VSLAM on Phones
Closing Loops

Frank Dellaert
CVPR 2014 Visual SLAM Tutorial

With many slides/movies generously donated by
Torsten Sattler (!!!), Gim Hee Lee, Marc Pollefeys
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Turning Mobile Phones
Into 3D-Scanners

CUG == ETHZzirich



Mobile 3D scanner: Pipeline
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Sparse SLAM Example




Metaio: Live Demo by Jurgen Sturm!
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Loop Closing Factor Graph

= |n addition to projection factors, IMU factors, add
long-range links that correct the graph




Real-time Large-scale VSLAM
Lim et al, ICRA 2014

Real-Time 6-DOF Monocular Visual SLAM
in a Large-Scale Environment

Hyon Lim, Jongwoo Lim, H. Jin Kim

ICRA 2014 Video




Resulting Map
Lim et al, ICRA 2014

Ground truth

T

Red square = loop closure 11



Loop Closing
Lim et al, ICRA 2014
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Loop Closing
Lim et al, ICRA 2014

Before pose-graph optimization

Closed loop
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Loop Closing
Lim et al, ICRA 2014
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Multi-camera Visual SLAM
Gim Hee Lee et. al, ETH, 2014
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Multi-camera Visual SLAM
Gim Hee Lee et. al, ETH, 2014




Loop Closing
Gim Hee Lee et. al, ETH, 2014
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Final Result
Gim Hee Lee et. al, ETH, 2014
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Image-Based Localization Pipeline

Extract Local Features ) g A
B T o PRI S Dt : \ 5 & ;',’, “ »

Camera Pose Estimation:
L RANSAC + n-Point-Pose Algorithm
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What Situations Can Be Handled

Easy e Database & query images from same source, e.g., Flickr

*97% - 100% localization rates

M Challenges: Run-time & memory consumption for large scale

e Database & query images from different spatial distributions

¢ 70% - 90% localization rates

e Challenges: Deal with larger variety in viewpoints

» Streetview imagery

‘ r 50% - 65% localization rates

e Challenges: Repetitions, viewpoint variations, scale

¢ Indoor scenarios

e Challenges: ldentical structures, small distance to scene

Hard
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Establishing 2D-3D Matches
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2D Feature:

Database 2D position + descriptor

Images

e 3D model from SfM Query Image

e 2D-3D correspondences from (SIFT) descriptor matching
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Matching = Nearest Neighbor Search

Query Image | & 3D Model
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o ® Descriptor Space
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Lowe’s Ratio Test

|d — da Id = dulz

* No every nearest neighbor is correct

e Use ratio test to reject wrong / ambiguous matches [Lowe. 1JCV'04]

* Only accept match if
d—d
| 1H2<08

|d —dall2

24



https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCMQFjAA&url=http%3A%2F%2Fwww.cs.ubc.ca%2F~lowe%2Fpapers%2Fijcv04.pdf&ei=MVabU7SeFsmH0AW4uIGoCQ&usg=AFQjCNExaFk5YsadEaL01y1K6FRDDh5u3g&bvm=bv.68911936,d.d2k

Nearest Neighbor Search

e Typical datasets: 3-10k features, >1M points
= Exhaustive (linear) nearest neighbor search is prohibitive

e Curse of dimensionality: No exact search method that is faster
than linear search

e Multiple fast approximate nearest neighbor search methods:
o kd-trees [Muja & Lowe. PAMI'14] [code]

e Hierarchical k-means trees [Muja & Lowe, PAMI'14] [code]

* Product quantization [Jégou et al.. PAMI'11] (Orals 4A) [code] [Kalantidis &
Avrithis, CVPR’14] (Posters P5)

* Diverse hashing techniques
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http://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_pami2014.pdf
http://www.cs.ubc.ca/research/flann/
http://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_pami2014.pdf
http://www.cs.ubc.ca/research/flann/
http://hal.inria.fr/docs/00/82/50/85/PDF/jegou_pq_postprint.pdf
http://people.rennes.inria.fr/Herve.Jegou/projects/ann.html
http://image.ntua.gr/iva/files/lopq.pdf

kd-tree Construction & Search

.

* |teratively split dimension with largest variance at median

e Traversal based on side of split

* 1B SIFT descriptors (128D) — Only 30 dimensions considered!
* Curse of dimensionality: Need to visit all leaves!
* Approximate search: Visit N leaf nodes
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Tree-Based Search Drawbacks

* Tree-based approach so slow because it
e ... tries to find all possible matches

* Don’t need all of them!
_ _ Unlikely to match
* ... ignores dependencies between matches

s AR

S

More likely to match

= Exploit co-visibility information to guide matching!
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Vocabulary-Based Prioritized Search (VPS)

Query Image
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o8 [Sattler et al., ICCV'11] [code]



http://www.graphics.rwth-aachen.de/media/papers/sattler_iccv11_preprint_011.pdf
http://www.graphics.rwth-aachen.de/software/image-localization

Vocabulary-Based Prioritized Search (VPS)

City-Scale Localization
Example: Aachen
~1.5M points

3047 database images
369 query images
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http://www.graphics.rwth-aachen.de/media/papers/sattler_iccv11_preprint_011.pdf
http://www.graphics.rwth-aachen.de/software/image-localization

Worldwide Pose Estimation using 3D Point Clouds
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[Li et al., ECCV’10]
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http://www.cs.cornell.edu/projects/p2f/docs/localization_eccv2010.pdf

Prioritized Point-to-Feature Matching (P2F)

Idea: Use Visibility Graph to guide 3D-to-2D matching

o g e
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Stop after
100 matches
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Camera Pose
Estimation:
RANSAC + P6P

[Li et al., ECCV’10]



http://www.cs.cornell.edu/projects/p2f/docs/localization_eccv2010.pdf

The Visibility Graph

N4 7

e Bipartite visibility graph Gv defined by SfM reconstruction

e Two points co-visible if share a common camera
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http://www.cs.cornell.edu/projects/p2f/docs/localization_eccv2010.pdf

Point Priorities

e Start with points that are ...
» stable under viewpoint changes
e at more popular parts of the model
= Points with high degree in Gv

e Initial priority of point pi: Si = di = degree in Gv

e Update priorities: S;=S;+ 10/d; for co-visible points p;

34

[Lietal.. ECCV’10]



http://www.cs.cornell.edu/projects/p2f/docs/localization_eccv2010.pdf
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Image-Based Localization & Place Recognition

Direct Matching

3D Model

R,

-----

Query Image

Retrieved Database Image
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Hierarchical k-Means Tree
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* |teratively apply k-means clustering
* Traversal based on nearest neighboring cluster
e Approximate search: Visit N leaf nodes

e Performs (slightly) worse than kd-tree
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Vocabulary Trees
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e Each level in a hierarchical k-means tree defines a quantization of

the descriptor space (visual vocabulary)

e Hierarchical k-means trees also known as Vocabulary Trees [Nister
& Stewenius, CVPR’06]
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http://www.vis.uky.edu/~stewe/publications/nister_stewenius_cvpr2006.pdf

