10.2) 19(0.3) 12755(40.7) 1024 (13.8) 441(8.1)

Table 2: Performance (game scores) of the off-line UCT game playing agent.

Agent B.Rider Breakout Enduro Pong Q%*bert Seaquest S.Invaders
UCT 7233 406 788 21 18850 3257 2354

Results improve further if you allow MCTS planner to have more simulations and build more reliable Q
estimates.

Problem

Step 69: FIRE Step 70: DOWN+FIRE Step 74 DOWN<FIRE Step 75:RIGHI+FIRE Step 76:RIGHT+FIRE Step 78: RIGHT-FIRE Step 79:.DOWN+FIRE

We do not learn to save the divers. Saving 6 divers brings very high reward, but exceeds the depth of
our MCTS planner, thus it is ignored.

Question

» Why don’t we always use MCTS (or some other planner) as supervision for
reactive policy learning?

- Because in many domains we do not have access to the dynamics.

- In later lectures we will see how we will use online trajectory optimizers
which learn (linear) dynamics on-the-fly as supervisors

