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A Complete, Accurate and Efficient Solution for the
Perspective-n-Line Problem

Lipu Zhou1, Daniel Koppel1 and Michael Kaess2

Abstract—This paper presents a complete, accurate, and ef-
ficient solution for the Perspective-n-Line (PnL) problem. Gen-
erally, the camera pose can be determined from N ≥ 3 2D-3D
line correspondences. The minimal problem (N = 3) and the
least-squares problem (N > 3) are generally solved in different
ways. This paper shows that a least-squares PnL problem can be
transformed into a quadratic equation system that has the same
form as the minimal problem. This leads to a unified solution
for the minimal and least-squares PnL problems. We adopt the
Gram-Schmidt process and a novel hidden variable polynomial
solver to increase the numerical stability of our algorithm.
Experimental results show that our algorithm is more accurate
and robust than the state-of-the-art least-squares algorithms [1],
[2], [3], [4] and is significantly faster. Moreover, our algorithm
is more stable than previous minimal solutions [3], [5], [6] with
comparable runtime.

Index Terms—Perspective-n-Line, Localization

I. INTRODUCTION

L INES widely exist in man-made scenes. Thus, they have
been extensively used in many robotics and computer

vision tasks [7], [8]. Estimating the pose of a camera from
N 2D/3D line correspondences, called the PnL problem, is a
fundamental problem with many applications, such as structure
from motion (SfM) [9], localization [10] and augmented reality
[11]. This paper focuses on the PnL problem.

An ideal PnL algorithm should be complete, which means
that the algorithm should be applicable to all non-degenerate
cases of N ≥ 3. Completeness is important in practice and
theory, as it avoids having to implement multiple solutions to
cover all possible inputs in real applications. Although many
solutions have been proposed for the PnL problem, it is still
difficult to achieve this goal.

Both the minimal and least-squares solutions are important
in practice. One challenging problem is to find a unified
solution for the minimal and least-squares problems. Typically,
the minimal problem is addressed by solving an equation
system, and the least-squares problem is formulated as a
minimization problem. Theoretically, the minimal problem can
also be formulated as a minimization problem and solved by
a least-squares solution, such as [1]. However, this strategy is
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generally too slow to make it a practical solution. An interest-
ing question is whether we can proceed in reverse, i.e., address
a least-squares problem by means of a minimal solution, as
this may result in a complete and efficient solution. At first
glance, this idea seems infeasible, as the least-squares problem
is generally considered to be more complicated, which can be
demonstrated by comparing the complexity of the resulting
polynomial equations from both problems. The minimal prob-
lem generally leads to an eighth-order polynomial equation [3],
[5], [6], [12], but the least-squares problem typically requires
to solve a more complicated equation system. For example,
Mirzaei’s algorithm [13] requires to find the roots of three
fifth-order polynomial equations. In [3], [14], subset-based
solutions are presented which need to solve a fifteenth-order
univariate equation. This paper shows that the least-squares
problem can be solved as simply as the minimal problem.

The main contribution of this paper is a novel PnL algorithm
with the following characteristics:

Complete: Our algorithm is applicable to all N ≥ 3
line correspondences. The central idea of our algorithm is to
compress the constraints of a least-squares PnL problem into
a quadratic equation system with 3 equations and 3 unknowns
of the rotation matrix, which has the same form as the minimal
problem [5].

Accurate: Our algorithm achieves high accuracy and
robustness by avoiding numerically unstable operations. Gen-
erally, the solution of a high-order polynomial system may be
more sensitive to noise [15]. We compress the PnL constraints
into a quadratic system with 3 equations which has a lower
order than the state-of-the-art least-squares solutions [1], [2],
[3]. We use the Gram-Schmidt process to remove the potential
numerical instability in the constraint compression step. We
adopt the hidden variable method introduced in [15] to solve
this polynomial system, which shows better numerical stability
than E3Q3 [16], RE3Q3 [5] and the Gröbner basis method
[17], [15]. The experimental results show that the accuracy
and robustness of our algorithm outperform the state-of-the-art
least-squares solutions [1], [2], [3], [4] and minimal solutions
[3], [5], [6].

Efficient: Our algorithm has O (N) complexity and only
needs to solve a small quadratic polynomial system. Our
runtime is comparable to previous minimal solutions [3], [5],
[6], and it is much faster than the state-of-the-art least-squares
solutions [1], [2], [3], [4].

A. Related Work
In non-singular cases, the camera pose can be determined

by N ≥ 3 line correspondences. When N = 3, it is the
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minimal problem, known as the P3L problem. For N > 3,
it is a least-squares problem. Both minimal and least-squares
solutions play important roles in various robotics and computer
vision tasks. Due to their importance, many efforts have been
made to solve both problems.

P3L problem The P3L problem generally needs to solve
an eighth-order univariate equation, except for some specific
geometric configurations [3]. Thus it has at most 8 solutions.
One widely adopted strategy for the P3L problem is to simplify
the problem by introducing some geometrical transformation
[3], [6], [12]. Specifically, these algorithms design intermedi-
ate coordinate systems to reduce the number of unknowns to
one, which results in a univariate equation. Zhou et al. [5]
adopt quaternions to parametrize the rotations, and introduce
a direct algebraic solution for the P3L problem.

Least-Squares PnL problem Early work for the PnL
problem mainly focuses on error function formulation and
iterative solutions. Liu et al. [18] study how to formulate the
constraints from 2D-3D point and line correspondences. They
decouple the estimation of rotation and translation. Kumar
and Hanson [19] propose to jointly optimize rotation and
translation in an iterative method. They present a sampling-
based method to get an initial estimation. In [20], [21], they
propose to start the iteration from a pose estimated by the weak
perspective or paraperspective camera model. The accuracy of
the iterative algorithm depends on the quality of the initial
solution. There is no guarantee that the iterative method will
converge when the initial error is large.

The linear formulation plays an important role for most
3D vision problems [22]. Direct Linear Transformation (DLT)
provides a straightforward solution for the PnL problem [22].
This method requires at least 6 line correspondences. Přibyl
et al. [23] introduce a new DLT method based on the Plücker
coordinates of the 3D line, and this method needs at least 9
lines. In their later work [24], they combine the above two DLT
methods, which shows improved accuracy and reduces the
minimum required number of line correspondences to 5. By
exploring the similarity between the constraints derived from
the PnP problem and the PnL problem, the EPnP algorithm
[25] is extended to solve the PnL problem [2], [3]. The EPnP-
based PnL algorithm is applicable to N ≥ 4, but it is not
stable when N is small and needs special treatment for the
planar PnL problem (i.e., all lines are on the same plane).
Linear formulations ignore the constraints on the unknowns.
This generally results in a less accurate solution.

To solve the above problem, methods based on polynomial
formulation have been proposed. Ansar et al. [26] adopt a
quadratic system to represent the constraints, and present a lin-
earized approach to solve this system. Their algorithm does not
scale well with a large N . Motivated by the RPnP algorithm
[27], subset-based PnL approaches are presented in [3], [14].
They divide the N line correspondences into N − 2 triplets,
and minimize the sum of squared polynomials that are derived
from these triplets. As their cost functions are of algebraic
nature, this may result in a suboptimal solution. Using the
Gröbner basis technique [15], it is able to directly solve a
polynomial system. This results in a series of direct mini-
mization methods. In the literature, Cayley-Gibbs-Rodrigues

(CGR) [13], [28] and quaternion [2] parametrizations are
adopted to express the rotation, which results in a polynomial
cost function. Then the Gröbner basis technique is used to
solve the first optimality conditions of the cost function. The
cost functions in these algorithms are not derived from the
reprojection error, which may lead to a suboptimal solution.
Besides, the Gröbner basis technique may encounter numerical
problems as described in [15]. Zhou et al. [1] show that the
reprojection error from the 2D-3D line correspondence can be
approximated by two polynomial distances, and they introduce
a hidden variable polynomial solver. Although they show
improved accuracy, our experiments demonstrate that this
algorithm is still unstable under some challenging conditions,
such as large noise and planar configuration.

The PnL problem has some extensions for certain appli-
cations. Recently, Hichem et al. [29] propose a direct least-
squares solution for the PnL problem of a multi-camera
system. In some applications, the vertical direction is known
from a certain sensor (e.g., IMU). This can be used as a prior
for the pose estimation [30]. This paper focuses on the PnL
problem for a single camera.

In summary, a desirable PnL solution is the one that is
accurate and efficient for any possible inputs. As mentioned
above, algorithms based on linear formulations are generally
unstable or infeasible for a small N , and typically need special
treatment or do not work for the planar configuration. On the
other hand, algorithms based on a polynomial formulation gen-
erally achieve better accuracy and are applicable to a broader
configuration of PnL inputs, but they are more computationally
demanding and may encounter numerical problems. Therefore,
there exists a demand for improvement over the state-of-the-art
PnL solution.

II. PNL PROBLEM AND NOTATIONS

In this paper we use italic, boldfaced lowercase and bold-
faced uppercase letters to represent scalars, vectors and matri-
ces, respectively.

A. Constraint
The PnL problem is to estimate the camera pose including

rotation R and translation t from N ≥ 3 2D-3D line
correspondences {li ↔ Li}Ni=1. It is the line counterpart of
the PnP problem [31], [32], [33].

For the ith correspondence as shown in Fig. 1, we assume
Pij , j = 1, 2 are two 3D points on Li. Let us define the
camera intrinsic matrix as M. The projection from Pij to the
camera can be written as p̂ij ∼ M (RPij + t), where p̂ij

is in homogeneous coordinates. The 2D line li is represented
by a three-dimensional vector [22]. As p̂ij should be on li,
we have lTi p̂ij = 0. Using the expression of p̂ij , we get
lTi M (RPij + t) =

(
MT li

)T
(RPij + t) = 0. MT l can also

be treated as the normal vector of the back-projection plane
of li [22]. As M is known, we can first compute MT li. To
simplify the notation, we use li to represent MT li in the
following description. Thus the 2 constraints from li ↔ Li

can be written as:

li
T (RPij + t) = 0, j = 1, 2. (1)
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Fig. 1: A schematic of the constraints from li ↔ Li

B. Minimal Constraint of R

N = 3 is the minimal case of the PnL problem, called the
P3L problem. The rotation estimation is crucial for the P3L
problem. Basically, we can obtain 3 quadratic equations for
the 3 unknowns of R [5], [12]. We call this quadratic system
the minimal constraints of R (MCR). The basic idea of this
paper is to compress the 2N constraints of N 2D-3D line
correspondences into a MCR.

III. OUR ALGORITHM

In this paper, we use the CGR parameterization to represent
R as in [1], [13], [28]. Let us denote a three-dimensional
vector as s = [s1, s2, s3]. Then the CGR parameterization for
R can be written as

R =
R̄

1 + sT s
, R̄ =

(
1− sT s

)
I3 + 2[s]× + 2ssT , (2)

where I3 is the 3×3 identity matrix and [s]× is the skew matrix
of s. Here s differs from the angle-axis vector. Each element of
R̄ is a quadratic in s. The CGR parameterization is degenerate
if the rotation angle of R is 180◦ [28], [32]. This problem can
be solved by randomly rotating the 3D lines to a new frame
when the cost of the solution of the original problem exceeds
a certain threshold, and then rotating the solution for the new
frame back to the original frame [28].

Let us substitute (2) into (1) and multiply 1 + sT s to both
sides, then we have

lTi R̄Pij + (1 + sT s)lTi t = 0. (3)

Expanding lTi R̄Pij in (3), we get a polynomial in s and t

aT
ijr + (1 + sT s)lTi t = 0,

r =
[
s2

1, s
2
2, s

2
3, s1s2, s1s3, s2s3, s1, s2, s3, 1

]T
,

(4)

where aij is a ten-dimensional vector. (1 + sT s)t is a third-
order polynomial in s and t. To simplify (4), we define

τ = (1 + sT s)t. (5)

Using this definition, we can rewrite (4) as

aT
ijr + lTi τ = 0. (6)

Given N 2D-3D correspondences, we have 2N equations as
(6). Stacking these equations, we have

Ar + Bτ = 02N×1, (7)

where A = [a11,a12, · · · ,aN1,aN2]
T and B =

[l1, l1, · · · , lN , lN ]
T . We can treat (7) as a linear equation

system in τ . Thus the closed-form expression for τ is

τ = −
(
BTB

)−1
BTAr. (8)

Substituting (8) into (7), we have

Kr = 02N×1, K = A−B
(
BTB

)−1
BTA. (9)

We divide the monomials in r defined in (4) into two groups.
The first group r3 includes 3 monomials, and the remaining
one r7 has 7 terms. For instance, r3 =

[
s2

1, s
2
2, s

2
3

]T
and

r7 = [s1s2, s1s3, s2s3, s1, s2, s3, 1]
T . Based on this division,

the matrix K in (9) can be divided into K3 and K7, accord-
ingly. Then we can rewrite (9) as

K3r3 + K7r7 = 02N×1. (10)

Moving K7r7 to the right hand side of (10), we have
K3r3 = −K7r7. Here we treat the three elements in r3 as
individual unknowns. Consequently, we can have a closed-
form expression for r3 with respect to r7 as

r3 = −
(
KT

3 K3

)−1
KT

3 K7r7, (11)

where −
(
KT

3 K3

)−1
KT

3 K7 is a 3×7 matrix. To simplify the
notation, we define C7 =

(
KT

3 K3

)−1
KT

3 K7 . Then we can
rewrite (11) as:

Cr = 03×1, C = [I3,C7]. (12)

The above equation system includes 3 second-order polyno-
mial equations in s1, s2, s3. Each of them has the form

fi =ci1s
2
1 + ci2s

2
2 + ci3s

2
3 + ci4s1s2 + ci5s1s3+

ci6s2s3 + ci7s1 + ci8s2 + ci9s3 + ci10 = 0,
(13)

where i = 1, 2, 3. They form a MCR. This compressed
quadratic system provides the minimal number of constraints
to determine the 3 unknowns s1, s2, s3. Although the above
derivation is based on a least-squares problem, it is also
applicable to the P3L problem.

One critical step of our algorithm is to divide the monomials
of r into 2 groups to solve for r3 in (11). There are 84 =(

9
3

)
different combinations. We require the coefficient matrix

K3 for r3 is full rank. Let us define K9 as the coefficient
matrix of

[
s2

1, s
2
2, s

2
3, s1s2, s1s3, s2s3, s1, s2, s3

]T
in (9). If K9

is full rank, we can arbitrarily select r3. However, we have the
following theorem:
Theorem 1: In case of noiseless data, K9 is rank-deficient,
given an arbitrary number of 2D-3D line correspondences.

The proof can be found in appendix. As K9 is ran-deficient,
a certain input may make K3 either exactly or approximately
rank-deficient, given a constant r3. We introduce a simple
method below to solve this problem.

A. Robust Division

Let us define Rank (K9) as the rank of K9. In general
configuration for N ≥ 3 lines, we have Rank (K9) ≥ 3. This
is because, otherwise, there are less than 3 linearly independent
constraints, which are not enough to determine the 3 unknowns
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s1, s2 and s3. This contradicts to the fact that the pose can be
determined by N ≥ 3 correspondences. Therefore, although a
K3 for a certain combination may be rank-deficient, we can
always find a combination from the 84 possible combinations
whose K3 is full rank.

Our method is motivated by the QR decomposition with col-
umn pivoting [34] that can find linearly independent columns
of a matrix. Let us define kn as the nth column of K9. Here
we adopt the Gram-Schmidt process with column pivoting to
select 3 linearly independent columns from K9 to generate
K3. Specifically, we have

i =arg max
n

‖kn‖2 ,

j =arg max
n 6=i

∥∥k̄n

∥∥
2
, k̄n = kn −

ki · kn

ki · ki
ki,

k =arg max
n 6=i,j

∥∥∥k̃n

∥∥∥
2
, k̃n = k̄n −

k̄j · k̄n

k̄j · k̄j
k̄j .

(14)

Then the ith, jth and kth columns of K are selected to form
K3, and the corresponding monomials form r3. The remaining
coefficients and terms generate K7 and r7.

B. Hidden Variable Quadratic System Solver

We can obtain the rotation matrix by solving the quadratic
equation system (13). Gröbner basis approach [15] is widely
used to solve the polynomial system. Besides, Kukelova et al.
[16] introduce an efficient solution for the equation system
(13). Zhou et al. [5] improve the stability of [16]. However,
these approaches all involve computing the inverse of a matrix,
thus they may encounter numerical issues. This paper adopts
a hidden variable method to solve (12). The general hidden
variable method is computationally expensive [15]. But the
equation system (13) can be efficiently solved by a customized
hidden variable method by exploiting its special structure as
described in [15]. Here we briefly introduce this method for
completeness. The interested reader can find more details in
[15].

We first treat one unknown in (13) as a constant. Without
loss of generality, we treat s3 as a constant, and s1 and s2 as
unknowns. Then (13) can be written as

fi = ci1s
2
1+ci2s

2
2+ci4s1s2+pi1 (s3) s1+pi2 (s3) s2+pi3 (s3) = 0,

(15)
where pi1 (s3) = ci5s3 + ci7, pi2 (s3) = ci6s3 + ci8, and
pi3 (s3) = ci3s

2
3 +ci9s3 +ci10. Then we introduce an auxiliary

variable s0 to make (13) a homogeneous quadratic equation,
which makes all the terms in (15) have degree 2. This
generates the following equation system:

Fi =ci1s
2
1 + ci2s

2
2 + ci4s1s2 + pi1 (s3) s0s1+

pi2 (s3) s0s2 + pi3 (s3) s2
0 = 0.

(16)

It is easy to see Fi = fi, when we set s0 = 1.
Let us denote J (s0, s1, s2) as the determinant of the Jaco-

bian matrix of F0, F1 and F2:

J (s0, s1, s2) = det

∂F0

∂s0
∂F0

∂s1
∂F0

∂s2
∂F1

∂s0
∂F1

∂s1
∂F1

∂s2
∂F2

∂s0
∂F2

∂s1
∂F2

∂s2

 . (17)

Let us define Gi = ∂J
∂si
, i = 0, 1, 2. According to [15], G0 =

G1 = G2 = 0 at all nontrivial solutions of F0 = F1 = F2 = 0.
Gi has the from

Gi =
∂J

∂si
= qi1 (s3) s2

1 + qi2 (s3) s2
2 + qi3 (s3) s1s2+

qi4 (s3) s0s1 + qi5 (s3) s0s2 + qi6 (s3) s2
0 = 0,

(18)

where qij (s3) is a polynomial in s3. Gi has the same form
as Fi. We combine them to form a new homogeneous system
with respect to s0, s1 and s2 as

Q (s3) u = 06×1, (19)

where Q (s3) is a 6×6 matrix whose elements are polynomials
in s3, and u =

[
s2

0, s
2
1, s

2
2, s0s1, s0s2, s1s2

]T
. Based on linear

algebraic theory, the homogeneous linear system (19) has a
non-trivial solution if and only if det (Q (s3)) = 0. Here
det (Q (s3)) is the determinant of Q (s3). det (Q (s3)) = 0 is
an eighth-order polynomial equation in s3. There are at most
8 solutions. If a root is a complex number, we keep its real
part. After we get s3, we can back-substitute s3 into (19). This
leads to a linear homogeneous equation system with respect
to u. As mentioned above, Fi = fi when we set s0 = 1
. Consequentially, s1 and s2 can be computed through the
linear system (19) by back-substituting s3 into (19) and setting
s0 = 1. After we obtain s1, s2 and s3, we can compute R by
(2). Then τ can be calculated by (5). Finally, we can obtain
t by (8).

C. Solution Refinement

The above derivation is of algebraic nature. As in previous
works [1], [2], [3], [14], [25], we also use an iterative method
to refine the initial solution. We adopt the cost function
introduced in [1], which approximates the reprojection error of
the line. Specifically, the 3D line Li in [1] is represented by the
Plüker coordinates. The projection from Li to the image plane
can be written as l̂i = [R,−R[c]×]Li, where c = −RT t.
Assume p̄ij , j = 1, 2 are the homogeneous coordinates of the
two normalized endpoints of the detected 2D line segment li.
The error from p̄ij to l̂i is e =

l̂i·p̄ij√
l̂1i +l̂2i

, where l̂1i and l̂2i are

the first and second elements of l̂i, respectively. In [1], e is
approximated by fixing the denominator of e at the initial pose.
This leads to a sixth-order polynomial cost in s and t.

We adopt the damped Newton step to refine the solution.
Specifically, for the kth step, we compute the Hessian Hk

and the gradient gk of the cost function with respect to s and
t. Then the solution is updated by [sk+1, tk+1] = [sk, tk] −
(Hk + λI6)

−1
gk. Here λ is adjusted in each step according

to the Levenberg-Marquardt (LM) algorithm [35] to make the
cost reduce. We run at most 5 iterations.

D. Summary of Algorithm

Our PnL solution is applicable to N ≥ 3 2D-3D line
correspondences. Basically, our algorithm has 4 steps. The first
step is to compress the 2N constraints (3) into 3 equations
(13). This equation system is solved by the introduced hidden
variable method. Then we recover R and t. Finally, we refine
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Algorithm 1: Our PnL algorithm
Input: N ≥ 3 2D-3D line correspondences
Output: Camera Pose R and t

1) Compress the 2N constraints (3) from N 2D-3D line
correspondences:
• Calculate τ as a function of s by (8) and substitute

it into (7) to generate a quadratic system (9) in s.
• Split the quadratic system (9) into two parts by the

Gram-Schmidt process with column pivoting.
• Solve for r3 to generate an equation system (13).

2) Solve (13) for s by the hidden variable method.
3) Compute R by (2), and t by (8) and (5) .
4) Refine the solution by the damped Newton step.

Fig. 2: Comparison of the numerical stability of the introduced
hidden variable (HV) method, Gröbner [17], E3Q3 [16] and
RE3Q3 [5].

the solution by the damped Newton step. We summarize our
algorithm in Algorithm 1. As mentioned in [32], the value of
the cost function may not enough to select the correct solution
for some PnP inputs, and multiple minima are returned for
these cases. We have observed this issue for the PnL problem
as well. We return multiple solutions when the difference
among the costs of physically feasible solutions is not obvious.

The computational complexity of step 2 and 3 is O(1)
as they are independent of the number of lines. The major
computational cost in step 1 comes from solving the linear
least-squares problem (8) and (11). The main computational
cost of step 4 comes from calculating the summation of
squared distance functions. The computational complexity of
these steps increases linearly with respect to N . In summary,
the computational complexity of our algorithm is O(N).

IV. EXPERIMENTAL RESULTS

In this section, we first investigate our algorithm, referred
to as MinPnL. Then we compare our algorithm with previous
P3L and least-squares algorithms. The compared algorithms
are listed below:
• For the P3L problem, we compare our algorithm with

AlgP3L [5], RP3L [3] and SRP3L [6].
• For the least-squares PnL problem, the following al-

gorithms are compared: OAPnL [1], SRPnL [6] ,
ASPnL [3], Ansar [26], Mirzaei [13], LPnL DLT [3],
DLT Combined [23], DLT Plucker [24], cvxPnPL[4],
LPnL Bar LS [3], LPnL Bar ENull [3], OPnPL [2],
and EPnPL Planar [2].

We adopt the metrics in [1], [24] to measure the estimation
error. Specifically, assuming Rgt and tgt are the ground truth

Fig. 3: The effect of the Gram-Schmidt process. Three choices
of r3 are considered, including

[
s2

1, s
2
2, s

2
3

]
, [s1s2, s1s3, s2s3]

and [s1, s2, s3], referred to as MinPnL s2
i , MinPnL sisj and

MinPnL si.

Fig. 4: Comparison of our algorithm with previous P3L
algorithms including AlgP3L [5], RP3L [3] and SRP3L [6].
The left figure shows the mean rotation errors, and the right
figure shows the boxplot of rotation errors at σ = 5 pixels.

rotation and translation, and R̂ and t̂ the estimated ones, we
calculate the rotation error ∆θ as the angle (degree) of the
axis-angle representation of R−1

gt R̂ and the translation error
∆t as

∥∥tgt − t̂
∥∥

2
/ ‖tgt‖2 × 100%.

A. Experiments with Synthetic Data

In this section, we use synthetic data to evaluate the perfor-
mance of different algorithms. We first compare the solvers
for equation system (13) and study the effect of the Gram-
Schmidt process. Then we compare our algorithm with the
state-of-the-art P3L and least-squares PnL algorithms.

Data Generation Our synthetic data are generated simi-
lar to [1], [3], [14]. Specifically, we set the camera resolution to
640×480 pixels and the focal length to 800. For each trial, the
camera is randomly placed within a [−10m, 10m]3 cube and
the Euler angles of the rotation are uniformly sampled from
α, λ ∈ [0◦, 360◦] and β ∈ [0◦, 180◦]. Then N 2D-3D line
correspondences are randomly generated. We first randomly
generate the endpoints of the 2D lines, then the endpoints of
the corresponding 3D lines are generated by back-projecting
the 2D endpoints into 3D. Depths of the 3D endpoints are
within [4m, 10m]. Then these 3D endpoints are transformed
to the world frame. Here the endpoints of the 2D and 3D
lines are matched as in previous works [1], [3], [14]. Thus the
solution of [2] is calculated without the line shift step, which
aims to align the endpoints of the 2D and 3D lines, to fairly
evaluate its accuracy and runtime.

Compare Polynomial Solvers We use the boxplot to
present the estimation errors. In the boxplot, the central mark
of each box indicates the median, and the bottom and top
edges indicate the 25th and 75th percentiles, respectively. The
whiskers are extended to ±2.7 standard deviations, and the
errors out of this range are plotted using the symbol “+”.
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We compare the numerical stability of the introduced hidden
variable (HV) method, Gröbner [17], E3Q3 [16] and RE3Q3
[5] using 10, 000 trials. The monomial coefficients and a
solution sgt of (13) are randomly generated from (−1, 1).
Then we substitute sgt into (13) to calculate the constant
items of (13). Assume ŝ is the estimated solution. We use
||ŝ − sgt||2/||sgt||2 to evaluate the estimation error. Fig. 2
shows the results. It is clear that the hidden variable solver
is more stable than other solvers. As these solvers all involve
computing the inverse of a matrix, they may generate a large
error when the matrix is rank deficiency or near to that
condition.

The Effect of the Gram-Schmidt Process One critical
step of our algorithm is to reorganize Kr = 0 in (9) as
K3r3 +K7r7 = 0 in (10). There exist 84 choices for r3. Here
we study the impact of different choices on numerical stability.
We consider 3 choices of r3, i.e.,

[
s2

1, s
2
2, s

2
3

]
, [s1s2, s1s3, s2s3]

and [s1, s2, s3], named as MinPnL s2
i , MinPnL sisj and

MinPnL si, respectively. We increase the number of corre-
spondences N from 4 to 20, and set the standard deviation of
the noise to 2 pixels. For each N , we conduct 500 independent
trials. Fig. 3 demonstrates the results. As shown in the boxplot
of Fig. 3 for N = 4, the fixed choice of r3 may generate large
errors as it may encounter a numerical problem when K3 is
nearly rank-deficient. The Gram-Schmidt process solves this
problem.

Compare P3L Algorithms We next compare our P3L
algorithm (MinP3L) with previous P3L algorithms including
AlgP3L [5], RP3L [3] and SRP3L [6]. To fairly compare
the performance, our results are obtained without running
the iterative refinement step, as the compared algorithms do
not have such a refinement. We consider the behavior of the
P3L algorithms under varying noise levels. We add Gaussian
noise to the endpoints of the 2D lines. We conduct 500
independent trials for each noise level. The standard deviation
σ increases from 1 to 10 pixels. Fig. 4 shows the results.
Our algorithm is more robust than the compared ones. The
compared algorithms [3], [5], [6] all have longer tails than
our algorithm. This may be due to the numerically unstable
operations in these algorithms, such as potentially vanishing
denominators in equation (4) of [3] and (20) of [6], and the
singular case of RE3Q3 in AlgP3L [5].

Compare Least-Squares Algorithms As done in previous
works [1], [3], [14], we consider two configurations of the 2D
line segments, including the centered case (the 2D line seg-
ments are uniformly distributed within the whole image) and
the uncentered case ( the 2D line segments are constrained
within [0, 160]× [0, 120]). The following results are from 500
independent trials.

In the first experiment, we consider the performance of the
PnL algorithms w.r.t. varying number of correspondences. The
standard deviation σ of the Gaussian noise added to the 2D
line endpoints is set to 2 pixels. In the second experiment, we
consider the situation of varying noise level. σ is from 1 pixel
to 10 pixels, and N is set to 10. Fig. 5 shows the mean errors.
Typically, solutions from polynomial formulations are more
stable than linear solutions. OAPnL [1] and our algorithm
achieve the best result among the compared algorithms. The

(a) Centered non-planar case.

(b) Uncentered non-planar case.

Fig. 5: Comparison of our algorithm (MinPnL) with previous
PnL algorithms w.r.t. increasing number of lines ( first two
columns, N ∈ [4, 20], σ = 2 pixels) and increasing noise level
(last two columns, N = 10, σ ∈ [1, 10] pixels) for centered
and uncentered non-planar cases.

(a) Centered planar case.

(b) Uncentered planar case.

Fig. 6: Comparison of our algorithm (MinPnL) with previous
PnL algorithms w.r.t. increasing number of lines ( first two
columns, N ∈ [4, 20], σ = 2 pixels) and increasing noise level
(last two columns, N = 10, σ ∈ [1, 10] pixels) for centered
and uncentered planar cases.

results almost coincide, but our algorithm is more accurate
than OAPnL when N = 4 or σ is large. cvxPnPL [4] provides
comparable results only when N ≥ 10. Other algorithms
provide obviously larger errors.

Furthermore, we also evaluate the accuracy of the PnL
algorithms in the planar configuration (all the 3D lines are in
a plane). The planar configuration widely exists in man-made
environments. However, many PnL algorithms are infeasible
for this configuration as shown in [1], [24]. Here we compare
our algorithm with 7 PnL algorithms as shown in Fig. 6. Our
algorithm achieves the best results. cvxPnPL[4], ASPnL [3]
and Mizaei [28] generate large errors which are beyond the
bounds of the figure. Although OAPnL [1] achieves similar
results as our algorithm in the non-planar case, our algorithm
is clearly more stable for the planar case.

Runtime We evaluate the runtime of different algorithms on
a 3.1 Hz Intel Core i7 laptop with 16G memory using Matlab.
We first compare the runtime of the P3L algorithms by 10,000
independent trials. The average computational time of our
algorithm, RP3L [3], SRP3L [6] and AlgP3L [5] are 0.32ms,
0.26ms, 0.22ms, 0.29ms, respectively. Our algorithm is slightly
slower than them, but is more robust as demonstrated in Fig.



ZHOU et al.: A COMPLETE, ACCURATE AND EFFICIENT SOLUTION FOR THE PNL PROBLEM 7

TABLE I: Experimental results with real data. ∆θ(◦) is the angle of the angle-axis representation of R−1
gt R̂. ∆t(m) is the

absolute translation error
∥∥tgt − t̂

∥∥
2
. The best results are displayed in bold font.

Dataset BB STR TFH MH COR MC1 MC2 MC3 ULB WDC

#images 66 20 72 10 11 3 3 3 3 5
#lines 870 1841 828 30 69 295 302 177 253 380

Mirzaei ∆θ 88.18 0.90 32.24 0.46 0.22 4.83 15.47 5.00 2.51 36.52
∆t 168.47 1.92 11.04 0.04 0.10 1.53 7.37 1.82 1.27 6.44

DLT Comb ∆θ 0.40 0.22 0.39 0.41 0.11 0.11 0.15 0.16 0.20 0.23
∆t 1.88 0.38 0.32 0.04 0.04 0.04 0.07 0.05 0.08 0.12

DLT Plücker ∆θ 1.04 0.93 1.11 17.58 0.38 0.28 0.22 0.48 0.77 0.34
∆t 1.88 0.38 0.32 0.04 0.04 0.04 0.07 0.05 0.08 0.12

LPnL ENull ∆θ 0.30 0.11 0.57 0.32 0.10 0.04 0.03 0.07 0.39 0.08
∆t 1.13 0.16 0.45 0.022 0.04 0.01 0.02 0.02 0.18 0.05

LPnL LS ∆θ 1.98 0.15 1.10 0.45 0.13 0.03 0.03 0.09 0.49 0.18
∆t 7.23 0.27 1.05 0.04 0.05 0.01 0.02 0.03 0.22 0.11

ASPnL ∆θ 37.82 22.08 7.76 0.25 0.10 0.15 0.20 2.08 4.89 0.51
∆t 76.61 30.47 6.11 0.018 0.03 0.04 0.08 0.74 2.22 0.23

SRPnL ∆θ 36.92 0.14 3.40 0.25 0.063 0.58 0.15 48.53 5.58 0.11
∆t 42.98 0.20 2.67 0.018 0.021 0.14 0.066 5.25 2.75 0.049

OPnPL ∆θ 0.19 0.09 0.42 0.28 0.07 0.03 0.03 0.06 0.06 0.13
∆t 0.81 0.07 0.31 0.02 0.02 0.01 0.01 0.02 0.02 0.06

cvxPnPL ∆θ 0.18 0.081 0.40 0.25 0.055 0.035 0.025 0.065 0.12 0.10
∆t 0.78 0.058 0.31 0.018 0.019 0.011 0.013 0.020 0.048 0.047

OAPnL ∆θ 0.18 0.080 0.10 0.22 0.031 0.011 0.012 0.022 0.030 0.036
∆t 0.78 0.029 0.070 0.015 0.011 3.5e−3 6.0e−3 7.4e−3 0.014 0.019

MinPnL ∆θ 0.18 0.080 0.089 0.21 0.031 0.010 0.013 0.022 0.030 0.036
∆t 0.78 0.024 0.057 0.015 0.011 3.4e−3 6.3e−3 7.4e−3 0.014 0.019

4. Next, we compare the runtime of the least-squares PnL
algorithms. The results are from 500 independent trials and are
illustrated in Fig. 7. The algorithms Ansar [26] and cvxPnPL
[4] are too slow for a large N and are not considered here.
As shown in Fig 5 and 6, OAPnL [1] and our algorithm are
generally the most accurate two algorithms. But our algorithm
is significantly faster than OAPnL as shown in Fig. 7(b). In
addition, our algorithm has similar runtime compared to the
linear algorithm DLT Combined [24] and DLT Plucker [23],
and slightly slower than LPnL Bar ENull [3] when N is less
than 100, and faster than LPnL DLT [3] when N is large.

B. Experiments with Real Data

In this section, we use the MPI1 and VGG datasets2 to
evaluate the PnL algorithms. They include 10 datasets whose
characteristics are listed in Table I. Here we adopt the absolute
translation error

∥∥tgt − t̂
∥∥

2
instead of the relative error used

for the synthetic data, as the ground truth translation is [0; 0; 0]
in some cases. Table I presents the results. We find that some
algorithms generate large errors even for hundreds of lines,
such as Mirzaei [28], ASPnL [3] and SRPnL [14] on the
BB dataset. Our algorithm achieves the best result among the
compared algorithms, except for the MC2 dataset where it is
slightly less accurate than OAPnL [1].

V. CONCLUSIONS

This paper presents a complete, accurate and efficient so-
lution for the PnL problem. Instead of formulating a least-
squares problem into a minimization problem as in previous
works, we compress the 2N constraints of N line corre-
spondences into 3 quadratic equations with 3 unknowns. This

1MPI dataset http://resources.mpi-inf.mpg.de/LineReconstruction/
2VGG dataset http://www.robots.ox.ac.uk/ vgg/data/data-mview.html

(a) (b) (c)

Fig. 7: (a) Runtime for all the algorithms. (b) Runtime for
algorithms with polynomial solvers. (c) Runtime for our
algorithm and algorithms based on linear transformation.

establishes the connection between a least-squares problem
and a minimal problem. We adopt the Gram-Schmidt pro-
cess to avoid the numerical instability during the constraint
compression. We solve this quadratic equation system using a
novel hidden variable polynomial solver. We conduct extensive
experiments, and the results show our algorithm is more
accurate than the state-of-the-art least-squares algorithms [1],
[2], [3], [4] especially under the challenging conditions (such
as small numbers of lines, large noise and planar case) at a
lower cost. On the other hand, our algorithm is more stable
than the state-of-the-art P3L algorithms [3], [5], [6] with
comparable runtime.

APPENDIX

Proof. Here we prove Theorem 1. The constraints in (1) can
be rewritten as li

TRPij + li
T t = 0, j = 1, 2. Define Rij

as the element of R at the ith row and jth column, and
q = [R11, R12, R13, R21, R22, R23, R31, R32, R33]

T . Expand-
ing the above constraint, we have wijq + li

T t = 0. We stack
the 2N constraints to get

Wq + Bt = 02N×1. (20)
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The coefficient matrix B in (20) is the same one in (7).
Similarly to (8), we can have a closed-form expression for
t i.e. t = −

(
BTB

)−1
BTWq. Substituting it to (20), we get

Lq = 02N×1, L = W −B
(
BTB

)−1
BTW. (21)

We have Rank (L) < 9. This is because (21) is a ho-
mogeneous linear system. As q is a non-trivial solution of
(21), according to linear algebraic theory, L should be rank-
deficient, because otherwise this homogeneous system will
only have a trivial (zero) solution, which is in contradiction
to the fact that there is a non-trivial solution q for (21).

As we know, q is the vectorization of R. Using the
definition in (2), we find that every element in q is a
linear combination of the elements in r

1+sT s
. For instance,

R11 = [1,−1,−1, 0, 0, 0, 0, 0, 1] r
1+sT s

. Stacking these linear
combinations, we have q = Er

1+sT s
. Substituting this into

(20) and multiplying both sides by 1 + sT s and using the
definition of τ in (5), we have WEr + Bτ = 02N×1.
Comparing the above equation with (7), we have A = WE.
Substituting it into (9) and using the expression of L in
(21), we have K =

(
W −B

(
BTB

)−1
BTW

)
E = LE.

According to algebraic theory, the rank of the product of
two matrices is smaller than or equal to the smaller rank
of the two matrices. As we know Rank (L) < 9, thus
we have Rank (K) ≤ min (Rank (L) , Rank (E)) < 9.
K9 is the first 9 columns of K. Consequentially, we have
Rank(K9) ≤ Rank(K) < 9. Thus K9 is rank-deficient.
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