
Monte Carlo Tree Search

Deep Reinforcement Learning and Control

Katerina Fragkiadaki

Carnegie Mellon
School of Computer Science

CMU 10703

Part of slides inspired by Sebag, Gaudel

A Finite Markov Decision Process is a tuple

• is a finite set of states

• is a finite set of actions

• is a state transition probability function  

• is a reward function  

• is a discount factor

Finite Markov Decision Process

�

r(s, a) = E[Rt+1|St = s,At = a]

r

T

T (s0|s, a) = P[St+1 = s0|St = s,At = a]

A

S

(S,A, T, r, �)

� 2 [0, 1]

Definitions

Definitions

Planning: any computational process that uses a model to create or
improve a policy

Model Policy
Planning

Learning: the acquisition of knowledge or skills through experience, study,
or by being taught.

What can I learn by interacting with the world?

Computing value functions combining learning and
planning using Monte Carlo Tree Search

This lecture

Computing value functions combining learning and planning in other ways will be revisited in later lectures

Model

s

a
s0

r

Lecture 8: Integrating Learning and Planning

Introduction

Model-Free RL

state

reward

action

At

Rt

St

Anything the agent can use to predict how the
environment will respond to its actions, concretely,
the state transition T(s’|s,a) and reward R(s,a).

this includes transitions of the state of the
environment and the state of the agent

Ground-truth

Online Planning with Search
1. Build a search tree with the current state of the agent at the root

2. Compute value functions using simulated episodes (reward usually only on
final state, e.g., win or loose)

3. Select the next move to execute

4. Execute it

5. GOTO 1

Lecture 8: Integrating Learning and Planning

Simulation-Based Search

Forward Search

Forward search algorithms select the best action by lookahead
They build a search tree with the current state st at the root
Using a model of the MDP to look ahead

T! T! T! T!T!

T! T! T! T! T!

st

T! T!

T! T!

T!T! T!

T! T!T!

No need to solve whole MDP, just sub-MDP starting from now

Why online planning?
Why don’t we learn a value function directly for every state offline, so that we
do not waste time online?
• Because the environment has many many states (consider Go 10^170,

Chess 10^48, real world ….)
• Very hard to compute a good value function for each one of them, most

you will never visit
• Thus, condition on the current state you are in, try to estimate the value

function of the relevant part of the state space online
• Focus your resources on sub-MDP starting from now, often dramatically

easier than solving the whole MDP

Any problems with online tree search?

Curse of dimensionality

• The sub-MDP rooted at the current state the agent is in may still be very large
(too many states are reachable), despite much smaller than the original one.

• Too many actions possible: large tree branching factor
• Too many steps: large tree depth

I cannot exhaustively search the full tree

Curse of dimensionality

Goal of HEX: to make a connected line that
links two antipodal points of the grid

How to handle curse of dimensionality?

Intelligent search instead of exhaustive search:
A. The depth of the search may be reduced by position evaluation:

truncating the search tree at state s and replacing the subtree below s by
an approximate value function v(s)=v*(s) that predicts the outcome from
state s.

B. The breadth of the search may be reduced by sampling actions from a
policy p(a|s) that is a probability distribution over possible moves a in
position s, instead of trying every action.

Position evaluation
We can estimate values for positions in two ways:
• Engineering them using human experts (DeepBlue)
• Learning them from self-play (TD-gammon)

Problems with human engineering:
• tiring
• non transferrable to other domains.

YET: that’s how Kasparov was first beaten.

http://stanford.edu/~cpiech/cs221/apps/deepBlue.html

Position evaluation using sampled rollouts
 a.k.a. Monte Carlo

What policy shall we use to draw our simulations?
The cheapest one is random..

Monte-Carlo Position Evaluation in Go
Lecture 8: Integrating Learning and Planning

Simulation-Based Search

MCTS in Go

Monte-Carlo Evaluation in Go

Current position s

Simulation

 1 1 0 0 Outcomes

V(s) = 2/4 = 0.5

• Given a model , a root state s_t, and a most of the times
random policy

• For each action

• Q(s_t,a) = MC_boardEval(s’), s’=T(s,a)

• Select root action:

Simplest Monte-Carlo Search

M⌫
⇡

a 2 A

at = argmax

a2A
Q(st, a)

• Given a model and a most of the times random policy

• For each action

• Simulate episodes from current (real) state :

• Evaluate action value function of the root by mean return

• Select current (real) action with maximum value

Simplest Monte-Carlo Search

M⌫ ⇡

a 2 A
K s

Q(st, a) =
1

K

KX

k=1

Gt
P�! q⇡(st, a)

at = argmax

a2A
Q(st, a)

{st, a, Rk
t+1, S

k
t+1, A

k
t+1, ..., S

k
T }Kk=1 ⇠ M⌫ ,⇡

Can we do better?

• Could we improve our simulation policy the more simulations we obtain?
• Yes we can. We can keep track of action values Q not only for the root

but also for nodes internal to a tree we are expanding!

In MCTS the simulation policy improves

• How should we select the actions inside the tree?

at = argmax

a2A
Q(st, a)• This doesn’t work:

Why?

K-armed Bandit Problem
You are faced repeatedly with a choice among k different options, or actions.
After each choice you receive a numerical reward chosen from a stationary
probability distribution that depends on the action you selected. Your
objective is to maximize the expected total reward over some time period, for
example, over 1000 action selections, or time steps.

Each action has an expected reward:

q*(a) = 𝔼[Rt |At = a]

If we knew what it was, we would always pick the action with the highest
expected reward, obviously. Those q values is exactly what we care to estimate.

Note that the state is not changing…
that is a big difference than what we have seen so far…

K-armed Bandit Problem

There are two things we can do each time-step:
• Exploit: Pick the action with the highest
• Explore: Pick a different action

Let Qt(a) denote our estimates of q* at time t.

You are faced repeatedly with a choice among k different options, or actions.
After each choice you receive a numerical reward chosen from a stationary
probability distribution that depends on the action you selected. Your
objective is to maximize the expected total reward over some time period, for
example, over 1000 action selections, or time steps.

 is a simple policy that balances in some way exploitation/
exploration. However, it does not differentiate between suboptimal, clearly
suboptimal or marginally suboptimal actions, or actions that have been tried
often or not, and thus have unreliable Q values.

✏� greedy(Q)

Sample actions according to the following score:

• score is decreasing in the number of visits (explore)  

• score is increasing in a node’s value (exploit)  

• always tries every option once  

Upper-Confidence Bound

At = argmaxa []

1. Selection
• Used for nodes we have seen before
• Pick according to UCB

2. Expansion
• Used when we reach the frontier
• Add one node per playout

3. Simulation
• Used beyond the search frontier
• Don’t bother with UCB, just play randomly

4. Backpropagation
• After reaching a terminal node
• Update value and visits for states expanded in selection and expansion

Monte-Carlo Tree Search

Monte-Carlo Tree Search

The state is inside the tree

The state is in the frontier

expansion

Monte-Carlo Tree Search

unrolling

Sample actions based on UCB score

Monte-Carlo Tree Search

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I
Select next action

Bandit phase

I
Add a node

Grow a leaf of the search tree

I
Select next action bis

Random phase, roll-out

I
Compute instant reward

Evaluate

I
Update information in visited nodes

Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Can we do better?

Can we inject prior knowledge into value functions to be estimated and
actions to be tried, instead of initializing uniformly?

AlphaGo: Learning-guided MCTS

• Value neural net to evaluate board positions
• Policy neural net to select moves
• Combine those networks with MCTS

AlphaGo: Actions Policies

1. Train two action policies, one cheap (rollout) policy and one expensive policy by
mimicking expert moves (standard supervised learning).

2. Then, train a new policy with RL and self-play initialized from SL policy.
3. Train a value network that predicts the winner of games played by against itself.

AlphaGo: Learning-guided search

pπ pσ

pρ pσ
pρ

Supervised learning of policy networks

• Objective: predicting expert moves
• Input: randomly sampled state-action pairs (s, a) from expert games
• Output: a probability distribution over all legal moves a.

SL policy network: 13-layer policy
network trained from 30 million
positions. The network predicted
expert moves on a held out test
set with an accuracy of 57.0%
using all input features, and 55.7%
using only raw board position and
move history as inputs, compared
to the state-of-the-art from other
research groups of 44.4%.

pσ

Reinforcement learning of policy networks
• Objective: improve over SL policy
• Weight initialization from SL network
• Input: Sampled states during self-play
• Output: a probability distribution over all legal moves a.

Rewards are provided only at the end of
the game, +1 for winning, -1 for loosing

The RL policy network won more than 80%
of games against the SL policy network.

pρ

Reinforcement learning of value networks

• Objective: Estimating a value function vp(s) that predicts the outcome from
position s of games played by using RL policy p for both players (in
contrast to min-max search)

• Input: Sampled states during self-play, 30 million distinct positions, each
sampled from a separate game, played by the RL policy against itself.

• Output: a scalar value

Trained by regression on state-outcome pairs (s, z) to
minimize the mean squared error between the predicted
value v(s), and the corresponding outcome z.

MCTS + Policy/ Value networks
Selection: selecting actions within the expanded tree

provided by SL policy

Tree policy

average reward collected so far from MC simulations

$
Expansion: when reaching a leaf, play the action with highest score from

MCTS + Policy/ Value networks

MCTS + Policy/ Value networks
Simulation/Evaluation: use the rollout policy to reach to the end of the game

• From the selected leaf node, run
multiple simulations in parallel
using the rollout policy

• Evaluate the leaf node as:

MCTS + Policy/ Value networks
Backup: update visitation counts and recorded rewards for the chosen path
inside the tree:

AlphaGoZero: Lookahead search during training!

• So far, look-ahead search was used for online planning at test time!
• AlphaGoZero uses it during training instead, for improved exploration

during self-play
• AlphaGo trained the RL policy using the current policy network pρ and a

randomly selected previous iteration of the policy network as opponent
(for exploration).

• The intelligent exploration in AlphaGoZero gets rid of need for human
supervision.

AlphaGoZero: Lookahead search during training!

• Given any policy, a MCTS guided by this policy will produce
an improved policy (policy improvement operator)

• Train to mimic such improved policy

MCTS as policy improvement operator

• Train so that the policy network
mimics this improved policy

• Train so that the position
evaluation network output
matches the outcome (same as
in AlphaGo)

MCTS: no MC rollouts till termination

MCTS: using always value net evaluations of leaf nodes, no rollouts!

Architectures

• Resnets help
• Jointly training the

policy and value
function using the
same main feature
extractor helps

• Lookahead
tremendously
improves the basic
policy

Architectures

• Resnets help
• Jointly training the

policy and value
function using the
same main feature
extractor helps

Separate policy/value nets Joint policy/value nets

RL VS SL

