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Logistics

Three homework assignments and a final project, 60%/40%

Final project: making progress on manipulating novel objects or
navigating simple mazes.

 Resources: AWS for those that do not have access to GPUs
« Lectures will be recorded and will be available inside CMU

* Prerequisites: email us if you have not taken the official
prerequisites but you equivalent of those

* Time conflicts
» People can audit the course, unless there are no seats left in class



Goal of the Course

How to build agents that to act and accomplish
specific goals in dynamic environments?

as opposed to agents that
execute

behaviors in a static
environment...




Motor control Is Important

The brain evolved, not to think or feel, but to
control movement,
Daniel Wolpert, nice TED talk

Daniel Wolpert: The real reason for brains | TED Talk | TED.com
https:/www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains ~



Motor control Is Important

The brain evolved, not to think or feel, but to
control movement,
Daniel Wolpert, nice TED talk

Sea squirts digest their own brain when they
decide not to move anymore



Learning to Act

Learning to map sequences of observations to actions
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observations: inputs from our sensor



L earning to Act

Learning to map sequences of observations to actions, for a
particular goal
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L earning to Act

Learning to map sequences of observations to actions, for a
particular goal
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Learning to Act

Learning to map sequences of observations to actions, for a

particular goal
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Learning to Act

https://youtu.be/H6Ah-Fa_R9c?t=17


https://youtu.be/H6Ah-Fa_R9c?t=17

Supervision

What supervision does an agent need to learn
purposeful behaviors in dynamic environments?

» BRewards: sparse feedback from the environment whether the desired goal is
achieved e.g., game is won, car has not crashed, agent is out of the maze etc.



Supervision

What supervision does an agent need to learn
purposeful behaviors in dynamic environments?

» BRewards: sparse feedback from the environment whether the desired goal is
achieved e.g., game is won, car has not crashed, agent is out of the maze etc.

Rewards can be intrinsic, i.e., generated by the agent
and guided by its curiosity as opposed to an external
task




Behavior: High Jump

SCISsors Fosbury flop

1. Learning from rewards

Reward: jump as high as possible: It took years for athletes to find the right behavior to
achieve this

2. Learns from demonstrations

It was way easier for athletes to perfection the jump, once someone showed the right
general trajectory

3. Learns from Specifications of optimal behavior

For novices, it is much easier to replicate this behavior if additional guidance is provided
based on specifications: where to place the foot, how to time yourself etc.



Learning to Act

How learning to act is different than other machine learning
paradigms, e.g., object detection?




Learning to Act

How learning to act is different than other machine
learning paradigms?

* The agent’s actions affect the data she will receive
in the future



observation action

A,




Learning to Act

How learning behaviors is different than other
machine learning paradigms?

» The agent’s actions affect the data she will

receive in the future:

- The data the agent receives are sequential in nature, not i.i.d.

 Standard supervised learning approaches lead to compounding errors, An
invitation to imitation, Drew Bagnell



Learning to Drive a Car: Supervised Learning

Expert Trajectories
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Learning to Drive a Car: Supervised Learning




Learning to Drive a Car: Supervised Learning

Supervised Learning
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Learning to Drive a Car: Supervised Learning
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Supervised Learning



Learning to Drive a Car: Supervised Learning

Compounding errors



Learning to Race a Car : Interactive learning-DAGGer

Execute &, and Query Expert

Steering sm—

from expert S *Eﬂ"‘e\
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Learning to Race a Car : Interactive learning-DAGGer
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Learning to Race a Car : Interactive learning-DAGGer
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Learning to Race a Car : Interactive learning-DAGGer

This assumes you can actively access an expert during training!
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Supervised Learning

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
Stephane Ross, Geoffrey J. Gordon, J. Andrew Bagnell


https://arxiv.org/find/cs/1/au:+Ross_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Gordon_G/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Bagnell_J/0/1/0/all/0/1

Learning to Drive a Car: Supervised Learning

[ Left camera ] [Center camera] [Right camera]

Steering wheel angle
(via CAN bus)

External solid-state
drive for data storage

NVIDIADRIVE™ PX

End to End Learning for Self-Driving Cars, NVIDIA, 2016



Learning to Act

How learning behaviors is different than other
machine learning paradigms?

1) The agent’s actions affect the data she will receive
in the future

2) The reward (whether the goal of the behavior is

achieved) is far in the future:

= Temporal credit assignment: which actions were important and which were
not, is hard to know



Learning to Act

How learning behaviors is different than other
machine learning paradigms?

1) The agent’s actions affect the data she will receive
in the future

2) The reward (whether the goal of the behavior is

achieved) is far in the future:

= Temporal credit assignment: which actions were important and which were
not, is hard to know

But wait! isn’t it the same with object detection??
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Learning to Act

How learning behaviors is different than other
machine learning paradigms?

1) The agent’s actions affect the data she will receive
in the future

2) The reward (whether the goal of the behavior is

achieved) is far in the future:

= Temporal credit assignment: which actions were important and which were
not, is hard to know

But wait! isn’t it the same with object detection??

No: here the horizon involves acting in the environment, rather
than going from one neural layer to the next, we cannot apply
chain rule to propagate the rewards backwards..



L earning to Act

How learning behaviors is different than other
machine learning paradigms?

1) The agent’s actions affect the data she will receive
in the future

2) The reward (whether the goal of the behavior is
achieved) is far in the future:

3) Actions take time to carry out in the real world, and
thus this may limit the amount of experience
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1) The agent’s actions affect the data she will receive
in the future

2) The reward (whether the goal of the behavior is
achieved) is far in the future:

3) Actions take time to carry out in the real world, and
thus this may limit the amount of experience

- We can use simulated experience and tackle the sim2real transfer



L earning to Act

How learning behaviors is different than other
machine learning paradigms?

1) The agent’s actions affect the data she will receive
in the future

2) The reward (whether the goal of the behavior is
achieved) is far in the future:

3) Actions take time to carry out in the real world, and
thus this may limit the amount of experience

- We can use simulated experience and tackle the sim2real transfer
- We can have robots working 24/7



Supersizing Self-Supervision

Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot
Hours, Pinto and Gupta




L earning to Act

How learning behaviors is different than other
machine learning paradigms?

1) The agent’s actions affect the data she will receive
in the future

2) The reward (whether the goal of the behavior is
achieved) is far in the future:

3) Actions take time to carry out in the real world, and
thus this may limit the amount of experience

- We can use simulated experience and tackle the sim2real transfer
- We can have robots working 24/7
- We can buy many robots



Google’s Robot Farm
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We had fantastic simulators, with realistic
Physics and realistic visuals and tactile
sensing, and we could crowdsource tons
of demonstrations, would we solve the
problem them?



Successes so far



Backgammon




Backgammon

How is it different than chess?



Brute force manual development of a broad evaluation function



Backgammon
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High branching factor due to dice roll prohibits
brute force deep searches such as in chess




Backgammon

Neuro-Gammon

« Developed by Gerald Tesauro
iIn 1989 in IBM’s research

center

- Trained to mimic expert
demonstrations using
supervised learning

* Achieved intermediate-level
human player



Backgammon

TD-Gammon

- Developed by Gerald Tesauro in
1992 in IBM’s research center

A neural network that trains itself to
be an evaluation function by
playing against itself starting from
random weights

- Achieved performance close to top
human players of its time

Neuro-Gammon

« Developed by Gerald Tesauro

in 1989 in IBM’s research
center

- Trained to mimic expert

demonstrations using
supervised learning

« Achieved intermediate-level

human player



Evaluation function

Action selection
by a shallow search

bbb dbdbdbdt



elf-Driving Cars
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Selt-Driving Cars

/lt
Policy network 7T:
mapping of
observations to actions

C)t

30 Output
Units

30x32 Sensor
Input Retina

1989

ALVINN, an autonomous land vehicle in a neural

network

Dean A. Pomerleau
Carnegie Mellon University




Self-Driving Cars

Behavior Cloning: data augmentation to deal with compounding
errors, online adaptation (interactive learning)

ALVINN (Autonomous Land Vehicle In a Neural Network), Efficient Training of Artificial Neura
Networks for Autonomous Navigation, Pomerleau 1991



Selt-Driving Cars

Videocore
HDMI

. LPCM
. 1080p 24Hz

Computer Vision, Velodyne sensors, object detection, 3D pose estimation,

trajectory prediction




Self-Driving Cars

- Highway driving: solved problem
* Traffic jams, crowded intersection, complicated decision
making, rare situations



Deep Mind 2014+

Deep Q learning






AlphaGo

Monte Carlo Tree Search, learning policy and value function networks for pruning the
search tree, trained from expert demonstrations, self play



AlphaGo

Policy net trained to mimic
expert moves, and then fine-

Policy network Value network tuned using self-play
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Monte Carlo Tree Search, learning policy and value function networks for pruning the
search tree, trained from expert demonstrations, self play



AlphaGo

Policy net trained to mimic
expert moves, and then fine-

Policy network Value network tuned using self-play
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Monte Carlo Tree Search, learning policy and value function networks for pruning the
search tree, trained from expert demonstrations, self play



AlphaGo

Policy network Value network
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Policy net trained to mimic
expert moves, and then fine-
tuned using self-play

Value network trained with
regression to predict the
outcome, using self play data
of the best policy.

At test time, policy and value
nets guide a MCTS to select
stronger moves by deep look
ahead.

Monte Carlo Tree Search, learning policy and value function networks for pruning the

search tree, trained from expert demonstrations, self play



AlphaGo

Monte Carlo Tree Search, learning policy and value function networks for pruning the
search tree, expert demonstrations, self play, Tensor Processing Unit



Tensor Processing Unit from Google



AlphaGoZero

» No human supervision!
» MCTS to select great moves during training and testing!



AlphaGoZero
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AlphaGoZero
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AlphaGoZero

Elo rating

5,000 1
4,000 4
3,000 A
2,000 4

1,000 1

-1,000 A1
-2,000 1

-3,000 1

-4,000~

== Reinfcrcement learning
- Supervised learing
=== AlphaGo Lee
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Prediction accuracy
on prfessional moves (%)
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== Reinforcement learning
== Supervised learning
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- Reinforcement learning
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Alpha Go Versus the real world

Beating the world champion is easier than moving the Go stones.



Alpha Go Versus the real world

How the world of Alpha Go is different than the real world?

1. Known environment (known entities and dynamics) Vs
Unknown environment (unknown entities and
dynamics).

2. Need for behaviors to transfer across environmental
variations since the real world is very diverse

3. Discrete Vs Continuous actions

. One goal Vs many goals

5. Rewards automatic VS rewards need themselves to
be detected

N



Alpha Go Versus the real world

How the world of Alpha Go is different than the real
world?

1. Known environment (known entities and dynamics)
Vs Unknown environment (unknown entities and

dynamics).
2. Need for behaviors to transfer across environmental
variations since the real world is very diverse



Alpha Go Versus the real world

How the world of Alpha Go is different than the real

world?

1. Known environment (known entities and dynamics)
Vs Unknown environment (unknown entities and
dynamics).

2. Need for behaviors to transfer across environmental
variations since the real world is very diverse

State estimation: To be able to act you need first to be
able to see, detect the objects that you interact with,
detect whether you achieved your goal



State estimation

Most works are between two extremes:

» Assuming the world model known (object locations,
shapes, physical properties obtain via AR tags or manual
tuning), they use planners to search for the action
sequence to achieve a desired goal.

Rearrangement Planning via Heuristic Search, Jennifer E. King, Siddhartha S. Srinivasa



State estimation

Most works are between two extremes:

» Assuming the world model known (object locations,

shapes, physical properties obtain via AR tags or manual
tuning), they use planners to search for the action
sequence to achieve a desired goal.

» Do not attempt to detect any objects and learn to map
RGB images directly to actions
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Behavior learning is difficult because state estimation is diffi cult in Oﬁnd%rgnﬂe?rﬂ%?’sqf cause
Computer Vision is difficult.




Alpha Go Versus the real world

How the world of Alpha Go is different than the real world?

3. Discrete Vs Continuous actions

4. One goal Vs many goals

5. Rewards automatic VS rewards need themselves to
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detected
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How the world of Alpha Go is different than the real world?

3. Discrete Vs Continuous actions (curriculum learning,
progressively add degrees of freedom)

4. One goal Vs many goals (generalized policies
parametrized by the goal, Hindsight Experience Replay)

5. Rewards automatic VS rewards need themselves to be
detected



Alpha Go Versus the real world

How the world of Alpha Go is different than the real world?

3. Discrete Vs Continuous actions (curriculum learning,
progressively add degrees of freedom)

4. One goal Vs many goals (generalized policies
parametrized by the goal, Hindsight Experience Replay)

5. Rewards automatic VS rewards need themselves to be
detected (learning perceptual rewards, use Computer Vision

to detect success)



Alpha Go Versus the real world

Beating the world champion is easier than moving the Go stones.



Al's paradox

Hans Moravec

"It Is comparatively easy to make computers exhibit adult
level performance on intelligence tests or playing checkers,
and difficult or impossible to give them the skKills of a one-
year-old when it comes to perception and mobility”



Al's paradox

Marvin Minsky

"we're more aware of simple processes that don't work well
than of complex ones that work flawlessly"



Evolutionary explanation

Hans Moravec

We should expect the difficulty of reverse-engineering any
human skill to be roughly proportional to the amount of time that
Skill has been evolving in animals.

The oldest human skills are largely unconscious and so appear
to us to be effortless.

Therefore, we should expect skKills that appear effortless to be
difficult to reverse-engineer, but skills that require effort may not
necessarily be difficult to engineer at all.




What is Al?

intelligence was "best characterized as the
things that highly educated male scientists

found challenging”, such as chess, symbolic
integration,

proving mathematical theorems and solving
complicated word algebra problems.

Rodney Brooks


https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Symbolic_integration
https://en.wikipedia.org/wiki/Math
https://en.wikipedia.org/wiki/Theorem

What is Al?

intelligence was "best characterized as the
things that highly educated male scientists
found challenging”, such as chess, symbolic o
integration’ Rodney Brooks
proving mathematical theorems and solving

complicated word algebra problems.

"The things that children of four or five

years could do effortlessly, such as visually

distinguishing between a coffee cup and a

chair, or walking around on two legs, or

finding their way from their bedroom to the

living room were not thought of as activities

requiring intelligence.
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What is Al?

intelligence was "best characterized as the
things that highly educated male scientists
found challenging”, such as chess, symbolic o
integration Rodney Brooks
proving mathemat/ca/ theorems and solving

complicl,

The thill No cognition. Just sensing and action
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living room were not thought of as activities

requiring intelligence.


https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Symbolic_integration
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Learning from Bables

e Be multi-modal
* Be incremental
* Be physical

e Explore

* Be social

* [ earn a language

The Development of Embodied Cognition: Six Lessons from Babies
Linda Smith, Michael Gasser



