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1 Minimizing Re-projection Error in Two Views
In a two-view setting, we are interested in finding the most likely camera poses T w

1 and T w
2 , both in

the space SE(3) of 3D poses, and 3D points Pw
j ∈R3, with j∈ 1..n, which we can do by minimizing

the re-projection errors
f (T w

c ,Pw; p) = ‖h(T w
c ,Pw)− p‖2

Σ

associated with each measurement p ∈ R2. Above, the measurement function h : SE(3)×R3→
R2 predicts the measurement p from the unknowns T w

c = (Rw
c , t

w
c ) and Pw, and the notation ‖e‖2

Σ

∆
=

eT Σ−1e is shorthand for the squared Mahalanobis distance with covariance Σ.
The objective function is then the log-likelihood of the unknowns given all such measurements

p in the two views. Under the Gaussian noise assumptions, this is exactly

E
(
T w

1 ,T w
2 ,
{

Pj
}) ∆

= ∑
i=1,2

∑
j
‖h(T w

i ,Pw
j )− pi j‖2

Σ (1)

2 In a Linear World...
In a linear world, the measurement function h would be a linear function of the unknowns. For
reasons that will become clear, let us introduce a 6DOF unknown ξi associated with camera i, and
a 3DOF unknwon δ j associated with point j. Then linearity implies

p̂i j = hi j
(
ξi,δ j

) ∆
= Fi jξi +Gi jδ j

and the objective function

E
(
ξ1,ξ2,

{
δ j
}) ∆

= ∑
i=1,2

∑
j
‖Fi jξi +Gi jδ j−bi j‖2

Σ (2)

where we also introduced bi j, the “linear” measurement. Then we can easily re-write the objective
function (2) as

E
(
ξ1,ξ2,

{
δ j
}) ∆

= ‖Ax−b‖2
Σ′ (3)

with x and b vectorized forms of our unknowns and measurements, respectively, and Σ′ a suitable
defined (block-diagonal) covariance matrix.
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3 Sparse Matters
The matrix A will be a block-sparse matrix [Hartley and Zisserman, 2004]. For example, with 3
points, we have

A =


F11 G11
F12 G12
F13 G13

F21 G21
F22 G22
F23 G23

 , x =


ξ1
ξ2
δ1
δ2
δ3

 , b =


b11
b12
b13
b14
b15
b16


A linear least-squares criterion of the form (3) is easy to solve: we just take the derivative wrt x
and set to zero, obtaining the condition (

A′A
)

x = A′b, (4)

also known as the normal equations. In the above, the symmetric matrix A′A is the known as the
Hessian of the system. Because A is sparse, it is imperative that, for the sake of computational
efficiency, a sparse solver is used to solve for x, e.g., using GTSAM or cholmod. The latter is built
into MATLAB and is automatically invoked simply by typing x = A\b.

4 Back to Reality
In reality, the measurement function h(T w

c ,Pw) is quite non-linear, and generates the predicted
measurement p̂ by first transforming the point Pw into camera coordinates Pc, as specified by the
camera T w

c , then projecting the point so obtained into the image:

p̂ = h(T w
c ,Pw)

∆
= π (g(T w

c ,Pw))

In detail, the point Pc in camera coordinates is obtained by the coordinate transformation g, as in

Pc = g(T w
c ,Pw)

∆
= (Rw

c )
T (Pw− tw

c ) (5)

Then the predicted image coordinates p̂ are obtained by the camera projection function π

p̂ = (x̂, ŷ) = π (Xc,Y c,Zc)
∆
= (

Xc

Zc ,
Y c

Zc ) (6)

Above we assumed that the measurements p are pre-calibrated to normalized image coordinates
p = (x,y), as we are interested in the setting where the calibration matrix K and radial distortion
function f (r) are known.

So how can we get back to the easy, linear setting? Maybe we can do a Taylor expansion, as in

h(T w
c +ξ ,Pw +δ )≈ h(T w

c ,Pw)+Fξ +Gδ .

However, here we run into trouble, as “+” is not defined for elements of SE(3). The next section
introduces a more general view of Taylor expansion that will work, however.
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5 A Twist of Li(m)e
The notion of an incremental update to an element on a manifold a ∈M is provided by the notion
of a tangent space at a a, denoted TaM , which is a vector space Rn with n equal to the dimen-
sionality of the manifold. Any vector x ∈ TaM in the tangent space can be mapped back to the
manifold, with x = 0 mapping to a. Hence, vectors x correspond to updates around a, and this pro-
vides a way for our linearized problem to update the solution on the manifold [Absil et al., 2007].

In the special case that the manifold is also a group, i.e., a Lie group, the mapping is provided
by the exponential map. In what follows, I use the notation from [Murray et al., 1994], directly
specialized to SE(3): a vector ξ ∈ R6 is mapped to an element of the Lie Algebra se(3), in this
case a 4×4 matrix, which is then mapped to a Lie group element by matrix exponentiation:

T w
c ← T w

c exp ξ̂

where the “hat operator”ˆis the mapping from R6 to se(3):

ξ
∆
=

[
ω

v

]
θ → ξ̂

∆
=

[
[ω]× v

0 0

]
θ

For SE(3) the 6-dimensional quantity (ω,v) is also called a twist, whereas θ ∈ R+ is the amount
of twist applied, resulting in a finite screw motion. In general, the elements of the vector space
isomorphic to the Lie algebra are called canonical coordinates. More details about the Lie algebra
se(3) and its corresponding exponential map can be found in Appendix A.

6 A Generalized Taylor Expansion
Equipped with this notion, we can generalize the Taylor expansion to locally approximate a func-
tion f : G→ Rm, with G an n-dimensional Lie group, as follows:

f (aeξ̂ )≈ f (a)+ f ′(a)ξ

where ξ̂ ∈ g, the Lie algebra of G, and f ′(a) is an m× n Jacobian matrix, linearly mapping the
n-dimensional exponential coordinates ξ to m-dimensional corrections on f (a). Note that f ′(a) is
itself a function of a, i.e., the linear mapping is in general different for different values of a.

In the image projection case, we need to similarly generalize the notion of partial derivatives,
to approximate the two-argument measurement function h:

h(T w
c eξ̂ ,Pw +δ )≈ h(T w

c ,Pw)+h[1](T w
c ,Pw)ξ +h[2](T w

c ,Pw)δ

Above h[1](.) and h[2](.) are the 2× 6 and 2× 3 Jacobian matrices corresponding to the partial
derivatives of h in its first and second arguments, respectively. Note that the incremental pose
exp(ξ̂ ) is applied on the camera side, and hence the exponential coordinates ξ = (ω,v) are ex-
pressed in the camera frame.
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7 Nonlinear Optimization

By defining Fi j
∆
= h[1](T w

i ,Pw
j ), Gi j

∆
= h[2](T w

i ,Pw
j ), and the linearization prediction error bi j =

h(T w
i ,Pw

j )− pi j, we recover exactly the linear objective function in (2), which we can minimize
for the optimal exponential coordinates ξi and δ j.

Gauss-Newton nonlinear optimization simply iterates between linearization, solve, and up-
date, until a predefined convergence criterion is stasfied:

1. Start with a good initial estimate θ 0 = T w
1 ,T w

2 ,
{

Pj
}

2. Linearize (1) around θ it to obtain A and b

3. Solve for x = ξ1,ξ2,
{

δ j
}

using the normal equations (4)(
A′A
)

x = A′b

where A′A the Gauss-Newton approximation to the Hessian of the actual non-linear system.

4. Update the nonlinear estimate θ it+1 using the exponential map

(a) T w
1 ← T w

1 exp ξ̂1

(b) T w
2 ← T w

2 exp ξ̂2

(c) Pj← Pj +δ j

5. If not converged, go to 2.

8 Too much Freedom!
A problem that will pop up when using the Gauss-Newton for the two-view case is that the Hessian
A′A will be singular. The reason is that there is a so-called gauge freedom: the solution is not
uniquely determined, as we can displace the cameras using an arbitrary, 7DOF similarity transform
without affecting the objective function. There are several ways to get around this:

• Switch to a minimal representation of a scale-free relative transform between the two cam-
eras. This works well for two cameras but is not so easy to apply in the multi-camera case.

• Use the so called “inner constraints” from photogrammetry, which constrain the centroid
and scale of the solution. This generalizes to multiple cameras, but a downside is that the
inner constraints destroy some of the sparsity of the system, which affects computational
efficiency.

• Add prior terms on the first pose and the distance of the second pose from the first pose (e.g.,
unity). This works well and scales to multiple cameras, but in a monocular situation there
will still be scale drift.

• Fuse in information from other sensors, e.g., IMU and/or GPS.

In the case of a calibrated stereo-rig the problem of scale disappears, but one still has to put a
prior on or clamp down the first pose in order to eliminate the gauge freedom. A common but
unadvisable way is to use the technique from the next section to make the problem “disappear”.

4



9 A Matter of Trust
When far from the solution, the Hessian approximation A′A might be valid for a very small region
only, and taking “quadratic” steps as given by the normal equations will lead to divergence. A well
known way to deal with this issue is to limit the steps based on the amount of “trust” we have in
the current linearization, switching to a more cautious gradient descent approach when far from
the local minimum.

The most well-known of these so-called “region trust” methods is Levenberg-Marquardt
(LM), which solves for (

A′A+λD
)

x = A′b,

where D is either the diagonal of A or the identity matrix. For the latter case, with λ high, the
solution is given by

x = λ
−1A′b,

which is gradient descent with step size λ−1. When λ is zero or small, LM reverts to quadratic
Gauss-Newton steps. Simple implementations of LM start with high values of λ and gradually
decrease it, backing off if this leads to steps with non-decreasing error. More sophisticated variants
put a lot more work into finding a good λ at every step.

What LM is not designed for is masking out gauge freedoms, although in many implementa-
tions it is used that way: taking smaller steps when not needed will lead to slower convergence.

10 Finally, the Jacobians...
To apply all of the above, one last task has to be undertaken, and that is deriving the Jacobians of
the measurement function h. Because h itself is the composition of the coordinate transformation
g followed by the projection π , the following chain rules apply:

h[1](T w
c ,Pw) = π

′(pc) ·g[1](T w
c ,Pw)

h[2](T w
c ,Pw) = π

′(pc) ·g[2](T w
c ,Pw)

We now need to compute three Jacobian matrices:

1. The 2×3 Jacobian matrix π ′(Xc,Y c,Zc) of the projection function π is easily computed as

π
′(pc) =

1
Zc

[
1 0 −Xc/Zc

0 1 −Y c/Zc

]
=

1
zc

[
1 0 −x̂
0 1 −ŷ

]
(7)

2. The 3×3 Jacobian matrix g[2](T w
c ,Pw) of the coordinate transformation g with respect to a

change δ in the point Pw is also easy to compute, as

g(T w
c ,Pw +δ ) = (Rw

c )
T (Pw + tw

c )+(Rw
c )

T
δ

is clearly linear in δ , and hence

g[2](T w
c ,Pw) = (Rw

c )
T (8)
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3. The change in pose is a bit more challenging. It can be shown, however, that

g
(

T w
c eξ̂ ,Pw

)
= Pc +Pc×ω− v

This is linear in both ω and v, and hence the 3× 6 Jacobian matrix g[1](T w
c ,Pw) of g with

respect to a change in pose easily follows as

g[1](T w
c ,Pw) =

[
[Pc]× −I3

]
(9)

In other words, rotating the camera frame is magnified by the “arm” of the point in cam-
era coordinates, whereas moving the camera simply moves the point’s coordinates in the
opposite direction.

In summary, using Eqns. 7, 8, and 9, the derivatives of image projection are

h[1](T w
c ,Pw) =

1
Zc

[
1 0 −x̂
0 1 −ŷ

][
[Pc]× −I3

]
(10)

h[2](T w
c ,Pw) =

1
Zc

[
1 0 −x̂
0 1 −ŷ

]
(Rw

c )
T (11)

Note the “arm” of Pc for rays near the optical axis is now nearly canceled by the inverse depth
factor 1/zc in π ′(Pc), i.e., we expect flow nearly proportional to the incremental rotation ω .

11 More Than One Camera
Many readers will have already figured out that the entire story above generalizes to many cameras
almost at once. The general case is known as Structure from Motion (SfM) or bundle adjustment.
The total re-projection error now sums over all measurements pk

E
(
{T w

i } ,
{

Pj
}) ∆

= ∑
k
‖h(T w

ik ,P
w
jk)− pk‖2

Σ (12)

where ik and jk encode the data association, assumed known here. Techniques such as Levenberg-
Marquardt and obtaining a good initial estimate will be of greater importance for the many-cameras
case, as the objective function above is very non-linear, especially when points move closer to
image planes and “coross-over” to the wrong side, in which case local minimizers such as Gauss
Newton and LM will almost always converge to a local minimum.

Another often used technique in batch SfM is the “Schur complement” trick, where in the
linear step one first solves for the point updates δ j as a function of pose updates

{
ξ j
}

. However,
the utility of that in an online, visual SLAM scenario is debatable - a discussion for a different part
of the tutorial.
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A 3D Rigid Transformations
The Lie group SE(3) is a subgroup of the general linear group GL(4) of 4×4 invertible matrices
of the form

T ∆
=

[
R t
0 1

]
where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation vector. An alternative way of
writing down elements of SE(3) is as the ordered pair (R, t), with composition defined as

(R1, t1)(R2, t2) = (R1R2, R1t2 + t1)

Its Lie algebra se(3) is the vector space of 4× 4 twists ξ̂ parameterized by the twist coordinates
ξ ∈ R6, with the mapping [Murray et al., 1994]

ξ
∆
=

[
ω

v

]
θ → ξ̂

∆
=

[
[ω]× v

0 0

]
θ =

6

∑
i=1

ξiGi

where the 4×4 matrices G are called the generators for se(3). Note I follow a different convention
from Murray and reserve the first three components for rotation, and the last three for translation.
Hence, with this parameterization, the generators for SE(3) are

G1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

G2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 G3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



G4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

G5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 G6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Applying the exponential map to a twist ξ , scaled with θ ∈ R+, yields a screw motion in SE(3):

T (t) = exp
(

ξ̂ θ

)
A closed form solution for the exponential map is given in [Murray et al., 1994, page 42].

exp

([̂
ω

v

]
t

)
=

[
e[ω]×θ (I− e[ω]×θ )(ω× v)+ωωT vθ

0 1

]
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