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Finite Markov Decision Process

A Finite Markov Decision Process is a tuple (S, A,T,r,)
S is a finite set of states
- A is a finite set of actions

* T" is a state transition probability function
T(s'|s,a) =P[S;11 = s'|S; = s, Ay = a
* T is a reward function
r(s,a) =E[Rs1|S: = s, A = a
* 7 is a discount factor v € [0, 1]



Definitions



Learning: the acquisition of knowledge or skills through experience, ,
or by being taught.

Planning: any computational process that uses a model to create or
iImprove a policy

Planning |
Model > Policy




This lecture

Computing value functions combining learning and
planning using Monte Carlo Tree Search

Computing value functions combining learning and planning in other ways will be revisited in later lectures



Moael

Anything the agent can use to predict how the
environment will respond to its actions, concretely,
the state transition T(s’|s,a) and reward R(s,a).

Ground-truth

this includes transitions of the state of the
environment and the state of the agent



Online Planning with Search

1. Build a search tree with the current state of the agent at the root

2. Compute value functions using simulated episodes (reward usually only on
final state, e.g., win or loose)

3. Select the next move to execute

4. Execute it

5. GOTO 1
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Why online planning”

Why don’t we learn a value function directly for every state offline, so that we
do not waste time online?

Because the environment has many many states (consider Go 107170,
Chess 1078, real world ....)

Very hard to compute a good value function for each one of them, most
you will never visit

Thus, condition on the current state you are in, try to estimate the value
function of the relevant part of the state space online

Focus your resources on sub-MDP starting from now, often dramatically
easier than solving the whole MDP




Curse of dimensionality

-+ The sub-MDP rooted at the current state the agent is in may still be very large
(too many states are reachable), despite much smaller than the original one.

- Too many actions possible: large tree branching factor
-+ Too many steps: large tree depth

| cannot exhaustively search the full tree



Curse of dimensionality

Consider hex on an NxN board.

branching factor € N?

2N = depth = N?

board size max branching factor min depth tree size | depth of 10"° nodes

X6 36 12 >10"7 7
8x8 64 16 >10”" 6
11x11 121 22 >10% o)
4

19x19 361 38 >10%

Goal of HEX: to make a connected line that
links two antipodal points of the grid




How to handle curse of dimensionality”?

Intelligent search instead of exhaustive search:

A. The depth of the search may be reduced by position evaluation:
truncating the search tree at state s and replacing the subtree below s by

an approximate value function v(s)=v*(s) that predicts the outcome from
state s.

B. The breadth of the search may be reduced by sampling actions from a

policy p(als) that is a probability distribution over possible moves a in
position s, instead of trying every action.



Position evaluation

We can estimate values for positions in two ways:
- Engineering them using human experts (DeepBlue)
- Learning them from self-play (TD-gammon)

Problems with human engineering:

tiring
non transferrable to other domains.

YET: that’s how Kasparov was first beaten.

http://stanford.edu/~cpiech/cs221/apps/deepBlue.html




Position evaluation using sampled rollouts

a.k.a. Monte Carlo

function MC BoardEval (state):
wins = 0
losses = 0
for 1=1:NUM SAMPLES
nexXxt state = state
while non termilinal (next state):

next state = random lecal move (next state)

s
Hh

next state.winner == state.turn: wins++

(D
i

21se: losses+t #needs slight modification if draws possible
return (wins - losses) / (wins + losses)

What policy shall we use to draw our simulations”
The cheapest one is random..



Monte-Carlo Position Evaluation in Go

V(s)=2/4=0.5 ‘e | Current position s
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Simplest Monte-Carlo Search

 Given a model M, , aroot state s_t, and a most of the times
random policy 7

 For each action a € A
Q(s_t,a) = MC_boardEval(s’), s'=T(s,a)

e Select root action:

a; = argmax (s, a)
acA



Simplest Monte-Carlo Search

« Given a model M, and a most of the times random policy 7
» For each action a € A

Simulate K episodes from current (real) state S:

k k k E1K
{8t7 a, Rt+17 St+17At—|—17 o0y ST}k;:1 ™~ Mwﬂ-

Evaluate action value function of the root by mean return

K
1
Q(st,a) = % ];Gt = Gr (5S¢, a)

e Select current (real) action with maximum value

a; = argmax ((s¢, a)
acA



Can we do better?

- Could we improve our simulation policy the more simulations we obtain?

- Yes we can. We can keep track of action values Q not only for the root
but also for nodes internal to a tree we are expanding!

In MCTS the simulation policy improves

- How should we select the actions inside the tree?

- This doesn’t work:  a; = argmax (s, a)
ac A

Why?



K-armed Bandit Problem

You are faced repeatedly with a choice among k different options, or actions.
After each choice you receive a numerical reward chosen from a stationary
probability distribution that depends on the action you selected. Your

objective is to maximize the expected total reward over some time period, for
example, over 1000 action selections, or time steps.

Each action has an expected reward:

Q*(a) — [E[Rt ‘At — CZ]

If we knew what it was, we would always pick the action with the highest
expected reward, obviously. Those g values is exactly what we care to estimate.

Note that the state is not changing...
that is a big difference than what we have seen so far...



K-armed Bandit Problem

You are faced repeatedly with a choice among k different options, or actions.
After each choice you receive a numerical reward chosen from a stationary
probability distribution that depends on the action you selected. Your

objective is to maximize the expected total reward over some time period, for
example, over 1000 action selections, or time steps.

Let Q.(a) denote our estimates of g* at time t.

There are two things we can do each time-step:
- Exploit: Pick the action with the highest
- Explore: Pick a different action

€ — greedy(Q) IS a simple policy that balances in some way exploitation/
exploration. However, it does not differentiate between suboptimal, clearly

suboptimal or marginally suboptimal actions, or actions that have been tried
often or not, and thus have unreliable Q values.



Upper-Contidence Bound

Sample actions according to the following score:

parent node visits

U T C; X

value estimate ‘

number of visits
tunable parameter

- score is decreasing in the number of visits (explore)

» score is increasing in a node’s value (exploit)

- always tries every option once



Monte-Carlo Tree Search

1. Selection
-+ Used for nodes we have seen before
- Pick according to UCB
2. Expansion
- Used when we reach the frontier
-+ Add one node per playout
3. Simulation
-+ Used beyond the search frontier
 Don’t bother with UCB, just play randomly
4. Backpropagation
- After reaching a terminal node
- Update value and visits for states expanded in selection and expansion



Monte-Carlo Tree Search

Basic MCTS pseudocode

function MCTS sample (state)

state.visitst+d
if all children of state expanded: The state is inside the tree

next state = UCB sample(state)
winner = MCTS sample (next state)
else: The state is in the frontier
1if some children c¢f state expanded:
next state = expand(random unexpanded child) expanskn1
else:
next state = state
winner = random playout (next state)

uedate value (state, winner)



Monte-Carlo Tree Search

MCTS helper functions

function UCB_sample (state): Sample actions based on UCB score
weights = []
for child of state:
w = child.value + C * sqgrt(ln(state.visits) / child.visits)
welghts.aopend (w)
distribution = [w / sum(weights) for w in weights]

return child sampled according to distribution

functicn random playout (state) :
if is terminal (state) : lJnrO””19
refturn winner

else: return random playout (random move (state))



Monte-Carlo Tree Search

MCTS helper functions

function expand (state):

state.visits =

state.value = 0

function uvdate value(state, winner):

if winner == state.turn:
state.value += 1

state.value -= 1



Basic MCTS pseudocode

function MCTS sample (state)
state.visitst+i
1if all children c¢f state expanded:

next state = UCB sample(state)
winner = MCTS sample (next state)
else: Search Tree

if some children of state expanded:
next state = expand(randeom unexpanded child)
else:
next state = state
winner = random playout (next state)
update value (state, winner)
Explored Tree




Basic MCTS pseudocode

function MCTS sample (state)
state.visitst+i
1if all children c¢f state expanded:

next state = UCB sample(state) Bandit—Baséd

winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state expanded:

next state = expand(randeom unexpanded child)
else:

next state = state
winner = random playout (next state)

update value (state, winner)
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Basic MCTS pseudocode

function MCTS sample (state)
state.visits+i
1if all children c¢f state expanded:

next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase
else: Search Tree

if some children of state expanded:

next state = expand(random unexpanded child)

else: New Node
next state = state

winner = random playout (next state)

update value (state, winner)




Basic MCTS pseudocode

function MCTS sample (state)

state.visits+i

1if all children c¢f state expanded:
next state = UCB sample(state) Bandit—Baséd
winner = MCTS sample (next state)

else:

if some children of state expanded:

next state = expand(randem unexpanded child)

else: I
next state = state "\
winner = random playout (next state) Random
update value(state, winner) Phase
Explored Tree

functicn random playout (state) :
if is terminal (state) :
return winner

else: return random playout (random move (state))
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Basic MCTS pseudocode

function MCTS sample (state)
state.visits+i

1if all children c¢f state expanded:
next state = UCB sample(state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state expanded:

next state = expand(randem unexpanded child)

else: & New Node
next state = state \
winner = random playout (next state) Random
update value (state, winner) Pmme(\
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functicn random playout (state) :
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Basic MCTS pseudocode

function MCTS sample (state)
state.visitsti
1if all children c¢f state expanded:

next state = UCB sample(state) Bandit—Baséd
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state expanded:

next state = expand(randem unexpanded child)

else: 4| New Node
next state = state "\
_ o
winner = random playout (next state) Rmmbnu’
Phase |

update value (state, winner)

functicn random playout (state) :
if is terminal (state) :
return winner

else: return random playout (random move (state))



Basic MCTS pseudocode

function MCTS sample (state)
state.visits+i
1if all children c¢f state expanded:

next state = UCB sample(state) Bandit—Baséed
winner = MCTS sample (next state) Phase

else: Search Tree

if some children of state expanded:

next state = expand(randeom unexpanded child)

else: & New Node
next state = state R
winner = random playout (next state) Random
update value (state, winner) Pmme(\
Explored Tre; "R




Can we do better?

Can we inject prior knowledge into value functions to be estimated and
actions to be tried, instead of initializing uniformly?



AlphaGo: Learning-guided MCTS

- Value neural net to evaluate board positions
- Policy neural net to select moves
- Combine those networks with MCTS

Policy network Value network
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AlphaGo: Learning-guided search

1. Train two action policies, one cheap (rollout) policy Prand one expensive policy Pg by
mimicking expert moves (standard supervised learning).

2. Then, train a new policy pp with RL and self-play p initialized from SL policy.
3. Train a value network that predicts the winner of games played by pp against itself.

Rollout policy SL policy network RL policy network Value network
pa
p..'z p(;’ p/) lrb 8
g
-
o
=
X m S
x
O
]
QL

Human expert positions Self-play positions



Supervised learning of policy networks

- Objective: predicting expert moves
- Input: randomly sampled state-action pairs (s, a) from expert games
- Output: a probability distribution over all legal moves a.

Policy network

SL policy network: 13-layer policy
network trained from 30 million Py fls)
positions. The network predicted

expert moves on a held out test

W
set with an accuracy of 57.0% L 's
using all input features, and 55.7% :
using only raw board position and -

move history as inputs, compared
to the state-of-the-art from other
research groups of 44.4%.




Reinforcement learning of policy networks

- Objective: improve over SL policy

- Weight initialization from SL network

- Input: Sampled states during self-play

- Qutput: a probability distribution over all legal moves a.

Rewards are provided only at the end of
the game, +1 for winning, -1 for loosing

Policy network

pp (als)

dlog p (a;|s;)
Apox g[f, (| Ss .
dp

The RL policy network won more than 80%
of games against the SL policy network.



Reinforcement learning of value networks

- Obijective: Estimating a value function v.(s) that predicts the outcome from
position s of games played by using RL policy p for both players (in
contrast to min-max search)

- Input: Sampled states during self-play, 30 million distinct positions, each
sampled from a separate game, played by the RL policy against itself.

* Output: a scalar value

Value network

v (8)
<>

Trained by regression on state-outcome pairs (s, z) to
minimize the mean squared error between the predicted
value v(s), and the corresponding outcome z.




MCTS + Policy/ Value networks

Selection: selecting actions within the expanded tree

1oL Tree policy
maY\, Q+u(P ar = argmax,(Q(st, a) + u(st, a))
1= »
i e P(s
h?‘ H u(s, a) o 1 (;3’ 2)
Q + ulP) max + 4 (S? a.)
¢

a, - action selected at time step t from board s.

Q(s, a) - average reward collected so far from MC simulations

P(s, a) - prior expert probability of playing moving a provided by SL policy
N(s, a) - number of times we have visited parent node

u acts as a bonus value
o Decays with repeated visits



MCTS + Policy/ Value networks

EXpansion: when reaching a leaf, play the action with highest score from &,

|
R e =

_._*_.H

1
- e -
- ‘ :

()
N\

e When leaf node is reached, it has a chance to be expanded
o Processed once by (P,) and stored as prior probs F(s, a)
e Pick child node with highest prior prob



MCTS + Policy/ Value networks

Simulation/Evaluation: use the rollout policy to reach to the end of the game

- From the selected leaf node, run
multiple simulations in parallel
using the rollout policy

- Evaluate the leaf node as:

5 T®

e v, -value from value function of board position s,
e z - Reward from P,

| |
- = Played until terminal step
r e A -mixing parameter
o Empirical

|
|
]
!
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MCTS + Policy/ Value networks

Backup: update visitation counts and recorded rewards for the chosen path
inside the tree:

M’\

) 8
/ .
)

]
) ((88) (38

Tl
N(s,a) = Z 1(s,a,z)
1=1

. L e e
Q(s,a) = N5, a) Z; 1(s,a,2)V(s7)

e Extra index i is to denote the 7 simulation, n total simulations
e Update visit count and mean reward of simulations passing through node

e Once search Completes:
Algorithm chooses the most visited move from the root position



AlphaGoZero: Lookahead search during training!

-+ So far, look-ahead search was used for online planning at test time!

- AlphaGoZero uses it during training instead, for improved exploration
during self-play

- AlphaGo trained the RL policy using the current policy network poand a

randomly selected previous iteration of the policy network as opponent
(for exploration).

- The intelligent exploration in AlphaGoZero gets rid of need for human
supervision.



AlphaGoZero: Lookahead search during training!

- Given any policy, a MCTS guided by this policy will produce
an improved policy (policy improvement operator)

- Train to mimic such improved policy



MCTS as policy improvement operator

- Train so that the policy network
mimics this improved policy
- Train so that the position

evaluation network output

matches the outcome (same as
in AlphaGo)




no MC rollouts till termination

a Select b Expand and evaluate € Backup d Play

Repeat )

23 e 2 it
LU AN FANE o o
| P/ \P | Q /' \ N 1

B e (4) e

Ny "

MCTS: using always value net evaluations of leaf nodes, no rollouts!



Architectures
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Architectures
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Elo rating
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