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Abstract. Automated visual-tracking of cell populations in vitro using
phase contrast time-lapse microscopy is vital for quantitative, systematic
and high-throughput measurements of cell behaviors. These measure-
ments include the spatiotemporal quantification of migration, mitosis,
apoptosis, and cell lineage. This paper presents an automated cell track-
ing system that can simultaneously track and analyze thousands of cells.
The system performs tracking by cycling through frame-by-frame track
compilation and spatiotemporal track linking, combining the power of
two tracking paradigms. We applied the system to a range of cell popula-
tions including adult stem cells. The system achieved tracking accuracies
in the range of 83.8%–92.5%, outperforming previous work by up to 8%.

1 Introduction

Automated tracking of cell populations in vitro in time-lapse microscopy im-
ages can provide high-throughput spatiotemporal measurements of a range of
cell behaviors, including migration (translocation), mitosis (division), apoptosis
(death), and lineage (parent-daughter relations). This capability is valuable to
research in genomics, proteomics, stem cell biology, and tissue engineering.

Traditional approaches for tracking include tracking by detection and tracking
by model-evolution, each with its advantages and disadvantages. Recently, efforts
were made to combine the strengths of both approaches and mitigating against
their weaknesses [1]. The solution was to integrate four collaborative modules,
including: 1) cell detector, which detects and labels candidate cell regions in
the input image; 2) cell tracker, which propagates cell regions and identities
across frames; 3) motion filter, which performs motion prediction and filtering
using Kalman filter; and 4) track arbitrator, which manages the tracking task by
incoporating newly-entered cells, removing departed/dead cells, establishing cell
lineages, and recovering lost tracks. The system can track thousands of living
cells imaged with phase-contrast microscopy in realtime [1].

However, several limitations are inherent in the aforementioned tracking sys-
tem. First, all of its modules operate in a frame-by-frame manner. Hence, only
very limited spatiotemporal context is considered, hindering the capability in
handling complete or long term occlusions. Secondly, the track arbitrator mod-
ule makes immediate, hard decisions for each frame, precluding the possibility for
retrospective error detection and correction. Thirdly, the Kalman filter used for
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motion filtering is bound to use only one dynamic model, which is problematic
as the dynamics of cells vary frequently with time.

We propose an improved tracking system to address the above issues. Specif-
ically, we divide the track arbitrator into two submodules: track compiler and
track linker. Track compiler operates in a frame-by-frame manner and produces
intermediate tracking results called track segments. Track linker oversees the
entire tracking history and establishes final cell trajectories and lineages only
when enough information is available. We also adopt the interacting multiple
models (IMM) filter [2], which allows multiple dynamics models in parallel, and
was shown to be more biologically relevant than a Kalman filter [3]. We focus
on reliable long-term tracking of cell centroid locations and lineages. Accurate
segmentation of cell boundaries is a plus, but not the emphasis of this paper.

2 Methods

The proposed tracking system has five major modules (Fig. 1).

Fig. 1. System Overview

The trajectory of one cell may have multiple track segments. The system
associates each cell track segment with a unique positive-integer label n. We
identify each cell using the label of its first track segment. Let k = 0, . . . , K − 1
be the frame index. The cell regions in an image frame Ik(x, y) are represented
using a region labeling function ψk(x, y). Wherein ψk(x, y) = n if pixel (x, y)
is part of cell n, and ψk(x, y) = 0 if pixel (x, y) belongs to the background. To
initialize tracking, the system generates initial cell labeling ψ0(x, y) by running
the cell detector on the first frame I0(x, y). For each subsequent frame Ik(x, y):

Step 1: The cell detector classifies image pixels into cell (C) and background (B)
classes based on histograms learned off-line and updated online [1]. The output
is a binary map of cell regions, denoted ζk(x, y). Each connected foreground
component is considered a cell candidate in frame k.

Step 2: The cell tracker propagates cell region labeling ψk−1(x, y) from frame
k − 1 to frame k, denoted ψ∗

k(x, y), using a real-time level set method [4].

Step 3: The track compiler compares the output of the cell detector and cell
tracker, and take one of the following actions: to create a new or daughter track



Cell Population Tracking and Lineage Construction 297

segment, to update an existing track, or to terminate a track. Meanwhile, the
motion filter updates the cell motion state in frame k, and predicts its state for
frame k+1. The output includes the track segments, an updated region labeling
ψk(x, y), and updated cell and background histograms.

Step 4: The track linker examines all track segments up to frame k, and detects
whether two or more track segments may correspond to one cell. It attempts
to link track segments in the spatiotemporal image volume, and to form more
complete cell trajectories. The updated cell trajectories are fed back to the track
compiler for subsequent tracking in frame k + 1.

The following sections elaborate on the motion filter, track compiler, and track
linker. We refer readers to [1] for details on the other modules.

2.1 IMM Motion Filter

Suppose cell motion consists of a finite number of modes, each of which can
be described by a linear model with additive Gaussian noise. The IMM filter [2]
assumes that the transition between models is regulated by a finite state Markov
chain with probability pij of switching from model i to model j in successive
frames, where i, j ∈ {1, . . . , M} is the model index.

We define the state vector sn,k to be a concatenation of centroid locations
and mean intensities of cell n in frames k, k −1 and k −2, and the measurement
vector zn,k to consist of the measured centroid and mean intensity. We adopted
the random walk, first-order, and second-order linear extrapolation models given
in [3], and estimated the process and noise covariance matrices Qi and Ri by the
expectation maximization (EM) algorithm [5] utilizing three manually-tracked
sequences. The filtering cycle has two recursive stages: prediction and correction.

Prediction: Starting from M weights ρi
n,k−1, states ŝi

n,k−1 and covariances
Pi

n,k−1 from the previous iteration, we compute the mixed initial condition:
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n,k−1

)T
]

, (2)

where ρ
i|j
k−1 = pijρ

i
k−1/ρj

k|k−1, and ρj
k|k−1 =

∑
i pijρ

i
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Kalman filters to compute the state prediction ŝj
n,k|k−1 and covariance Pj

n,k|k−1.
The combined state and covariance predictions can be determined by:
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∑
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These are fed to the cell tracker to guide the level set evolution in frame k [1].
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Correction: Given the predicted states, covariances, and measurement zn,k

(Fig. 1), we use the Kalman filters to obtain the updated state ŝj
n,k and covari-

ance Pj
n,k. The likelihood that model j is activated in frame k is

λj
n,k = exp

[
−1

2
(yj

n,k)T (Sj
n,k)−1yj

n,k

]
/
√

2π det(Sj
n,k), (5)

where yj
n,k = (zn,k − ẑn,k|k−1) is the innovation of Kalman filter j, and Sj

n,k is
the associated covariance. Then, the combined state ŝn,k and covariance Pn,k

estimates can be computed by Equations (3) and (4), with ρj
n,k|k−1 replaced by

ρj
n,k = ρj

n,k|k−1λ
j
n,k/(

∑
i ρi

n,k|k−1λ
i
n,k).

To initialize the motion filter, the system tracks each cell without motion
filtering in the first three frames that it appears, and use the concatenation of
measurements in these frames as its initial state ŝn,0. We set the initial covariance
Pi

n,0 of model i to be the Kronecker product of a 3×3 identity matrix and Ri.

2.2 Track Compilation

The track compiler coordinates cell detector, cell tracker and motion filter to
produce track segments. We use Nk to denote the set of labels of all track
segments created up to frame k. A track segment is active in frame k if it was
successfully tracked in frame k−1, otherwise it becomes inactive. Let Ω0 denote
the background region, and Ωn denote the cell region with label n. An outline
of the track compilation algorithm is shown in Algorithm 1.

Algorithm 1. TrackCompilation
Ω0 ← {(x, y)|ψ∗

k(x, y) = 0}
1 foreach cell candidate ω ⊂ ζk do

if ω ⊂ Ω0 then AddTrack(nnew , k, ω)

2 foreach active track n ∈ Nk−1 do
Ωn ← {(x, y)|ψ∗

k(x, y) = n}
3 if Ωn = ∅ then DeactivateTrack(n)
4 else if IsDivided(Ωn) then

if IsMitotic(n, k) then
foreach connected component ω ⊂ Ωn do

AddDaughterTrack(ndaughter , n, k, ω)

else
5 ω∗ ←SelectBestMatch(n, k, Ωn)

UpdateTrack(n, k, ω∗)
foreach connected component ω ⊂ Ωn \ ω∗ do AddTrack(nnew , k, ω)

6 else UpdateTrack(n, k, Ωn)

The compiler first compares the output of the cell detector and cell tracker,
ζk(x, y) and ψ∗

k(x, y). Each cell candidate in ζk(x, y) that does not overlap with
any propagated cell region in ψ∗

k(x, y) is considered a new cell. A new track
segment will be initialized, and ψ∗

k(x, y) will be updated accordingly.
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Next, the algorithm scans through all active track segments, and deactivates
track segments whose labels are not found in the propagated region labeling
ψ∗

k(x, y). A track segment whose corresponding propagated cell region contains
only one connected component will be updated directly. If a cell region consists
of more than one well-separated connected components, the track compiler will
judge between two possibilities: 1) the cell divided into daughter cells; or 2) one
or more of these components are from occluded cells or close-by newly-entered
cells. The algorithm will either create daughter tracks or continue tracking using
the component that best matches the cell trajectory, depending on whether the
cell is previously detected to be mitotic.

Details of several key operations are as follow.
UpdateTrack(n, k, ω) updates the track segment n using the features of re-

gion ω, including centroid location, mean intensity, area, and eccentricity. We
feed the centroid and mean intensity to the motion filter to obtain a filtered
state of cell n in frame k. We use the last three features to classify a cell as nor-
mal, mitotic, or apoptotic, using nearest neighbor matching with Mahalanobis
distance to a set of training samples obtained off-line.

SelectBestMatch(n, k, Ωn) selects component ω∗ ∈ Ωn that best matches
the dynamics of cell n, i.e., the one which maximizes the innovation likelihood
given by Equation (5) among all dynamic models.

IsDivided(Ωn) returns true if region Ωn has multiple connected components,
and the minimum distance between any two points in different components is
greater than a preset threshold D. Otherwise, it returns false.

IsMitotic(n, k) determines if cell n is mitotic during the past T frames.

2.3 Track Linking

The track linker detects potential problems among all track segments up to frame
k based on two physical constraints: 1) a cell does not vanish unless it leaves
the field-of-view, dies and releases into the media, or is occluded; and 2) a cell
does not appear unless it enters from outside, is produced as a daughter cell, or
moves out of occlusion. The linker attempts to correct these problems by linking
track segments into complete cell trajectories using spatiotemporal context.

Algorithm 2 outlines the track linking algorithm. Wherein, Nlost denotes the
label set of track segments that ended before frame k, and Nfound is the label set
of track segments whose starting point is after frame 0. Most operations in the
algorithm are self-explanatory. One vital step of the algorithm is the matching
between lost and appeared track segments, MatchTracks (Line 5).

In MatchTracks, we first create a bipartite graph G, whose nodes corre-
spond to the labels in Nlost and Nfound. We construct the arcs of G as follows.
We create an arc 〈nl, nf〉 between node nl and node nf if the last centroid
(xl, yl, kl) of track nl is related to the first centroid (xf , yf , kf ) of track nf by√

(xl − xf )2 + (yl − yf )2 ≤ R, and |kl − kf | ≤ H/2, where H and R are user-
defined parameters. Each arc 〈nl, nf 〉 is assigned a weight wlf = λmax

nl,kf
(nf ),

which is the maximum innovation likelihood of track nl on the measurement of
track nf in frame kf (Eq. 5). Intuitively, wlf indicates how likely track nf is a
continuation of track nl based on the dynamics of nl.
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Algorithm 2. TrackLinking
Nlost,Nfound ← ∅

1 foreach track n ∈ Nk do
2 if IsShort(n, k) then DeleteTrack(n)
3 else if LostInField(n, k) then Add n to Nlost

4 else if FoundInField(n, k) then Add n to Nfound

5 MatchTracks(Nlost ,Nfound)
foreach (nl, nf ) ∈ (Nlost,Nfound) do

6 if IsMatched(nl, nf ) then MergeTrack(nl , nf )

Next, we obtain a maximum-likelihood matching between tracks nl and nf .
This correspond to selecting the subset of arcs in graph G with maximum total
weight, subject to the constraint that no two arcs share a common node. We
adopt the efficient Jonker-Volgenant (JV) algorithm [6]. Specifically, we define
a square cost matrix C with dimension d = max(|Nlost|, |Nfound|), where | · |
denotes the size of a set. The entry of the cost matrix C(l, f) equals 1 − wlf

if 〈nl, nf〉 ∈ G, or 1 otherwise. Taking C as input, the JV algorithm outputs a
minimum-cost column-to-row (or vise versa) assignment. Track segments nl and
nf are matched if column f is assigned to row l and C(l, f) < 1.

3 Experiments and Results

We quantitatively analyzed the performance of our system on two image se-
quences (A and B) of MG-63 osteosarcoma cells used previously in [1], and two
sequences (C and D) of proprietary amnion epithelial (AE) stem cells.

Sequences A and B were acquired with a 12-bit Qimaging Retiga EXi
Fast 1394 CCD camera mounted on a Zeiss Axiovert 135 TV microscope, at an
interval of 4 minutes/frame for 10 hours. Each sequence consists of 150 frames,
with 512×512 pixels/frame, and 1.9 μm/pixel at 4.9x magnification. The cells
were seeded randomly on a polystyrene dish.

Sequences C and D were acquired using the same protocol, aside from a
frame interval of 10 minutes/frame. Each sequence spans 42.5 hours, and consists
of 256 frames with 1280×1024 pixels/frame. The cell population is roughly 2000-
5000 cells/frame, and is nearly confluent towards the end.

A human operator manually tracked the cell centroids in Sequences A and
B, and two randomly-selected 256×256-pixel subregions in Sequences C and D,
respectively (Fig. 2). Only those cells that appear in the initial frame of each
sequence and their children were tracked. A cell trajectory is valid only if it
followed the same cell through all frames that the cell is visible. The operator
also manually identified all mitosis events. We compared the tracking results
produced by the current and the previous systems, as shown in Table 1.

We visually compared the current tracking results with those produced by
the previous system [1] for more than 30 sequences of AE stem cells. The new
system showed superior robustness in handling long-term occlusion and against
cell detection error. Fig. 3 shows an example where cell 116 is occluded by cell
47 in frame 36 and reappeared in frame 46. The new system (top row) correctly



Cell Population Tracking and Lineage Construction 301

Table 1. Tracking Accuracy Comparison

Trajectory Validity Division Tracking Correctness

Sequences Current Previous Current Previous
A 74/81 (91.4%) 70/81 (86.4%) 1/1 (100%) 1/1 (100%)
B 86/93 (92.5%) 82/93 (88.2%) 0/0 (N/A) 0/0 (N/A)
C 78/92 (84.8%) 70/92 (76.1%) 45/55 (81.8%) 43/55 (78.2%)
D 98/117 (83.8%) 90/117 (76.9%) 44/52 (84.6%) 41/52 (78.8%)

Fig. 2. Tracking results of AE cells in the subregion used for quantitative validation.
Left: original image. Middle: the image with cell trajectories overlaid. Red rectangles
indicate cells that were detected mitotic in the past T = 10 frames. Right: lineage map
for selected cells. Black squares indicate cell entrance or departure. Blue text shows
division time.

Fig. 3. Tracking AE cells through occlusion. Top row: The new system correcly
tracked cell 116, which was completely occluded by cell 47 and reappeared later.
Bottom row: Incorrect result was produced by the previous system, where cell 116
switched with cell 47 and was lost eventually. The numbers at the top-right corner
are the frame indices. The trailing curves represent cell trajectories. Different colors
represent different cell lineages.
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recovered the trajectory of cell 116 after occlusion, whereas the previous system
(bottom row) switched the identities of cells 47 and 116 in frame 16, detected a
false mitosis in frame 36, and eventually lost cell 47 after frame 36.

Another application of the tracking system that is valuable to stem cell re-
search is to automatically reconstruct cell lineage maps. We used the system to
construct the lineages for the whole population of AE cells. Fig. 2(c) shows a
sample set of the lineage trees with cells undergoing multiple divisions.

Our system (implemented in ISO C++) runs at an average speed of 90
frames/hour for tracking approximately 3000 cells in a 1280×1024 pixels/frame
image sequence on an Intel Xeon 2.66GHz workstation.

4 Conclusion and Future Work

We developed and validated an automated system capable of tracking thou-
sands of individual cells in dense cell populations in phase contrast microscopy
image sequences. The system incorporated spatiotemporal track linking and a
biologically relevant motion filter, and achieved performance boosts of up to
8% compared to its predecessor with nominal computational overhead. We plan
to incorporate more effective segmentation algorithms and graphical models to
cope with more complex intercellular interactions.
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