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Large-Scale Visual SLAM

Computational cost grows with time

Two approaches to reduce cost:

e Formulation (T.)
— Keyframes
— Submaps
— Reduced pose graph (%)
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e Simplification
— Sparsification
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Large-Scale Visual SLAM

Computational cost grows with time

Two approaches to reduce cost:

e Formulation (T.)
— Keyframes
— Submaps
— Reduced pose graph (%)
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e Simplification
— Cut old data ﬁ ~ E
— Sparsification

—
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Reduced pose graph

e Key-frame approach
® Reuses existing poses
e Grows with explored space, not time

e Partitions the environment
— Maintains a set of poses that cover all the partitions
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Reduced Pose Graph (step n) - Construction

In general, not revisiting exactly same poses

ZT; € j T

Standard pose graph:

L Lj Lk
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Reduced Pose Graph (step n+1)

In general, not revisiting exactly same poses

T & j T

@ Corresponds to a constraint between x; and x,

Standard pose graph:

) Z j Lk
( —
New pose is added
xn—i—l
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Reduced Pose Graph (step n+2)

Avoiding inconsistency

T; L j Tk
( —
}J , Second loop closure to X; to avoid double use
- g of constraint

Standard pose graph:

€T €L j Tk

i

xn+1 xn—}—2
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Reduced Pose Graph (step n+3)

Avoiding inconsistency

, , Constraint between x; and X; added

T Omitting short odometry links

Standard pose graph:

L L j Tk

() >3 ,

Tn+1 LTn42 Tn43
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Long-term Visual Mapping
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MIT Stata Center Dataset (publicly available)
— Duration: 6 months
— Operation time: 9 hours

— Distance travelled: 11 km (about 7 miles)
— VO keyframes: 630K
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Reduced Pose Graph — Second Floor

iISAM optimizes reduced pose graph
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Comparison of full vs reduced pose graph

4 Hours of data

Reduced pose graph ¢

105

H# Poses 1363
Mean error 0.44m

Full pose graph
# Poses 28520
Mean error 0.37m
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Timing (approx. 9 hours of mission)
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Reduced Pose Graph — 10 Floors

iISAM optimizes reduced pose graph
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[Johannsson, Kaess, Fallon, Leonard, ICRA 13]

Reduced Pose Graph

Map of 10 floors

e Accelerometer used to
detect elevator transitions

* iSAM optimizes RPG to
achieve real-time

Basement
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Large-Scale Visual SLAM

Computational cost grows with time
Two approaches to reduce cost:
e Formulation (1o (T,)

— Keyframes N

— Submaps )

— Reduced pose graph () (%) (% (x0) (x5) (%)
e Simplification

— Cut old data ﬁ ~ E

— Sparsification

—
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slide by Nick Carlevaris-Bianco and Ryan Eustice
ICRA 2014

Sparsification: Factor Graph Node Removal

e Control complexity of performing inference in graph
— Long-term multi-session SLAM
— Reduces the size of graph
— Storage and transmission
e Graph maintenance
— Forgetting old views
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slide by Nick Carlevaris-Bianco and Ryan Eustice
ICRA 2014

Sparsification: Factor Graph Node Removal

Remove node from graph = marginalize variable from distribution

: F Z13 :

-----------------------------

------------------------------------------

l‘ : |‘ - <
80 (HSme

----------------------------------------

Dense Node Removal (Marginalization) Sparse-Approximate Node Removal
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slide by Nick Carlevaris-Bianco and Ryan Eustice
ICRA 2014

Generic Linear Constraint Node Removal
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(e) Final Graph
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H . slide by Nick Carlevaris-Bianco and Ryan Eustice
Sparse Approximate GLC: iy
Ensuring Conservative Approximations

(a) Original Graph (b) Node Marginalization  (c) Chow-Liu Tree Approx.  (d) Conservative Approx.

e Chow-Liu Tree minimizes KLD

L 1 - In |Ay] .
Dkr (N_l(ntaAt)HN_l(ntaAt)) =5 (tr(AtAt D+ - AZ - dlm("’)t))
Carnegie Mellon



1 . slide by Nick Carlevaris-Bianco and Ryan Eustice
Sparse Approximate GLC: iy
Ensuring Conservative Approximations

(a) Original Graph (b) Node Marginalization

e Chow-Liu Tree minimizes KLD

_ 1 ~ :
Dkr (N_l(ntaAt)HN_l(ﬁtaAt)) =5 (tr(AtAt D4 —— - dlm(m))

e Often results in a slightly overconfident estimate
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1 . slide by Nick Carlevaris-Bianco and Ryan Eustice
Sparse Approximate GLC: iy
Ensuring Conservative Approximations

(a) Original Graph (b) Node Marginalization § (c) Chow-Liu Tree Approx. J (d) Conservative Approx.

e Why care about overconfident estimates?

— Overconfidence in pose or obstacle location = unsafe paths
— Overconfidence in pose or landmark location = failed data association
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1 . slide by Nick Carlevaris-Bianco and Ryan Eustice
Sparse Approximate GLC: iy
Ensuring Conservative Approximations

(a) Original Graph (b) Node Marginalization  (c) Chow-Liu Tree Approx. § (d) Conservative Approx.

* Propose method to ensure conservative approximation

e Start with CLT which minimizes the KLD and then numerically
adjust it to produce a conservative estimate
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: . slide by Nick Carlevaris-Bianco and Ryan Eustice
Sparse Approximate GLC: A 01a
Ensuring Conservative Approximations

e Constrained convex optimization problem
e Minimize the KLD

_ 1 ~ In [A :
Dkr (N_l(m,/\t)\lf\f_l(ﬁt,/\t)) ~ 9 (tr(AtAt 1) + il ~t‘ — dlm(m))

e Subject to conservative constraint (difference is PSD)

> @ A>A
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: . slide by Nick Carlevaris-Bianco and Ryan Eustice
Sparse Approximate GLC: A 01a
Ensuring Conservative Approximations

e Constrained convex optimization problem
e Minimize the KLD

_ 1 ~ In [A :
Dkr (N_l(m,/\t)\lf\f_l(ﬁt,/\t)) ~ 9 (tr(AtAt 1) + il ~t‘ — dlm(m))
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: . slide by Nick Carlevaris-Bianco and Ryan Eustice
Sparse Approximate GLC: A 01a
Ensuring Conservative Approximations

e Start with the Chow-Liu Tree
O
- O
e Consider three methods .g
— Covariance Intersection '“"i"_}f__ E WEV
— E WEF
— Weighted Factors ) Sl CLT
Accuracy
— Weighted Eigenvalues L
e Convex semidefinite programs/® N
&/
Carnegie Mellon
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slide by Nick Carlevaris-Bianco and Ryan Eustice

ICRA 2014

Chow-Liu Tree Approximation

e All proposed methods start with the CLT

- -+
Rer v,ow,
N—l(”haAt) ~ N ntaACLT Hp XL‘Xp( )
Acur = Z v,
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covariance InterseCtion slide by Nick Carlevaris-Bianco and Ryan Eustice

ICRA 2014
[Julier and Uhlmann, 1997]
e Convex combination of correlated factors
H I ] [T 111
) ) . HEEN E i .
KCI ‘{,1
e [r
ACI(W) — Z wiqji mingnize fKL(ACI (W))
i subject to Z w; =1
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slide by Nick Carlevaris-Bianco and Ryan Eustice
ICRA 2014

Weighted Factors

e Replace constraint that weights sum to one

-Hi-e % @

‘ subject to 0 < w; <1, Vi
A¢ > Awp(w)
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slide by Nick Carlevaris-Bianco and Ryan Eustice
ICRA 2014

Weighted Eigenvalues

* Modify each eigenvalue of each factor

E !._:I:l N § NN W,
-0 @

A Ay B ([ _func = RN
@f +® /)
AWEV Z Z w; )\; uz uj mingnize fKL (AWEV (W))
b=l . subject to 0 < wi <1, VEk
- Z wk)\kukuk At Z ]\WEV (W)
k
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slide by Nick Carlevaris-Bianco and Ryan Eustice

. . ICRA 2014
[
Conservative GLC: Experimental Results
| Dataset || Node Types | Factor Types | # Nodes | # Factors |
Intel Lab 3-DOF pose 3-DOF odom., 3-DOF laser scan-matching 910 4,454
Killian Court 3-DOF pose 3-DOF odom., 3-DOF laser scan-matching 1,941 2,191
Victoria Park 3-DOF pose, 2-DOF Im. | 3-DOF odom., 2-DOF landmark observation 7,120 10,609
Duderstadt Center || 6-DOF pose 6-DOF odom., 6-DOF laser scan-matching 552 1,774
EECS Building 6-DOF pose 6-DOF odom., 6-DOF laser scan-matching 611 2,134
USS Saratoga 6-DOF pose 6-DOF odom., 5-DOF mono-vis., 1-DOF depth 1,513 5,433
' I =, Ty ¢ '
_J%/ HLFE /
— D J-_ : - '..1_ . __.;\‘; ,{
e
o _ ,-g_/ Y
e \ "
(b) Killian Court (¢) Victoria Park (d) Duderstadt Center

(e) EECS Building (f) USS Saratoga
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slide by Nick Carlevaris-Bianco and Ryan Eustice

Conservative GLC: Experimental Results

e Remove percentage of
evenly spaced nodes

from each graph

KLD Ratio

e Cl very conservative

e WF and WEV approach
performance of CLT

— for most graphs
e Room improvement for

Intel

— Higher density of
connectivity
— All factor same strength
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