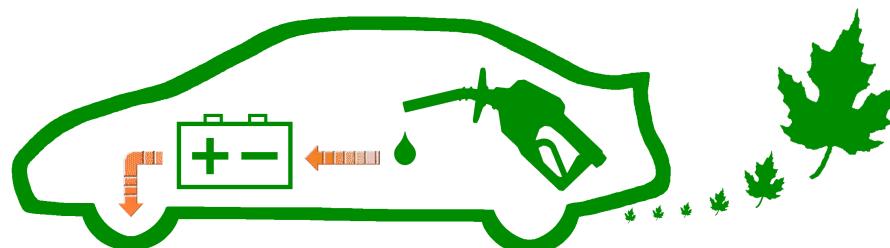


Hybrids Mixed Approaches

Jet Propulsion Laboratory
California Institute of Technology



Stephan Weiss
Computer Vision Group
NASA-JPL / CalTech

Stephan.Weiss@ieee.org

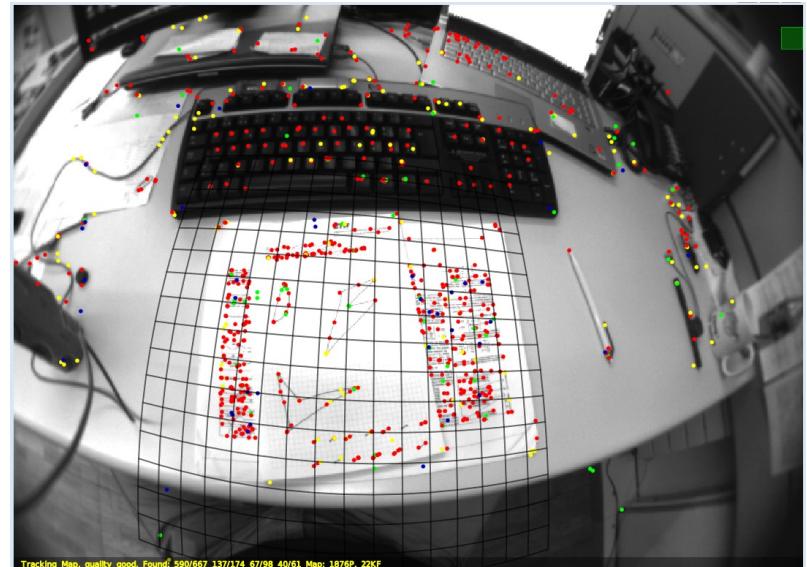
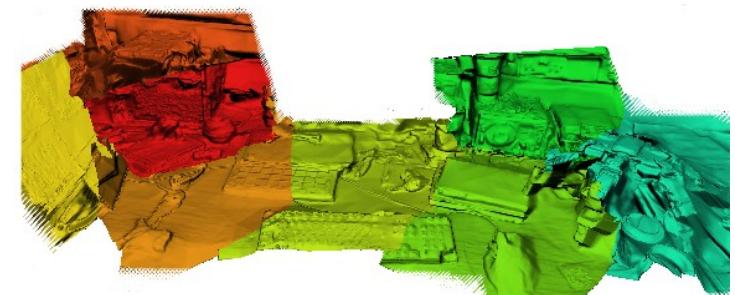
Outline

- Why mixing?
- Parallel Tracking and Mapping
 - Benefits and Issues
- Including Optical Flow
- Semi-Direct Visual Odometry
 - A dense'ish approach

PTAM, Klein & Murray ISMAR 2007

Why Mixing?

- Different approaches have different benefits
 - Mix to get “best” properties for specific application
- Visual odometry
 - Fast, easy to implement
 - Frame-to-frame VO drifts temporally
 - No notion of the past (i.e. visited places)
- SLAM
 - Full SLAM is globally consistent
 - Closes loops
 - Slow and more complex to implement
- Sparse and dense realizations
- For robotic applications:
 - Fast local pose information mostly is sufficient
 - Slow scale drift still is important



Newcombe & Davison CVPR 2010

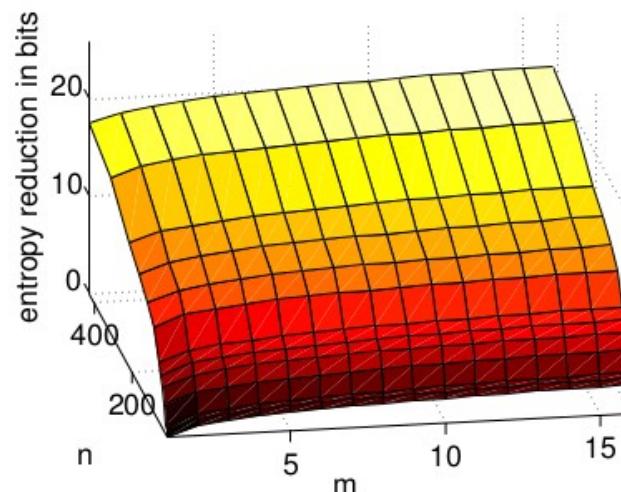
PTAM: A FAST SLAM approach

Jet Propulsion Laboratory
California Institute of Technology

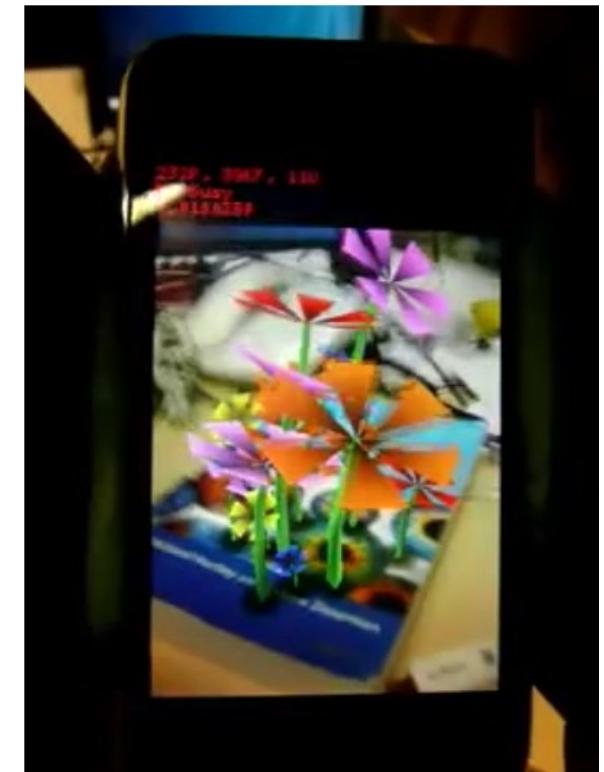
JPL

Parallel Tracking And Mapping (PTAM)

- Hybrid between BA, localization with known landmarks, and sparse VO
- Ran on a cell phone processor back in 2009
- Designed for small workspaces [Klein & Murray ISMAR 2007]
 - Reduced to windowed VO for large environments [Weiss et al. JFR 2013]
- Allows to track many features
 - Favorable over many camera poses



n=features, m=camera poses
[Strasdat et al. ICRA 2010]

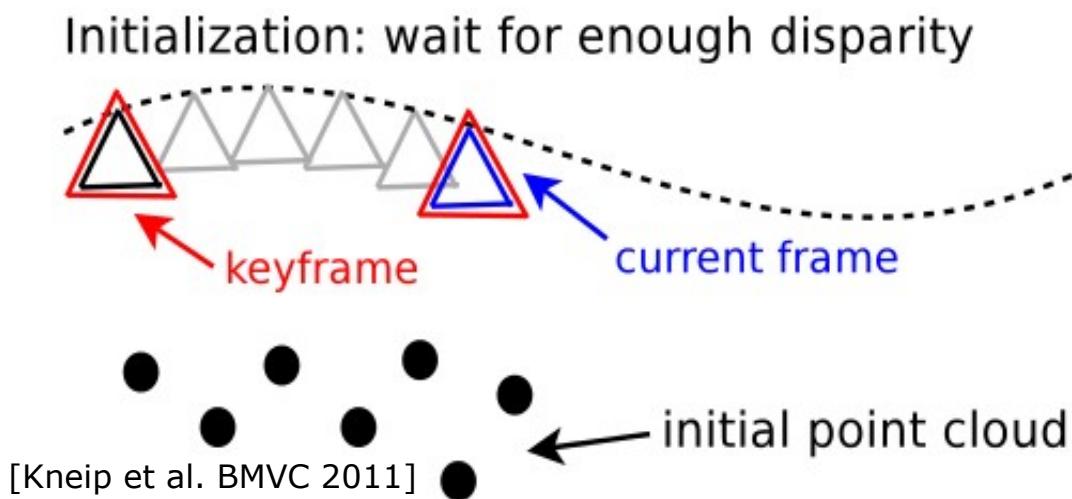


[Klein & Murray ISMAR 2009]

PTAM: A FAST SLAM approach

Parallel Tracking And Mapping (PTAM) [Klein & Murray ISMAR07]

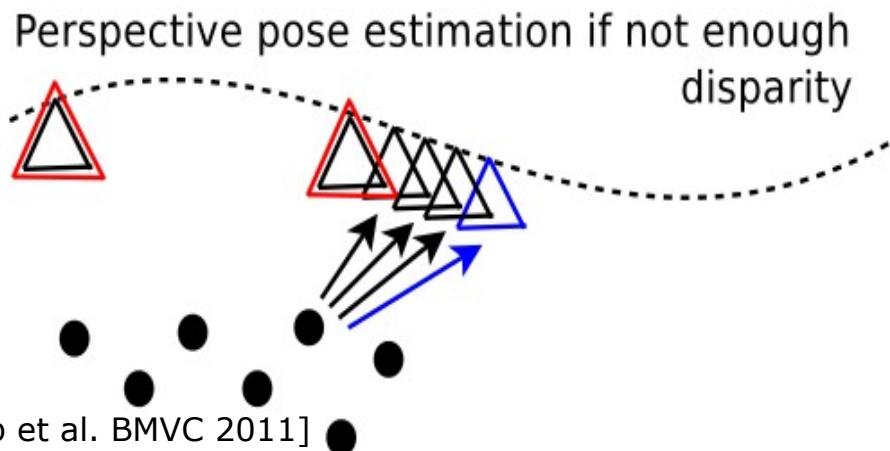
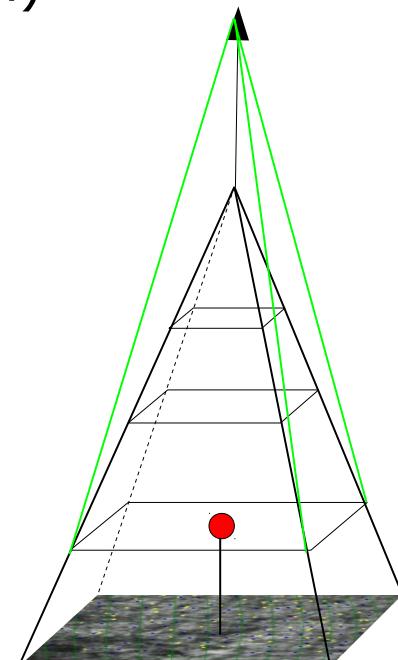
- BA part:
 - Optimizes specific camera frames: keyframes
 - Optimizes 3D features in map
 - Runs in a separate thread in the background
 - Continuously optimizes the “world” if resources are available
 - Initialization and feature map required: can fail!



PTAM: A FAST SLAM approach

Parallel Tracking And Mapping (PTAM) [Klein & Murray ISMAR07]

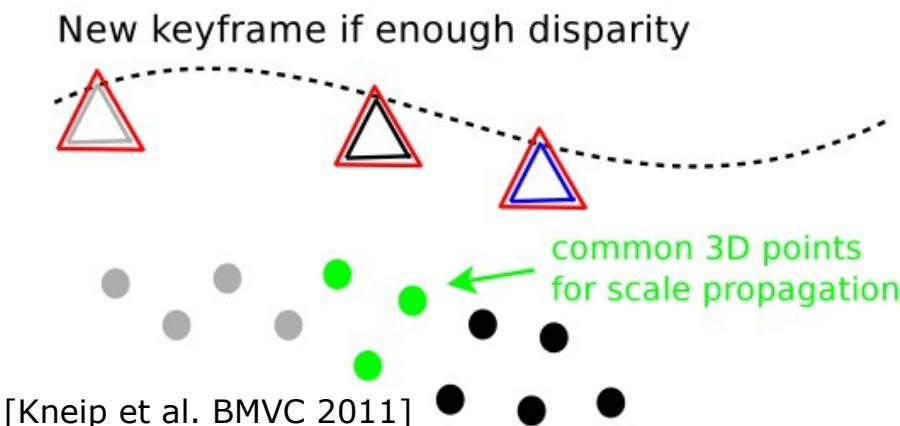
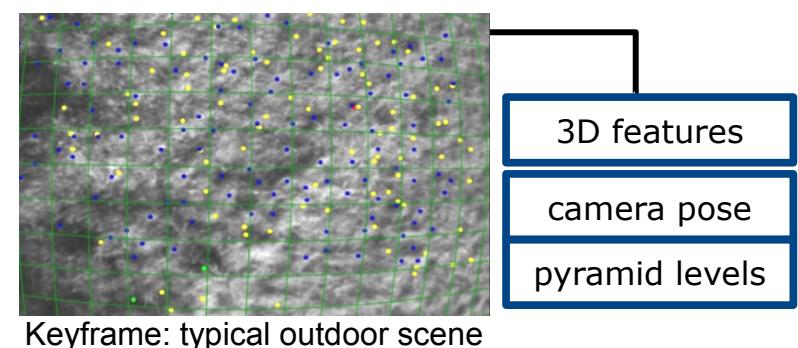
- Localization with known landmarks
 - Only use “known” map features for pose estimation
 - Very fast: p3p algorithm, separate thread in foreground
 - Does not drift over time
 - Tracking: robust against view point and scale change
 - Warp feature descriptors (still fast though)
 - Use different pyramidal levels



PTAM: A FAST SLAM approach

Parallel Tracking And Mapping (PTAM) [Klein & Murray ISMAR07]

- Visual odometry
 - Estimate R, T for first 2 keyframes: initialization
 - Add keyframe when entering unmapped area
 - Use epipolar constraint and motion model
 - Use known 3D points for scale propagation
 - Interleaves with tracking and mapping thread!



PTAM: From Small to Large Workspaces

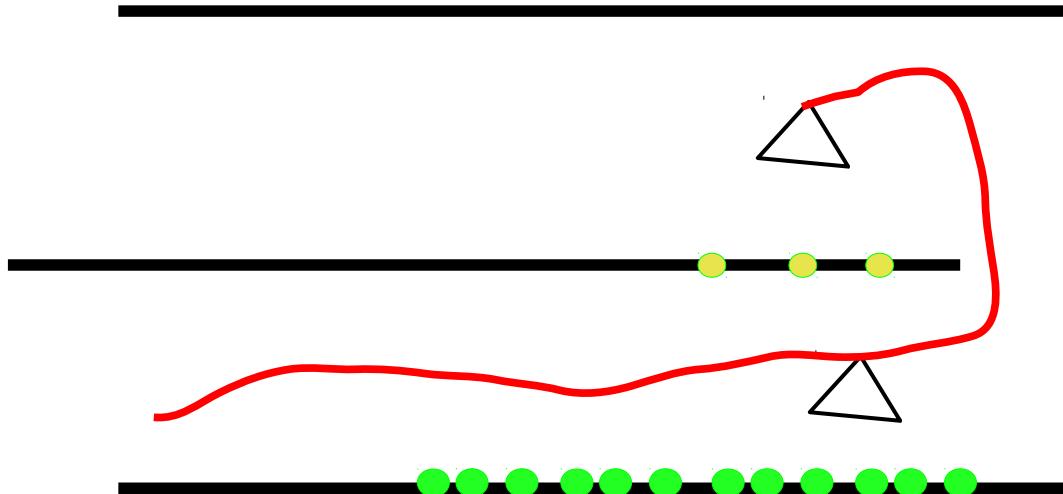
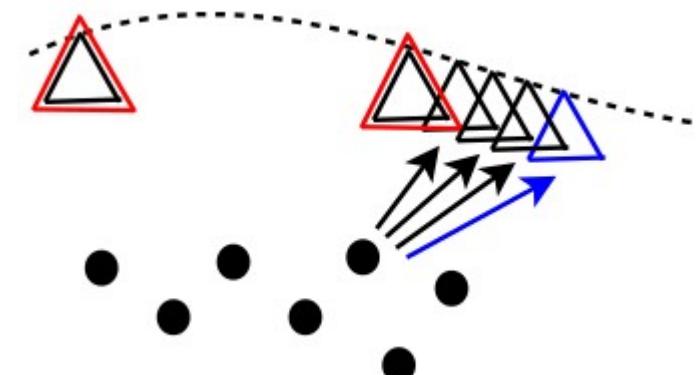
Jet Propulsion Laboratory
California Institute of Technology

JPL

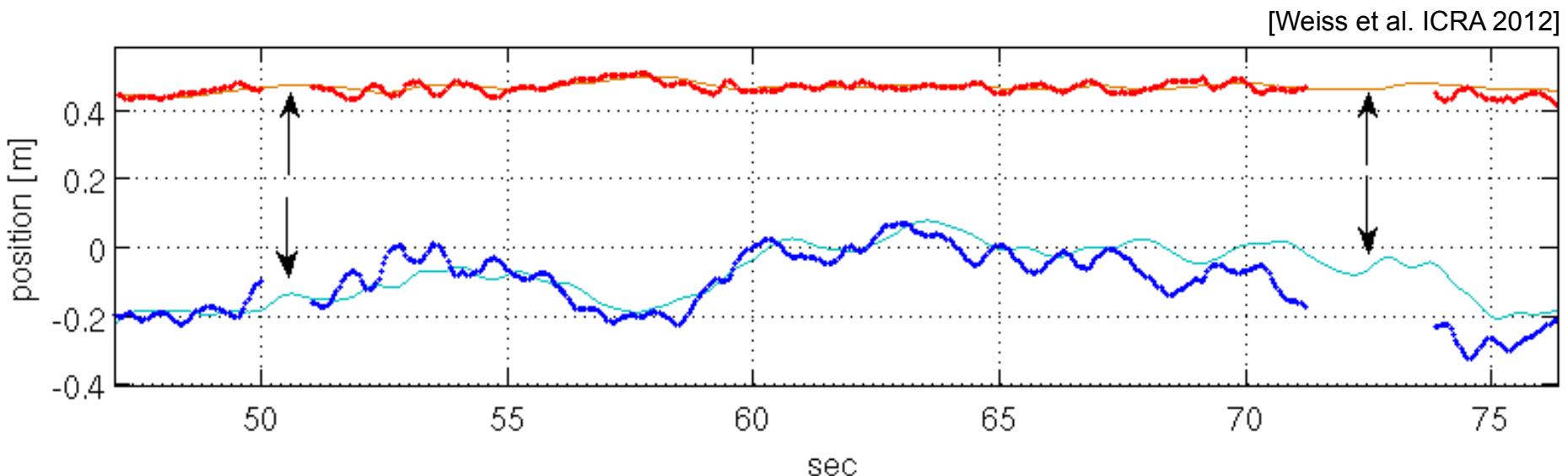
- Global BA is not tractable for large areas
 - Use local optimization/windowed techniques or iSAM2
 - Optimize local map with N closest key-frames
reduce algorithm to constant complexity
 - Introduces drifts: scale, position, attitude

[Weiss et al. JFR 2013]

- **Robot applications:** need pose information at any time
- BA part of PTAM generates known feature map
 - Needs 2-frame initialization
 - Can get corrupted/fail over time
 - How to determine if map is good? Re-initialization?
 - When to create a new keyframe?
- Non-Hybrid approaches:
 - Find global optimum or
 - Do not care about the past



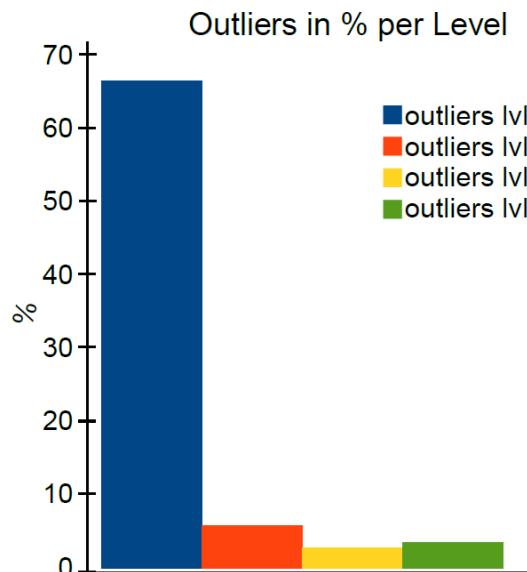
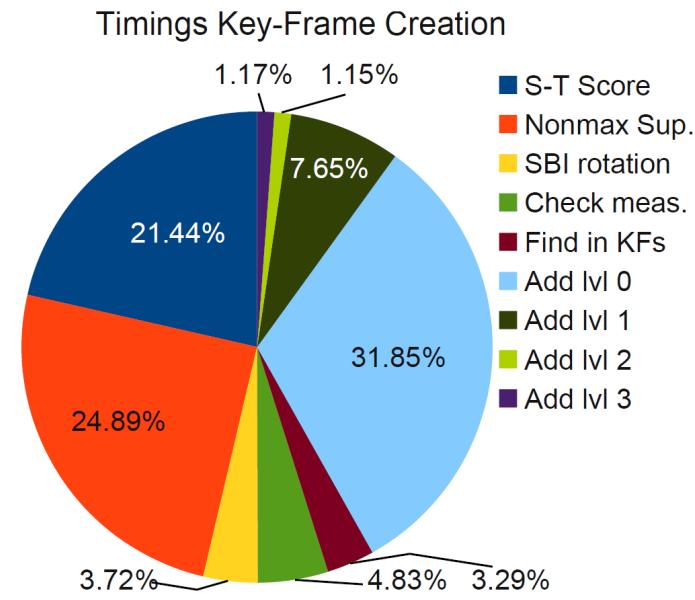
- Mitigate map failures by using a map free approach
 - Optical flow only needs 2 images, provides velocity
 - Combined with inertial cues (IOF) yields metric velocity (see morning lecture)
- Combination by separate algorithms, graph based or EKF based implementation (see morning lectures)



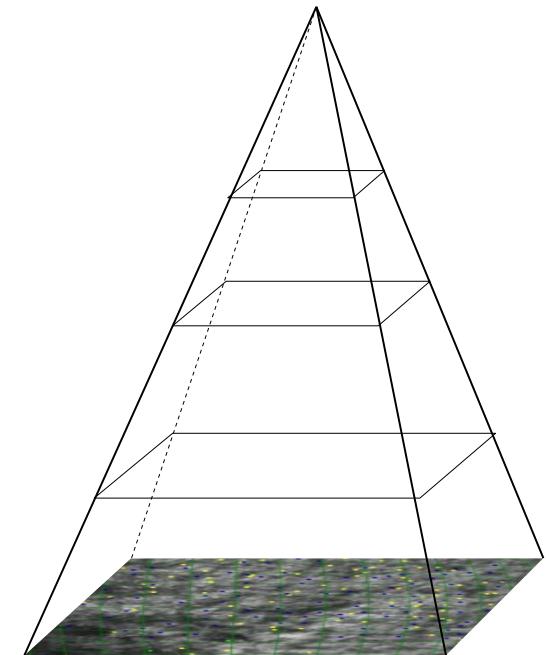
PTAM

Removing the Features

- Repetitive structures are difficult to disambiguate
- Motion blur can cause feature loss
- Example: PTAM outlier statistics
 - Critical at keyframe creation
 - Lot of computation power for outliers



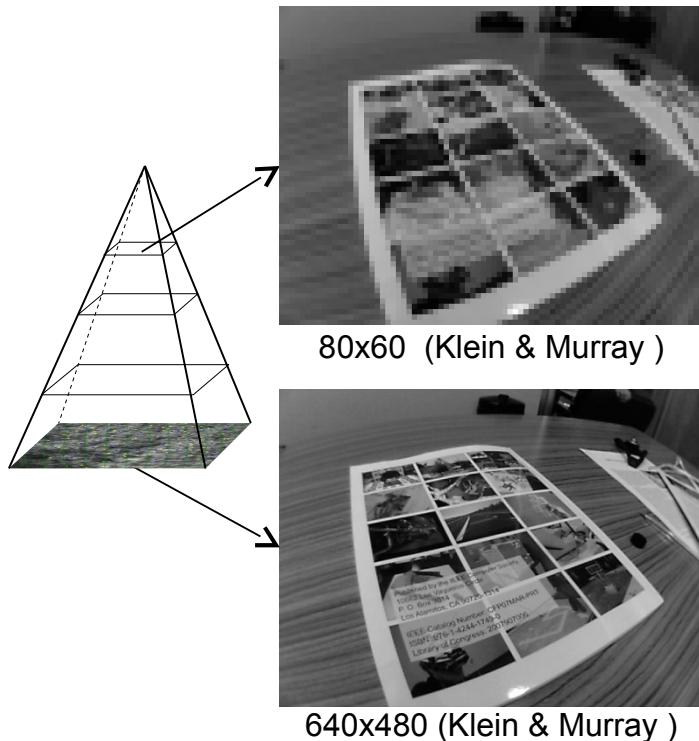
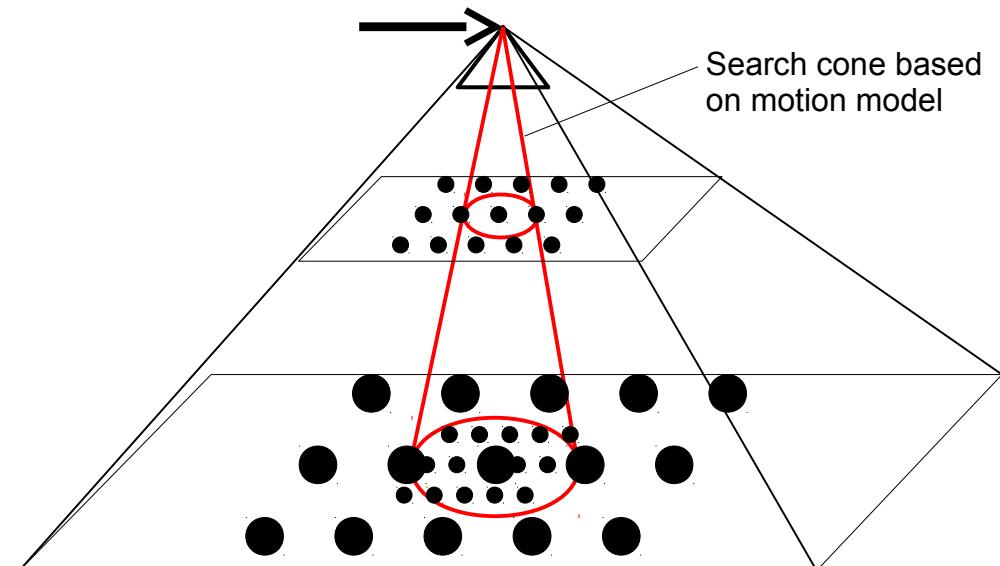
[Weiss et al. JFR 2013]



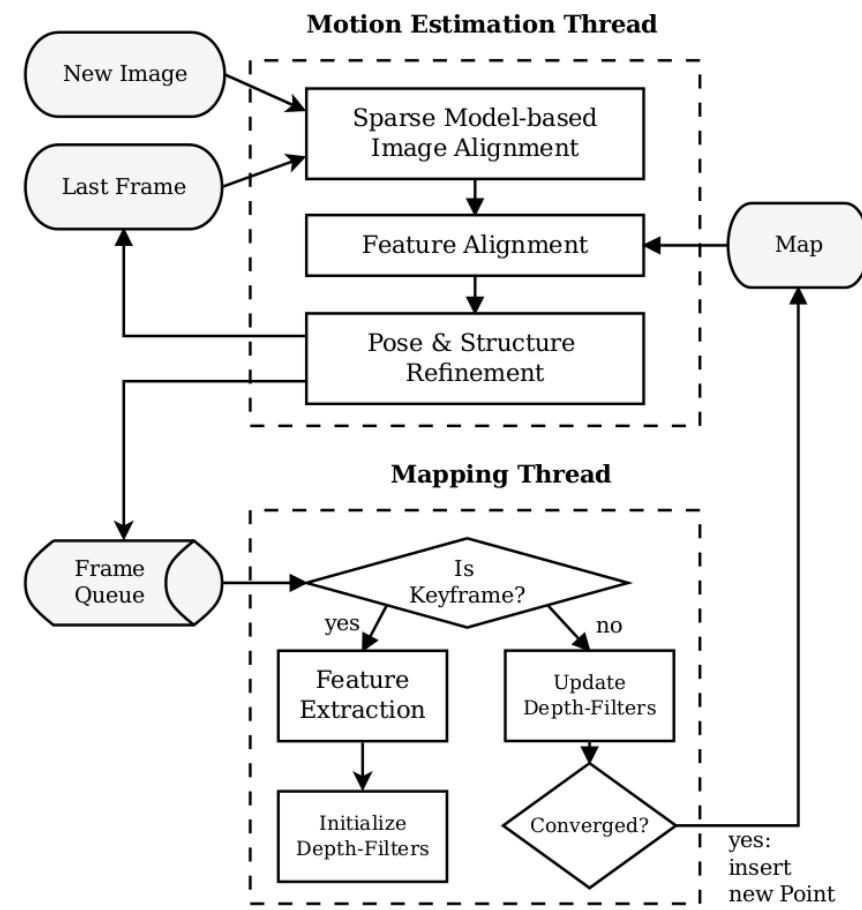
PTAM

Removing the Features

- Remove outlier-heavy pyramidal levels in map
 - More accurate map, less drift
 - Beneficial for motion model: limit search region



- Use dense approach for initial alignment in tracking part
 - Use dense VO to replace motion model
 - Refine: sparse feature matching with map
 - Good initial motion estimate disambiguates similar features and reduces wrong matches
 - Speed-up of feature matching due to small search region
 - Example: SVO
- Hybrid between sparse, dense, VO, and SLAM



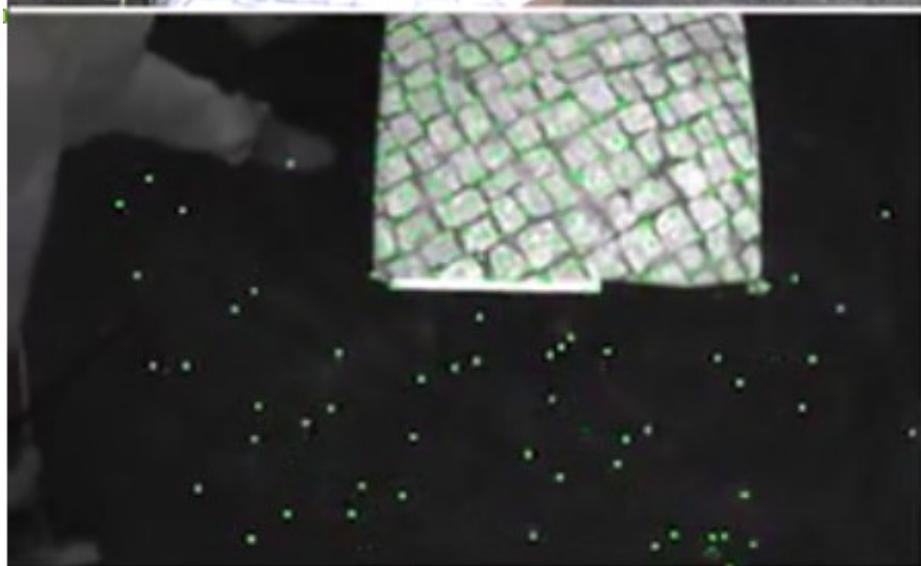
[Forster et al. ICRA 2014]

Jet Propulsion Laboratory
California Institute of Technology

PTAM

Removing the Features

JPL



Outdoor Example

3x

Q & A

