

CVPR 2014 Tutorial on Visual SLAM

Large Scale – Reducing Computational Cost

Michael Kaess

`kaess@cmu.edu`

The Robotics Institute
Carnegie Mellon University

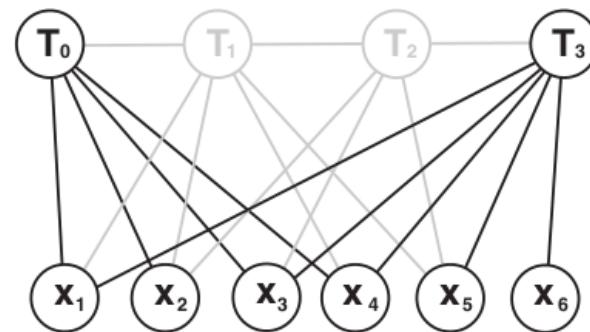
Large-Scale Visual SLAM

Computational cost grows with time

Two approaches to reduce cost:

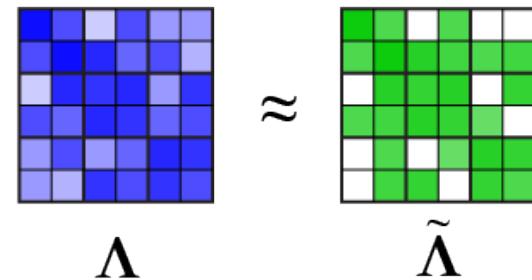
- Formulation

- Keyframes
- Submaps
- Reduced pose graph



- Simplification

- Cut old data
- Sparsification

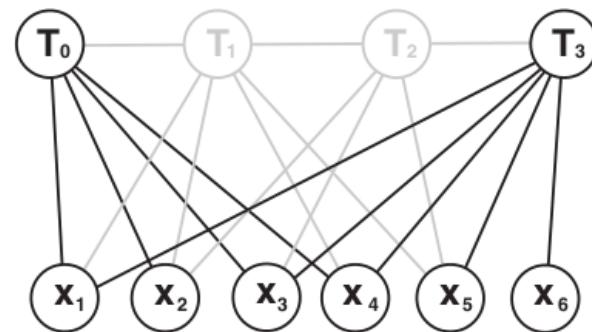


Large-Scale Visual SLAM

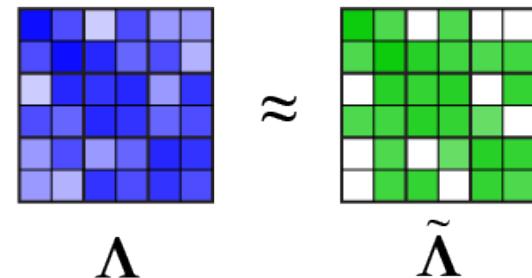
Computational cost grows with time

Two approaches to reduce cost:

- Formulation
 - Keyframes
 - Submaps
 - **Reduced pose graph**

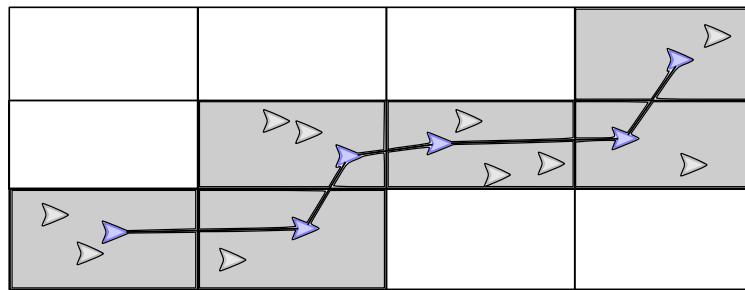


- Simplification
 - Cut old data
 - Sparsification



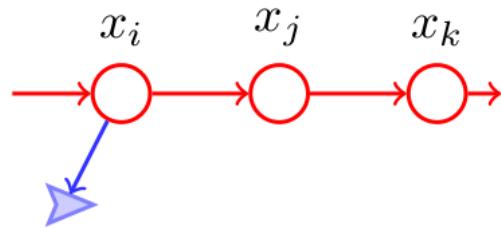
Reduced pose graph

- Key-frame approach
- Reuses existing poses
- Grows with explored space, not time
- Partitions the environment
 - Maintains a set of poses that cover all the partitions

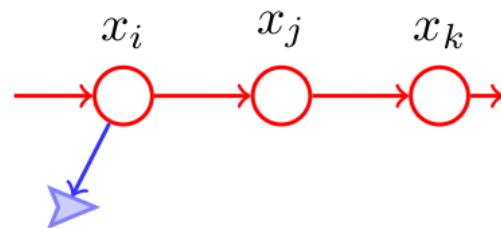


Reduced Pose Graph (step n) - Construction

In general, not revisiting exactly same poses

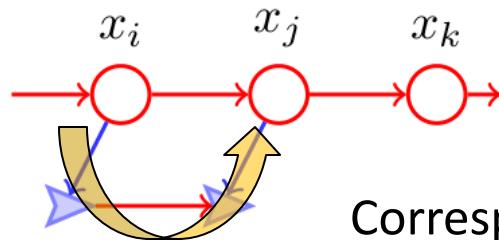


Standard pose graph:



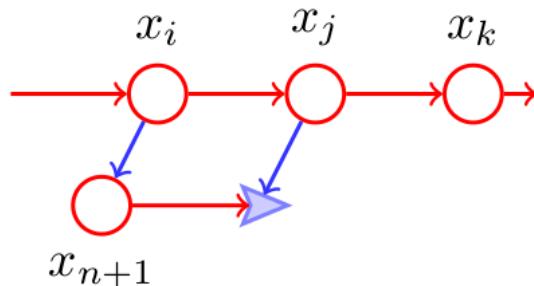
Reduced Pose Graph (step n+1)

In general, not revisiting exactly same poses



Corresponds to a constraint between x_i and x_j

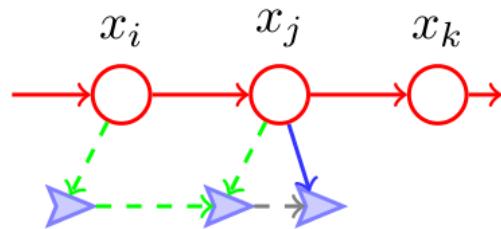
Standard pose graph:



New pose is added

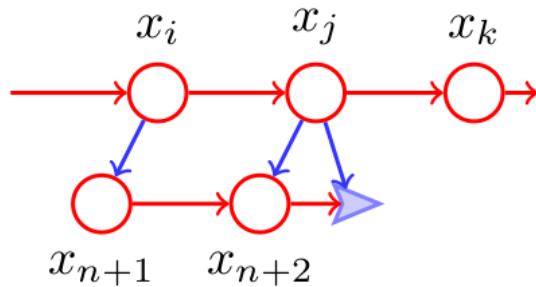
Reduced Pose Graph (step n+2)

Avoiding inconsistency



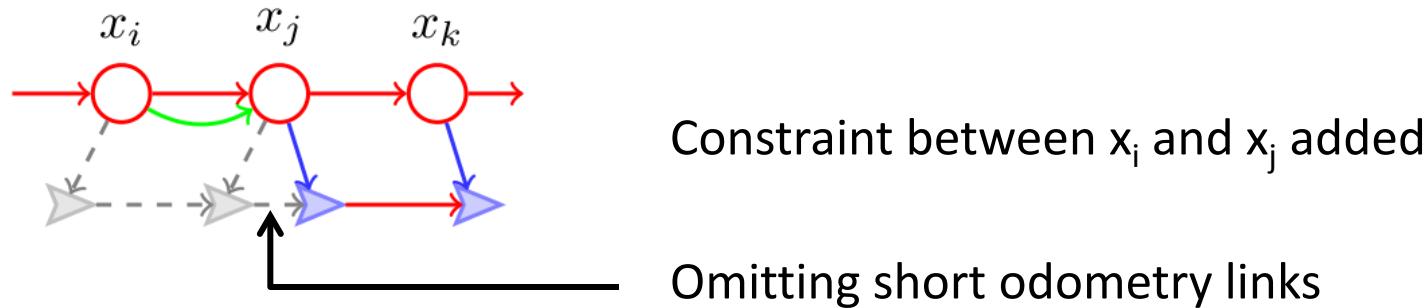
Second loop closure to x_j to avoid double use of constraint

Standard pose graph:

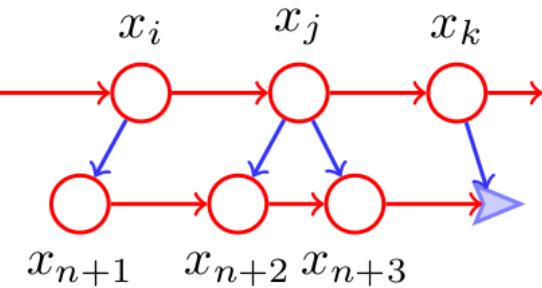


Reduced Pose Graph (step n+3)

Avoiding inconsistency



Standard pose graph:



Long-term Visual Mapping

MIT Stata Center Dataset (publicly available)

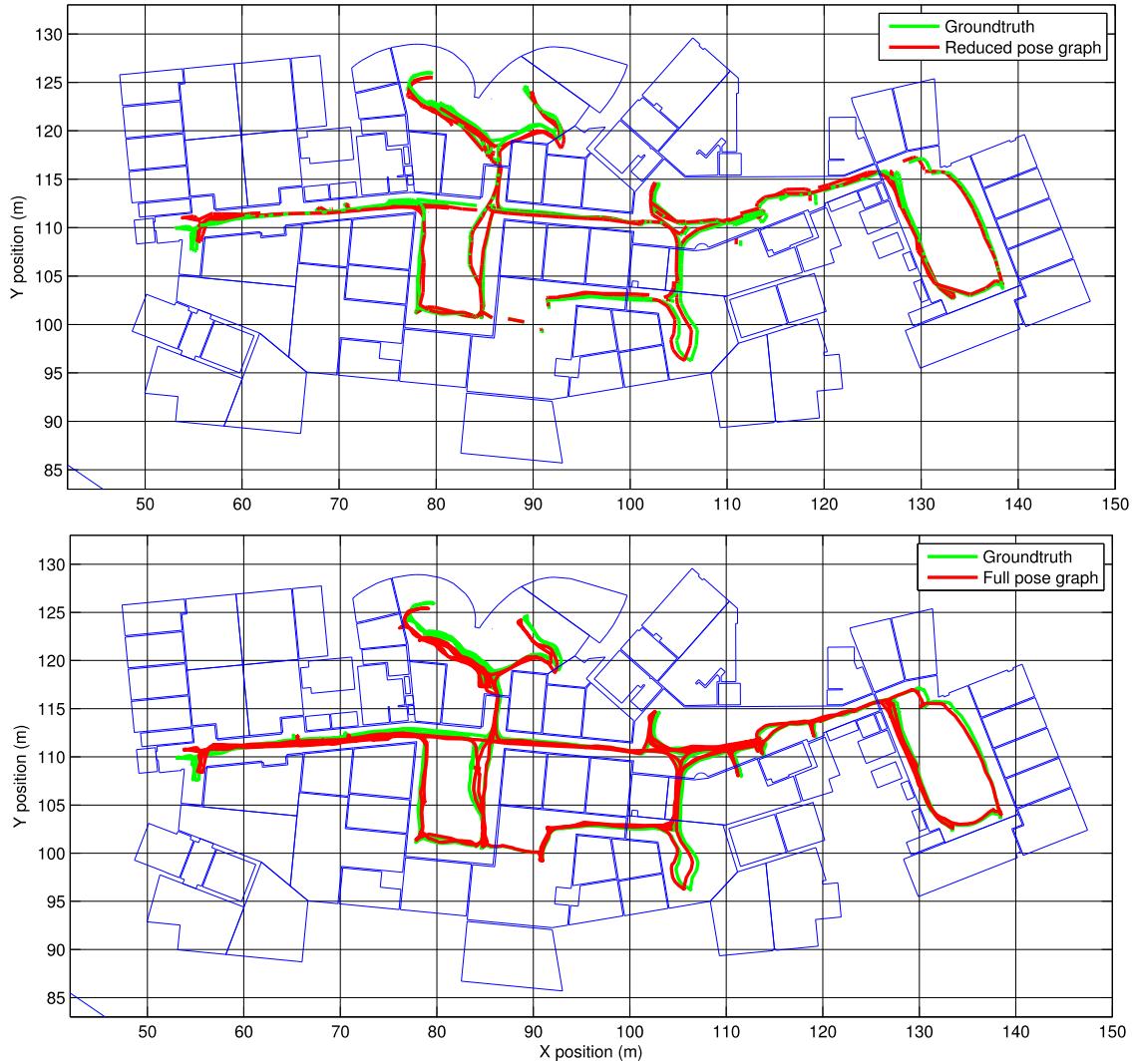
- Duration: 6 months
- Operation time: 9 hours
- Distance travelled: 11 km (about 7 miles)
- VO keyframes: 630K

Reduced Pose Graph – Second Floor

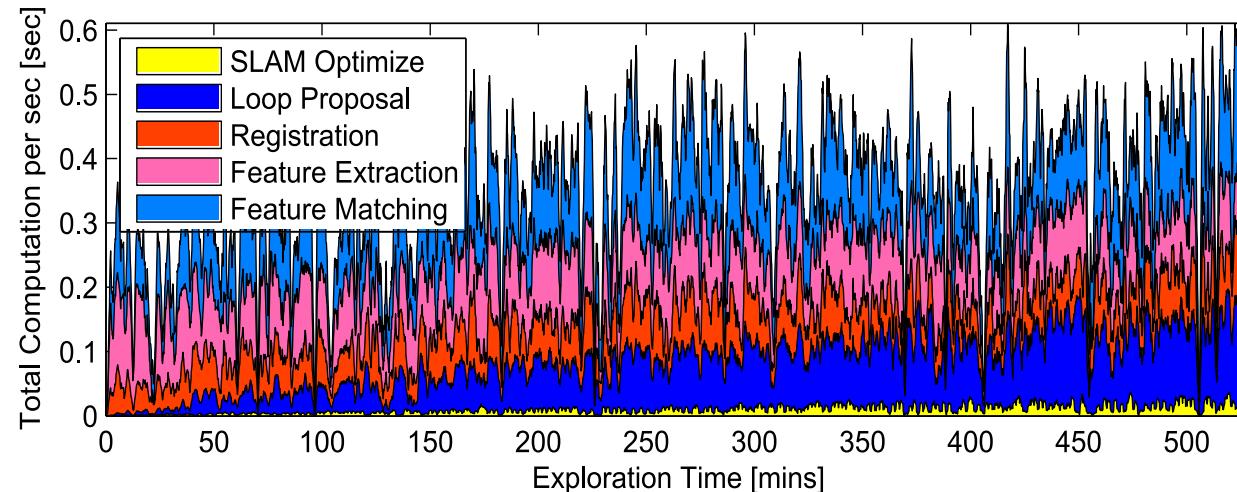
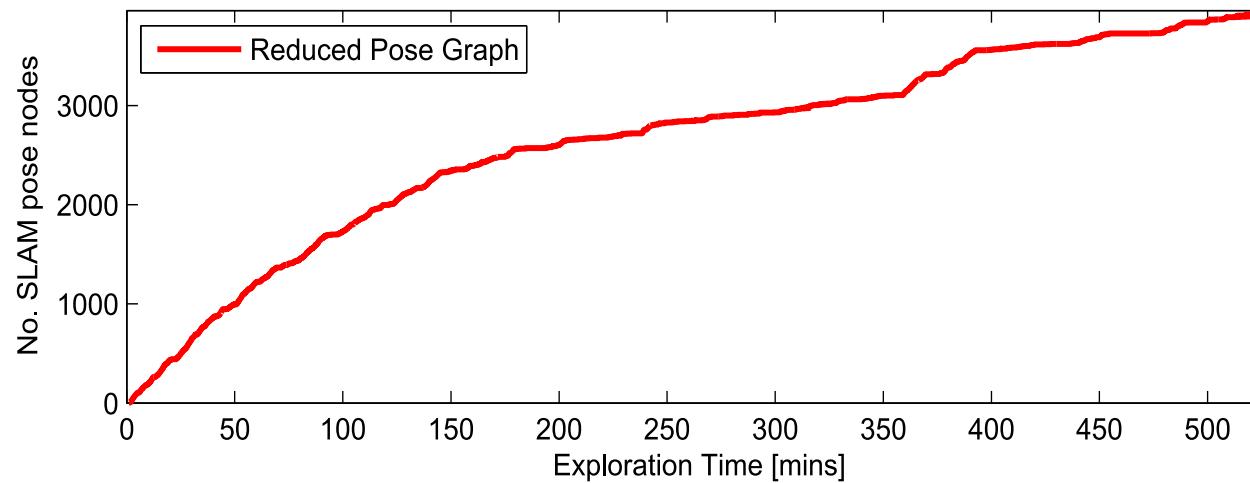
iSAM optimizes reduced pose graph

Comparison of full vs reduced pose graph

- 4 Hours of data
- **Reduced pose graph**
Poses 1363
Mean error 0.44m
- **Full pose graph**
Poses 28520
Mean error 0.37m



Timing (approx. 9 hours of mission)



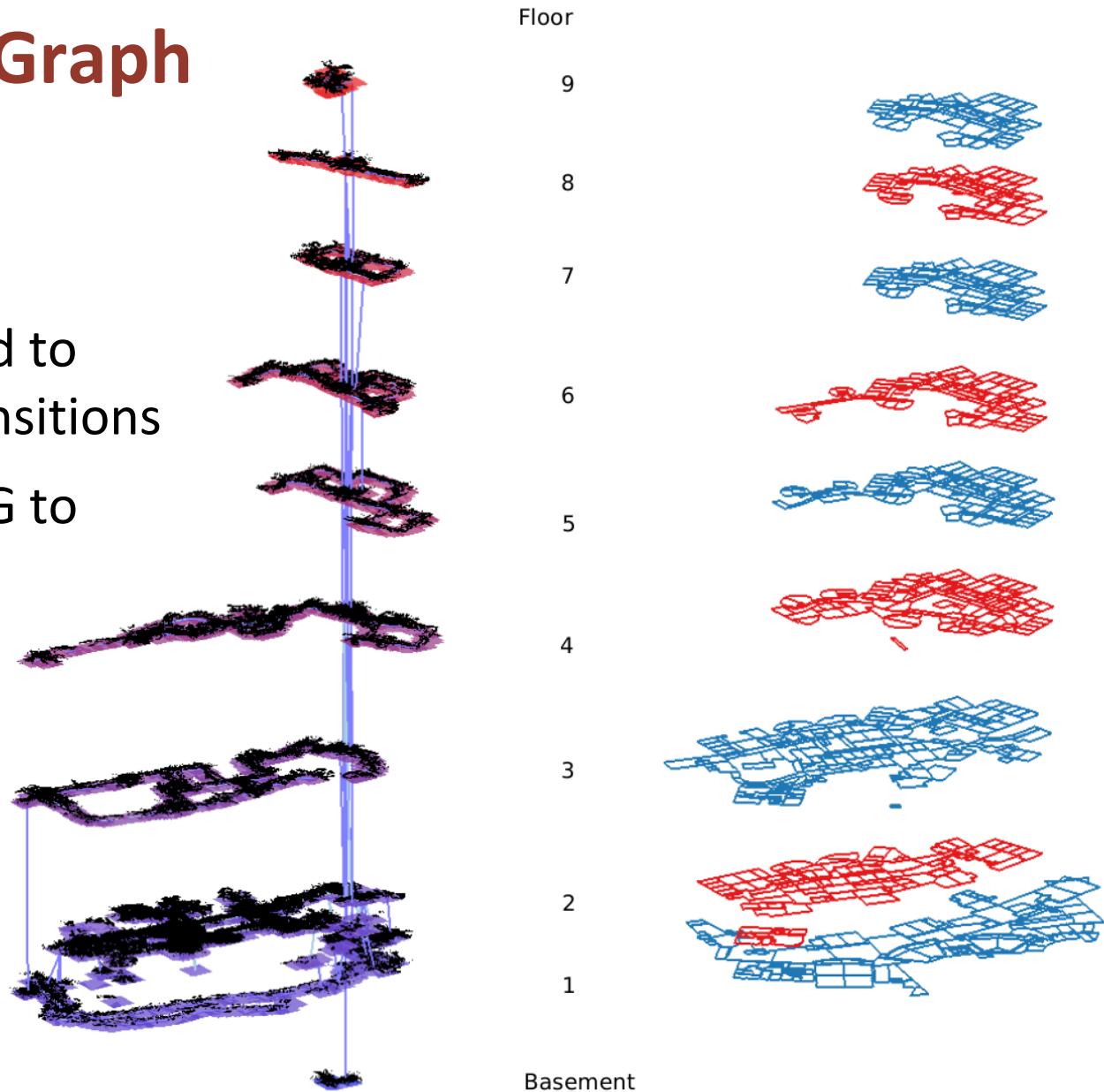
Reduced Pose Graph – 10 Floors

iSAM optimizes reduced pose graph

Reduced Pose Graph

Map of 10 floors

- Accelerometer used to detect elevator transitions
- iSAM optimizes RPG to achieve real-time



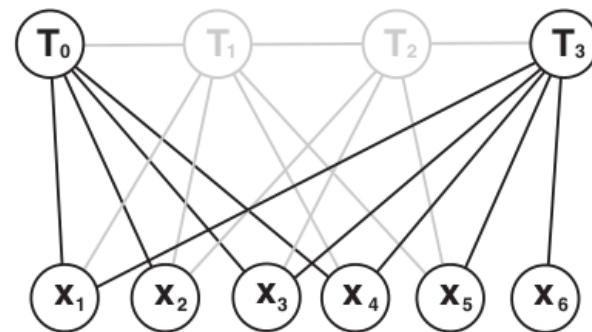
Large-Scale Visual SLAM

Computational cost grows with time

Two approaches to reduce cost:

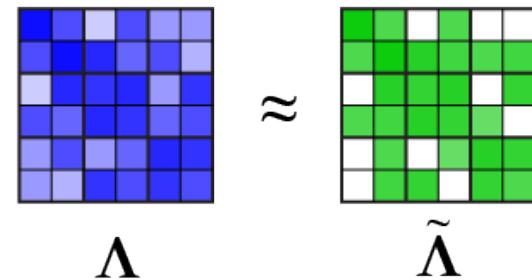
- Formulation

- Keyframes
- Submaps
- Reduced pose graph



- Simplification

- Cut old data
- **Sparsification**

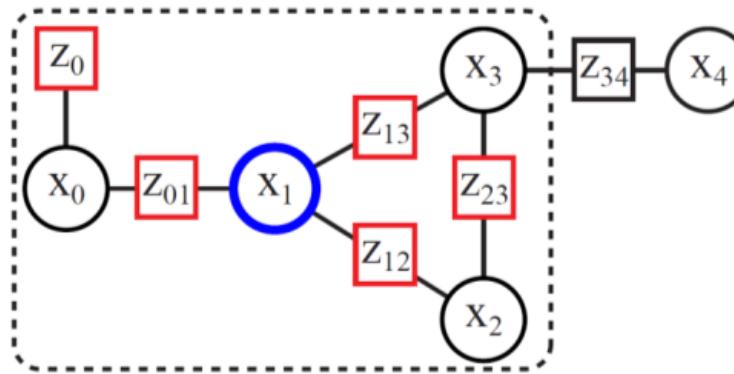


Sparsification: Factor Graph Node Removal

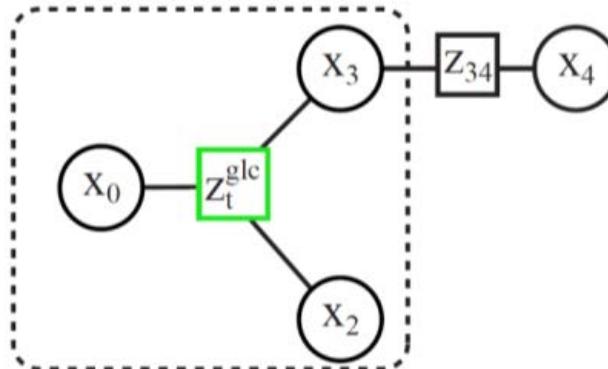
- Control complexity of performing inference in graph
 - Long-term multi-session SLAM
 - Reduces the size of graph
 - Storage and transmission
- Graph maintenance
 - Forgetting old views

Sparsification: Factor Graph Node Removal

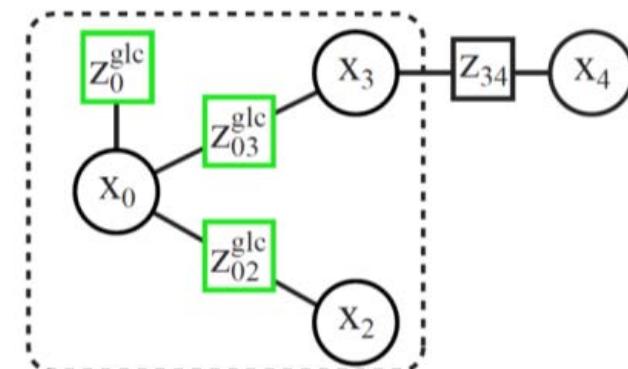
Remove node from graph \rightarrow marginalize variable from distribution



Original Graph

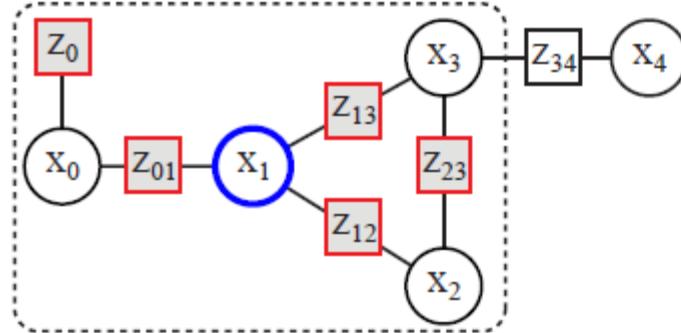


Dense Node Removal (Marginalization)

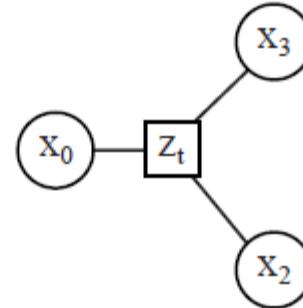


Sparse-Approximate Node Removal

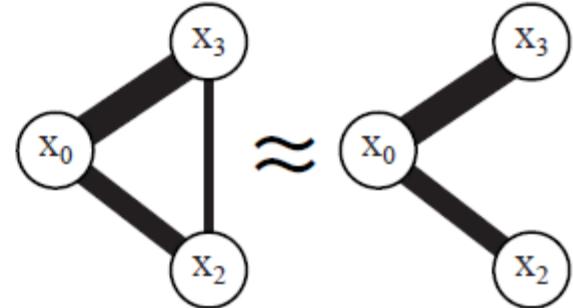
Generic Linear Constraint Node Removal



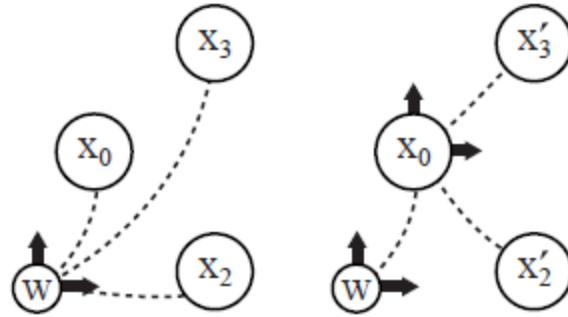
(a) Original Graph



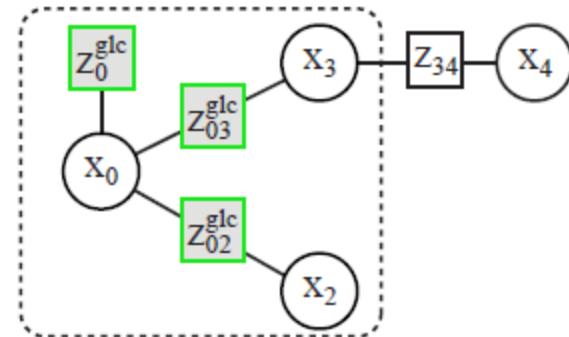
(b) Target Info.



(c) Chow-Liu Tree

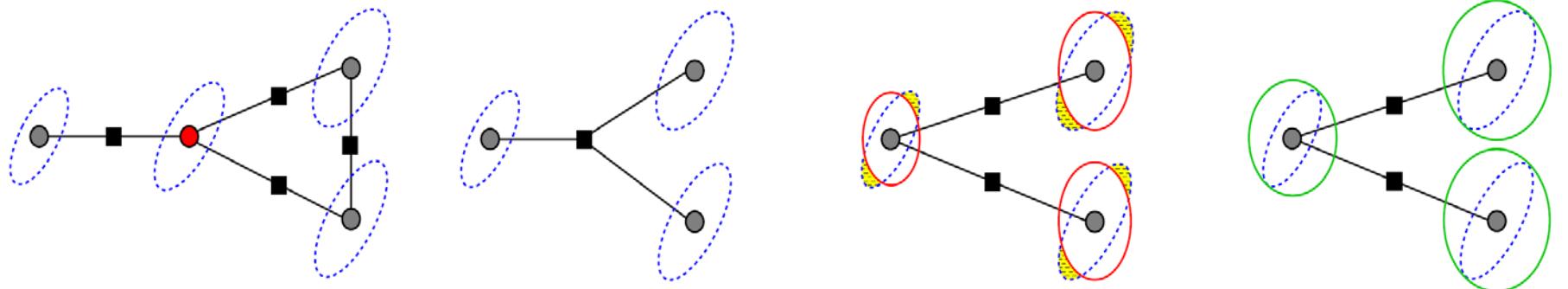


(d) Root Shift



(e) Final Graph

Ensuring Conservative Approximations

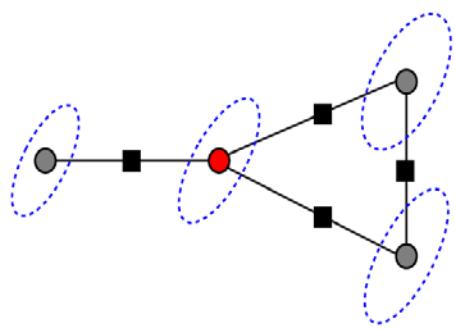


(a) Original Graph (b) Node Marginalization (c) Chow-Liu Tree Approx. (d) Conservative Approx.

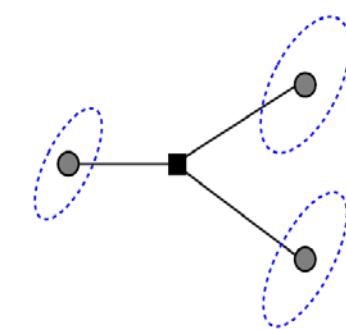
- Chow-Liu Tree minimizes KLD

$$\mathcal{D}_{KL} \left(\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \Lambda_t) \parallel \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_t) \right) = \frac{1}{2} \left(\text{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) + \frac{\ln |\Lambda_t|}{\ln |\tilde{\Lambda}_t|} - \dim(\boldsymbol{\eta}_t) \right)$$

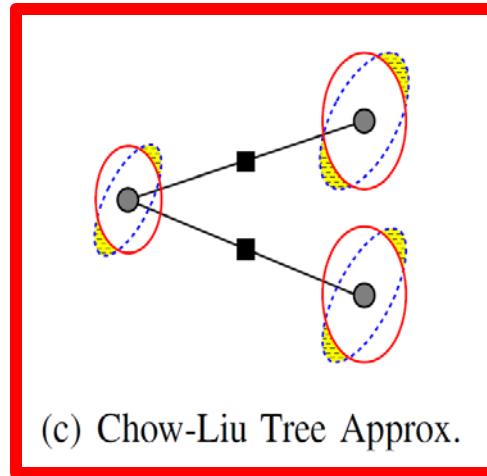
Ensuring Conservative Approximations



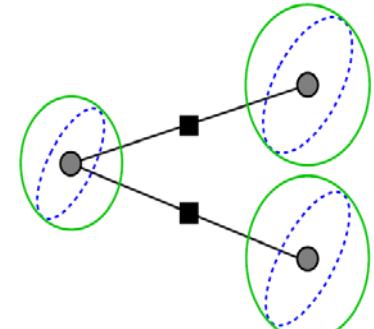
(a) Original Graph



(b) Node Marginalization



(c) Chow-Liu Tree Approx.



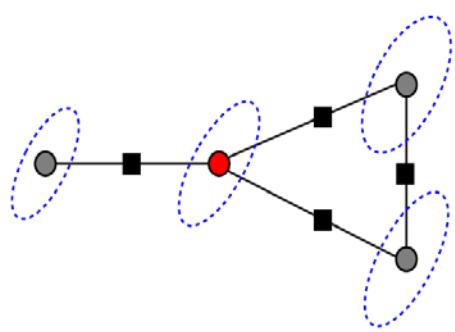
(d) Conservative Approx.

- Chow-Liu Tree minimizes KLD

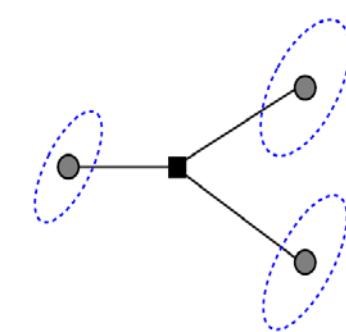
$$\mathcal{D}_{KL} \left(\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \Lambda_t) \parallel \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_t) \right) = \frac{1}{2} \left(\text{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) + \frac{\ln |\Lambda_t|}{\ln |\tilde{\Lambda}_t|} - \dim(\boldsymbol{\eta}_t) \right)$$

- Often results in a slightly overconfident estimate

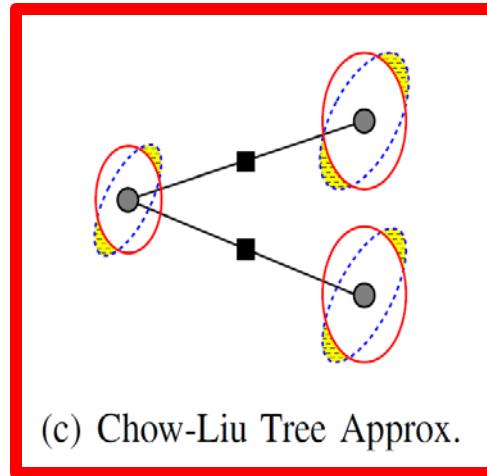
Ensuring Conservative Approximations



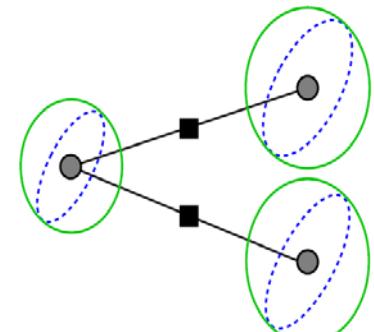
(a) Original Graph



(b) Node Marginalization



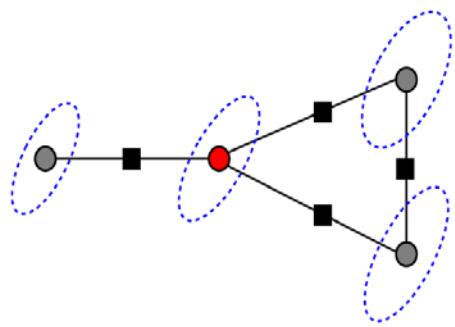
(c) Chow-Liu Tree Approx.



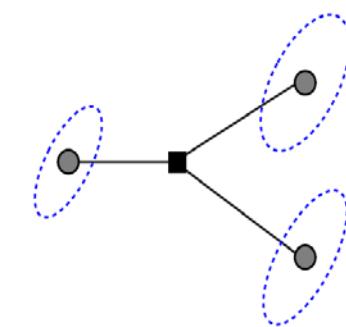
(d) Conservative Approx.

- Why care about overconfident estimates?
 - Overconfidence in pose or obstacle location → unsafe paths
 - Overconfidence in pose or landmark location → failed data association

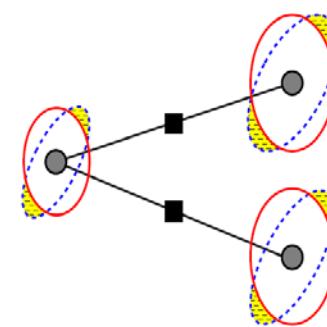
Ensuring Conservative Approximations



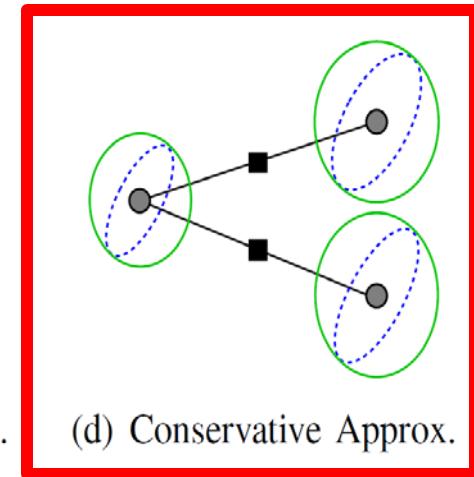
(a) Original Graph



(b) Node Marginalization



(c) Chow-Liu Tree Approx.



(d) Conservative Approx.

- Propose method to ensure conservative approximation
- Start with CLT which minimizes the KLD and then numerically adjust it to produce a conservative estimate

Ensuring Conservative Approximations

- Constrained convex optimization problem
- Minimize the KLD

$$\mathcal{D}_{KL} \left(\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \Lambda_t) \middle\| \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_t) \right) = \frac{1}{2} \left(\text{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) + \frac{\ln |\Lambda_t|}{\ln |\tilde{\Lambda}_t|} - \dim(\boldsymbol{\eta}_t) \right)$$

$$f_{KL}(\tilde{\Lambda}_t) = \text{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) - \ln |\tilde{\Lambda}_t|$$

- Subject to conservative constraint (difference is PSD)

$$\tilde{\Sigma} \geq \Sigma \quad \Leftrightarrow \quad \Lambda \geq \tilde{\Lambda}$$

Ensuring Conservative Approximations

- Constrained convex optimization problem
- Minimize the KLD

$$\mathcal{D}_{KL} \left(\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \Lambda_t) \middle\| \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_t) \right) = \frac{1}{2} \left(\text{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) + \frac{\ln |\Lambda_t|}{\ln |\tilde{\Lambda}_t|} - \dim(\boldsymbol{\eta}_t) \right)$$

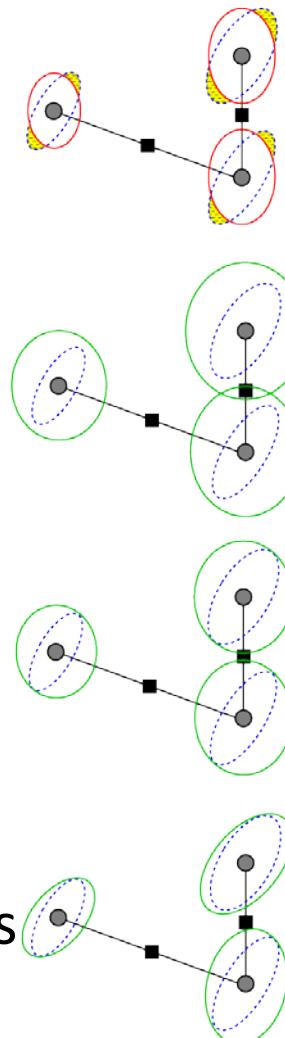
$$f_{KL}(\tilde{\Lambda}_t) = \text{tr}(\tilde{\Lambda}_t \Lambda_t^{-1}) - \ln |\tilde{\Lambda}_t|$$

- Subject to conservative constraint (difference is PSD)

$$\tilde{\Sigma} \geq \Sigma \quad \Leftrightarrow \quad \Lambda \geq \tilde{\Lambda}$$

Ensuring Conservative Approximations

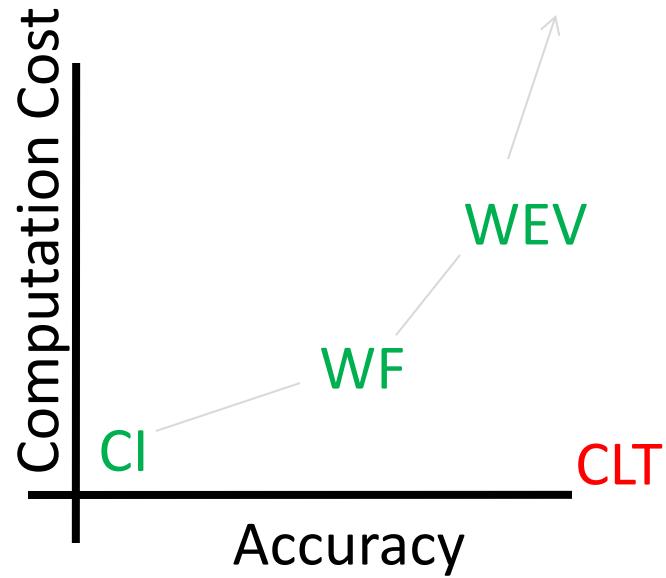
- Start with the Chow-Liu Tree



- Consider three methods

- Covariance Intersection
- Weighted Factors
- Weighted Eigenvalues

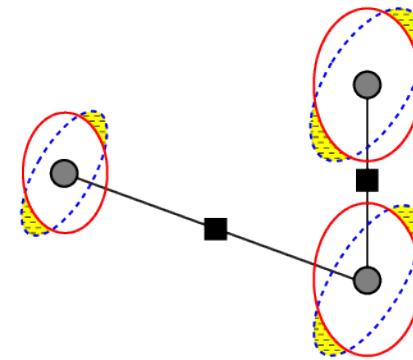
- Convex semidefinite programs



Chow-Liu Tree Approximation

- All proposed methods start with the CLT

$$\Lambda \approx \tilde{\Lambda}_{\text{CLT}} = \Psi_1 + \Psi_2$$



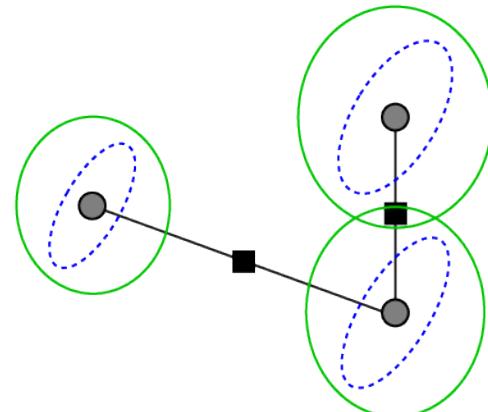
$$\mathcal{N}^{-1}(\boldsymbol{\eta}_t, \Lambda_t) \approx \mathcal{N}^{-1}(\tilde{\boldsymbol{\eta}}_t, \tilde{\Lambda}_{\text{CLT}}) = \prod_i p(\mathbf{x}_i | \mathbf{x}_{\text{p}(i)})$$

$$\tilde{\Lambda}_{\text{CLT}} = \sum_i \Psi_i$$

[Julier and Uhlmann, 1997]

- Convex combination of correlated factors

$$\Lambda \approx \tilde{\Lambda}_{\text{CI}} = w_1 \Psi_1 + w_2 \Psi_2$$



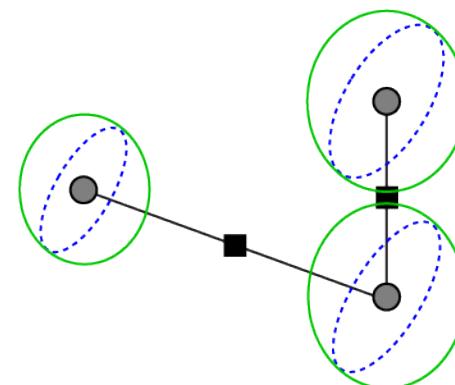
$$\begin{aligned} \tilde{\Lambda}_{\text{CI}}(\mathbf{w}) &= \sum_i w_i \Psi_i & \text{minimize}_{\mathbf{w}} \quad & f_{KL}(\tilde{\Lambda}_{\text{CI}}(\mathbf{w})) \\ & \text{subject to} \quad \sum_i w_i = 1 & & \end{aligned}$$

Weighted Factors

- Replace constraint that weights sum to one

$$\Lambda \approx \tilde{\Lambda}_{WF} = w_1 \Psi_1 + w_2 \Psi_2$$

Λ $\tilde{\Lambda}_{WF}$ w_1 Ψ_1 w_2 Ψ_2

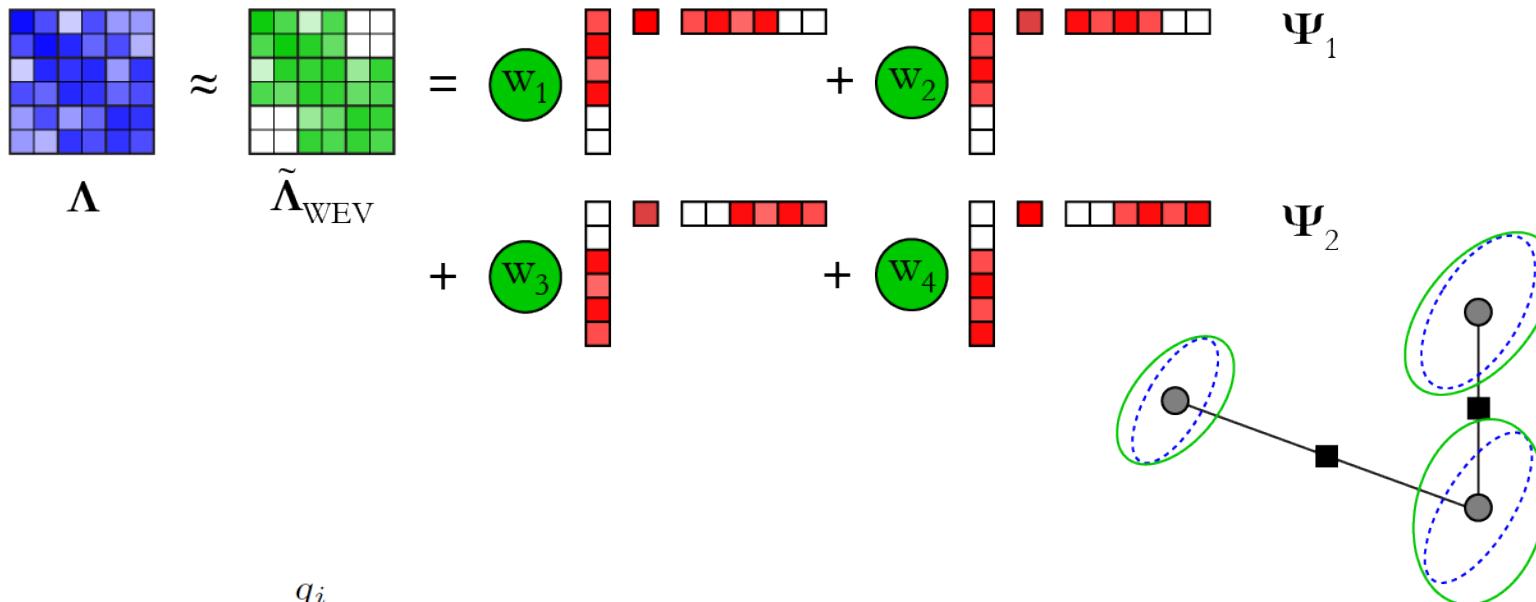


$$\tilde{\Lambda}_{WF}(\mathbf{w}) = \sum_i w_i \Psi_i$$

$$\begin{aligned} & \underset{\mathbf{w}}{\text{minimize}} && f_{KL}(\tilde{\Lambda}_{WF}(\mathbf{w})) \\ & \text{subject to} && 0 \leq w_i \leq 1, \forall i \\ & && \Lambda_t \geq \tilde{\Lambda}_{WF}(\mathbf{w}) \end{aligned}$$

Weighted Eigenvalues

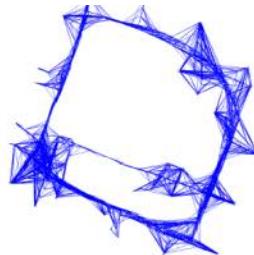
- Modify each eigenvalue of each factor



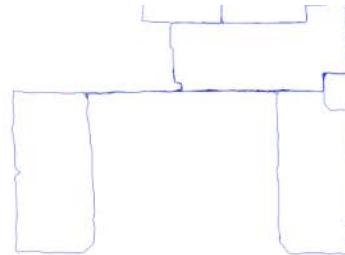
$$\begin{aligned} \tilde{\Lambda}_{\text{WEV}}(\mathbf{w}) &= \sum_i \sum_{j=1}^{q_i} w_j^i \lambda_j^i \mathbf{u}_j^i \mathbf{u}_j^i \top \\ &= \sum_k w_k \lambda_k \mathbf{u}_k \mathbf{u}_k \top \end{aligned} \quad \begin{aligned} &\text{minimize}_{\mathbf{w}} \quad f_{KL}(\tilde{\Lambda}_{\text{WEV}}(\mathbf{w})) \\ &\text{subject to} \quad 0 \leq w_k \leq 1, \forall k \\ &\quad \Lambda_t \geq \tilde{\Lambda}_{\text{WEV}}(\mathbf{w}). \end{aligned}$$

Conservative GLC: Experimental Results

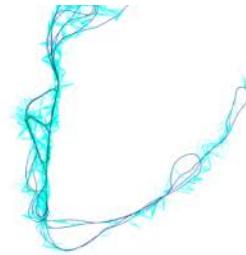
Dataset	Node Types	Factor Types	# Nodes	# Factors
<i>Intel Lab</i>	3-DOF pose	3-DOF odom., 3-DOF laser scan-matching	910	4,454
<i>Killian Court</i>	3-DOF pose	3-DOF odom., 3-DOF laser scan-matching	1,941	2,191
<i>Victoria Park</i>	3-DOF pose, 2-DOF lm.	3-DOF odom., 2-DOF landmark observation	7,120	10,609
<i>Duderstadt Center</i>	6-DOF pose	6-DOF odom., 6-DOF laser scan-matching	552	1,774
<i>EECS Building</i>	6-DOF pose	6-DOF odom., 6-DOF laser scan-matching	611	2,134
<i>USS Saratoga</i>	6-DOF pose	6-DOF odom., 5-DOF mono-vis., 1-DOF depth	1,513	5,433



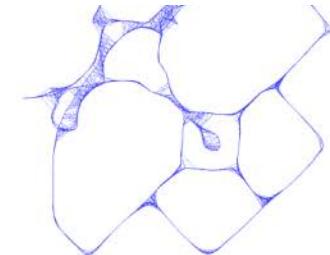
(a) Intel Lab



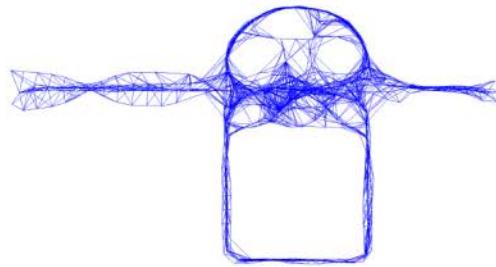
(b) Killian Court



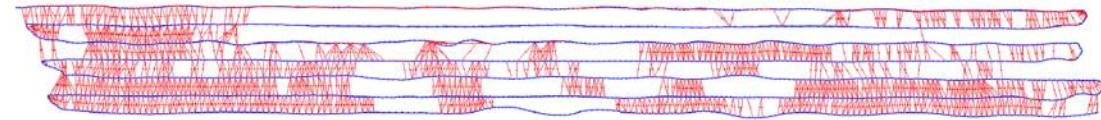
(c) Victoria Park



(d) Duderstadt Center

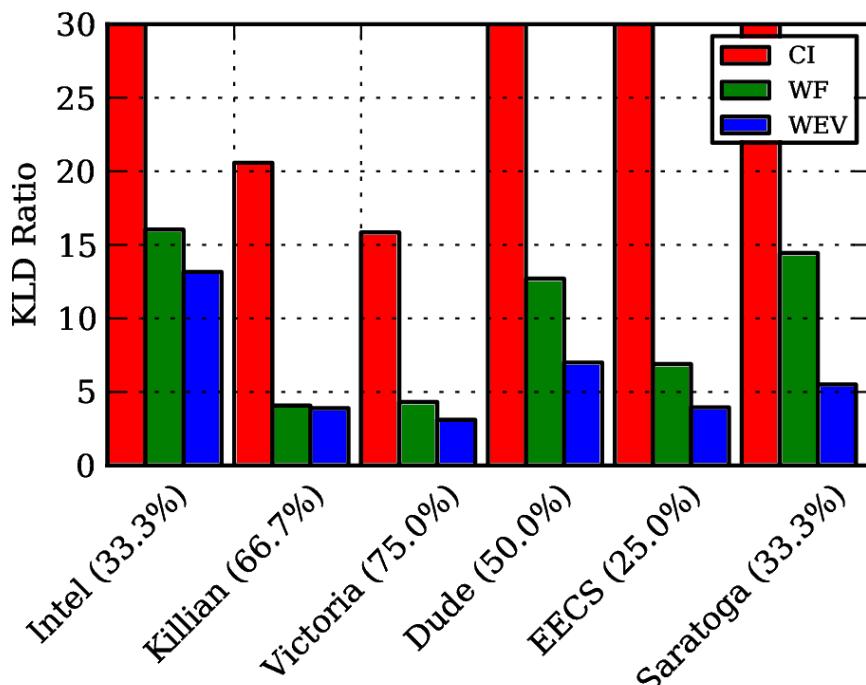


(e) EECS Building



(f) USS Saratoga

Conservative GLC: Experimental Results



- Remove percentage of evenly spaced nodes from each graph
- CI very conservative
- WF and WEV approach performance of CLT
 - for most graphs
- Room improvement for Intel
 - Higher density of connectivity
 - All factor same strength