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Abstract— This paper presents a self-supervised framework
for learning depth from monocular videos. In particular, the
main contributions of this paper include: (1) We present a
windowed bundle adjustment framework to train the net-
work. Compared to most previous works that only consider
constraints from consecutive frames, our framework increases
the camera baseline and introduces more constraints to avoid
overfitting. (2) We extend the widely used U-Net architecture by
applying a Spatial Pyramid Net (SPN) and a Super Resolution
Net (SRN). The SPN fuses information from an image spatial
pyramid for the depth estimation, which addresses the context
information attenuation problem of the original U-Net. The
SRN learns to estimate a high resolution depth map from a
low resolution image, which can benefit the recovery of details.
(3) We adopt a clip loss function to handle moving objects
and occlusions that were solved by designing complicated
network or requiring extra information (such as segmentation
mask [1]) in previous works. Experimental results show that
our algorithm provides state-of-the-art results on the KITTI
benchmark.

I. INTRODUCTION

Predicting depth from a single image is challenging. How-
ever, it has many applications in 3D vision and robotics, such
as autonomous driving, obstacle avoidance and Simultaneous
localization and mapping (SLAM). Due to its importance,
much effort has been devoted towards solving this problems.
Early works [2], [3], [4] formulated this task as a supervised
learning problem. The difficulty of the supervised method
lies in the lack of ground truth depths. Recent work [5], [6],
[7], [8], [9], [10], [1] shows that view synthesis provides
an effective supervisory signal to train the network, and this
makes unsupervised learning for depth estimation possible.

In the literature, stereo and monocular video has been used
to train the network. Compared to stereo video, monocular
video is a larger training source. However, training on
monocular videos is more challenging, due to the unknown
camera motion, moving objects, and varying lighting con-
ditions. This paper focuses on unsupervised learning using
monocular video.

Typically, generating effective geometric constraints, de-
signing proper network architecture and handling moving
objects and occlusion are important for learning high quality
depth estimation. It is well known in the field of multiple
view geometry [11] that a large camera baseline is essential
for accurate depth estimation. But most of previous self-
supervised frameworks [5], [12], [7], [13], [1], [14] only
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Fig. 1. Results of our algorithm and strut2depth [1]. Strut2depth [1] uses
segmentation mask and pretrained model for training. Our algorithm does
not require extra data and learns from scratch, but it provides better results

consider consecutive frames to generate constraints. The
small baseline between two consecutive frames may reduce
the depth estimation accuracy.

In terms of the network architecture, the U-Net [15] is
generally adopted for depth estimation. The U-Net has a
decoder-encoder structure with skip connections to combine
feature maps of different size of receptive field as shown
in Fig. 3 (a). Context information is important for depth
estimation as demonstrated in Fig. 2. However, in the U-
Net structure [15], the context information from the encoder
may be gradually attenuated as it is sequentially combined
with feature maps with diminishing receptive fields. This
may make the depth estimation sensitive to local texture. Be-
sides, previous work has generally adopted the paradigm of
producing a low resolution depth map from a low resolution
image, followed by a up-sampling step. The interpolation
may result in a blurry depth map and ignore details. The
above issues are ignored by previous work. Moreover, one
challenge for learning depth from monocular video lies in
moving objects and occlusions. Previous works generally
design complicated networks or require extra information to
solve this problem, such as the expandability net designed in
[5] or the segmentation mask required in [1]. This paper aims
to solve the above issues. Experimental results show that our
solution yields state-of-the-art results on the KITTI dataset.
The main contributions of this paper are the following:

Windowed Bundle Adjustment Framework We present
a Windowed Bundle Adjustment Framework (WBAF) to
train the network. Our WBAF jointly optimizes depths
and camera poses through cross-sequence photometric and
geometric constraints in forward and backward directions as
shown in Fig. 4. Compared to previous work, our framework
increases the baseline and introduces more constraints to
avoid overfitting.

U-Net Extension We extend the U-Net by applying a
Spatial Pyramid Net (SPN) and a Super-Resolution Net



(SRN). Motivated by [16], our SPN uses skip connects
to fuse information from regions in a pyramid, which can
provide different levels of context information for depth
estimation. Our SRN learns to generate a high resolution
depth map from a low resolution input.

Clip Loss Function We adopt a clip loss function to deal
with moving objects and occlusion. During training, errors
higher than a certain percentile will be capped. They will
generate zero gradients, and will not impact on training.

Some recent work [17], [18], [19] presented similar con-
cepts as our algorithm. But our algorithm is different from
them. Our WBAF differs from the BA-Net introduced in
[17]. BA-Net is a supervised framework whose purpose is
yield a differentiable Levenberg-Marquardt (LM) algorithm.
However, our WBAF is an unsupervised framework that
aims to increase the camera baseline and introduce more
constraints. Our SPN is also different from the feature pyra-
mid introduced in [17]. The feature pyramid [17] is trained
to replace the image photometric error and is not used to
predict the depth. Our SPN, on the other hand, is specifically
designed to predict the depth. Our SPN also differs from
the pyramid pooling model [18] that is not of an encoder-
decoder structure. It applies average or maximum pooling
to the last layer of a CNN to generate feature maps with
different scale. Our SPN has an encoder-decoder structure
and combines feature maps from different convolutional
layers. Our SRN also differs from SuperDepth [19] where
the sub-pixel convolution [20] is adopted to replace the up-
sampling layers in the U-Net. Their input and output are
of the same size. But our SRN is used to generate a high
resolution depth map from a low resolution input. Our SRN
can provides 4 times more constraints than SuperDepth.

A. Related Work

Estimating depth from a single image is a challenging task.
A large number of supervised and unsupervised approaches
have been proposed to address this problem.
Supervised Depth Estimation Most supervised ap-
proaches formulate the depth estimation problem as a su-
pervised regression problem. In early work [21], a Markov
random field (MRF) with hand-crafted features was trained
to estimate the depth. To avoid feature engineering, Eigen et
al. [22] presented a multi-scale CNN to predict the depth.
Recently, Tang et al. [17] introduced BA-Net and feature
pyramid to improve the performance. Nekrasov et al. [23]
combined semantic segmentation and depth estimation into
one model and achieved real-time performance. Li et al.
[24] employed structure-from-motion (SfM) and multi-view
stereo (MVS) technologies to generate the supervisory 3D
information. But this method is not applicable to scenarios
where SfM or MVS fail to work.
Unsupervised Depth Estimation The photometric and
geometrical consistency of nearby frames provides a way
to avoid the requirement of ground truth depths. Stereo and
monocular sequences are used to train the network.

Stereo Sequences The left and right images and the
known pose between them form a self-supervisory loop to

train the network. Garg et al. [25] first applied this self-
supervised methodology on stereo sequences. They used
the Taylor expansion to approximate the cost function for
gradient computation, which may result in a suboptimal
objective. To solve this problem, Godard et al. [6] applied
the spatial transformer network [26] to yield a differentiable
reconstruction cost function. The temporal photometric and
deep feature reconstruction errors were used to improve
the performance in [8]. Aleotti et al. [27] designed a
GAN paradigm [28] for the depth learning. Geo et al.
[29] employed a stereo matching network to supervise the
depth learning. Recently, Zhan et al. [14] showed improved
accuracy by using the depth-normal consistency to train two
networks for depth and normals estimation.

Monocular Sequences Learning depth from monocular
sequences is more challenging, due to the unknown camera
pose and moving objects. Zhou et al. [5] showed that it is
capable of learning depth and pose estimation at the same
time. Several recent works explore additional geometrical
constraints for the unsupervised training. The consistency
between normals and depths was utilized in [10]. The 3D
point cloud alignment loss was introduced in [13]. Depth
and optical flow predictions are related tasks. Recent works
[12], [7] showed that jointly learning them can be of mu-
tual benefit. Motivated by traditional direct visual odometry
(DVO) technology, Wang et al. [9] introduced depth nor-
malization and a differentiable DVO module to replace the
pose network. Recently, Godard et al. [30] presented several
effective approaches to improve the depth estimation.

Previous work generally only consider the constraints from
two consecutive frames, which results in a short baseline. Be-
sides, the generally used U-Net structure [15] has the risk of
context information reduction. Additionally, the interpolation
used to recover a high resolution depth map may result in a
blurry depth map. This paper aims to address these issues.

Moving objects and occlusion are another problem for
unsupervised training. Zhou et al. [5] proposed an expla-
nation mask to estimate the regions undergoing motion and
occlusion. However, they later found that the explanation
mask actually reduced the performance. In [7], [12], [31], a
separate optical flow model was trained to handle moving
objects. Prasad et al. [32] computed the essential matrix
to deal with moving objects. Recently, Casser et al. [1]
exploited the segmentation mask to model object motion.
The central idea of addressing moving objects is to eliminate
them from training. Thus, this paper introduces a simple
method, i.e. a clip loss function, to solve this problem.

II. OUR APPROACH

Our framework includes two networks for depth and pose
estimation, as demonstrated in Fig. 4. We will detail our
unsupervised framework below.

A. Depth Net

This section describes the architecture of our depth net. It
extends the U-Net with SPN and SRN.



Fig. 2. Motivations for our spatial pyramid net. Context information provides essential information for depth inference. Actually, even our human can
not infer the depth of a pixel from a small path around it for some objects. However, in the traditional U-Net [15], the context information is gradually
attenuated as it sequentially combines with features with reducing receptive fields, which may make it sensitive to local texture as shown in (a) and (b).
Besides, local features will benefit recovering the details of complicated objects, such as the two boys riding bicycles in (c) and the pedestrians in (d).
Therefore, context and local information are both important for depth estimation. Our algorithm combines information from a spatial pyramid.

Fig. 3. (a) A schematic of the U-Net. In the U-Net, feature maps from the encoder with decreasing receptive fields are sequentially infused into the
decoder. This may downplay the context information. (b) A schematic of our U-Net extension including SPN and SRN. The SPN fuses feature maps
with different size of receptive field by skip connections. The SRN has 3 layers and generates a high resolution depth map. (c) The effect of our SPN.
Our SPN integrates nformation from an image pyramid to estimate the depth.

1) Motivations for SPN: In previous work, the U-Net
architecture [15] is adopted to predict the depth. The U-Net
includes an encoder and a decoder, as demonstrated in Fig. 3
(a). The last feature map FMN of the encoder has the largest
receptive field, and is the input of the decoder. As FMN

goes through the decoder, feature maps with decreasing
receptive fields from lower layers of the encoder sequentially
merge into it. As the local information accumulates, context
information gradually reduces. But the context information is
important for depth estimation due to the following reasons:

(I) Context information can increase the consistency of the
depth map. Nearby pixels have similar context information
which can avoid anomalous depth estimation caused by
variation in local appearance. As shown in Fig. 2 (a), the
state-of-the-art algorithm [1] generates a hole in the bush
labeled by a red box. This may be cased by the mixture of
the vegetation and the background white wall.

(II) Context information provides semantic information to
assist in inferring depth in complex situations. For example,
the depth of the letters and windows on the wall in Fig. 2 (b)
should be consistent with the depth of the wall. Their depth
can not be correctly inferred without the wall as a reference.

(III) Context information is essential to distinguish pixels
in textureless regions that are locally similar, but globally
different. For example, as shown in Fig. 2 (b), even our
human requires the context information to distinguish the

pixel of the wall and the pixel of the sky.
On the other hand, local information is important to

recover the details, such as object boundaries. For instance,
Fig. 2 (c) and (d) include persons in various poses. The local
information is essential to recover their depth.

2) Spatial Pyramid Net: As described above, both local
and context information are important for depth estimation.
Therefore, we present a SPN to fuse information from an
image pyramid, as demonstrated in Fig. 3. Our SPN uses
skip connections to concatenate feature maps with different
size of receptive field for depth estimation. We call the
feature map generated in this way as the Spatial Pyramid
Feature Map (SPFM). As previous works, apart from the
main branch, our SPN has three auxiliary depth predictors.
For each predictor, the current finest feature map is combined
with previous coarser feature maps to yield a SPFM for depth
estimation. As a finer feature map has a smaller number of
channels, the number of channels of a coarser feature map
is reduced by half for each skip.

3) Super-Resolution Network: In previous work, the net-
work takes a down-sampled image as the input, and predicts
a depth map of the same resolution. This low resolution depth
map is then interpolated to recover the original resolution.
The drawback of this method is that it may yield a blurry
depth map. Furthermore, details or even entire small objects
may be lost. To solve this problem, we introduce a SRN



which is trained to generate a depth map of double the size
compared to the input image. Therefore, our SRN provides
4 times as many training constraints compared to previous
works. This can benefit the training. Our SRN upsamples the
last feature map of our SPN, followed by three convolutional
layers for depth prediction. Fig. 3 (b) demonstrates the
structure of our SRN. From Fig. 6, we can find that our
network can generate clear boundaries and more details of
the scene.

4) Depth Net Architecture: Our depth net adopts the
architecture of [5] as the backbone. Our SPN introduces
some skip connections to concatenate feature maps with
different size of receptive field. Each skip connection uses a
3×3 kernel to halve the number of channels, then upsampling
is adopted to double the size of the feature map. Our SRN
includes three layers using a 3×3 kernel with the number of
channels 16, 8 and 8, respectively. We adopt the depth map
normalization as in [9]. We apply the sigmoid function at
the depth estimation, and the ReLU non-linearity elsewhere.

B. Pose Net

Our pose net has a similar structure as [5], except that
our pose net takes two consecutive images as the input, and
predicts the relative pose between them. As the pose net
sequentially slides through the whole sequence, it estimates
the relative pose of each image pair. This differs from
[5], where the whole image sequence is fed into the pose
network, and the poses between the middle image and others
are predicted. One advantage of our pose net is that it can be
trained on short sequences, but applied to a sequence with
arbitrary length.

C. Windowed Bundle Adjustment Training Framework

In the traditional DVO system, landmarks are tracked by
photometric consistency frame by frame. The Windowed
Bundle Adjustment Framework (WBAF) is performed to
jointly optimize a set of camera poses and landmark depths
within a sliding window [33]. The WBAF establishes the
constraints between non-consecutive camera poses. This
increases the baseline of a moving camera, which is es-
sential for accurate depth estimation. Motivated by this,
we formulated our unsupervised training in the WBAF, as
demonstrated in Fig. 4. Our WBAF uses N -frame snippet
S = {I1, I2, · · · , IN} as the input. Similar to the traditional
WBAF, the photometric consistency is used to track each
pixel frame by frame. Besides, the depth consistency is ex-
ploited to establish the cross-sequence geometric constraints
on camera poses and depths. Specifically, we consider the
depth consistency between one depth map and all the re-
maining ones. Then a set of poses and depth maps are jointly
optimized. Apart from the forward motion, we also consider
a backward motion which reverses the sequence during the
training. Our WBAF establishes the constraints among the
N frames. Compared to previous work [5], [12], [7], [1],
[14] that only considers constraints from two consecutive
frames, our frame yields more constraints to avoid over-
fitting. Specifically, our algorithm generates the number of

constraints of the order O(N2), instead of O(N) in previous
work. Our WBAF minimizes the photometric consistency
cost, geometric consistency cost and local smoothness cost
detailed below.

1) Photometric Consistency Cost: We first consider the
photometric cost from 2 images It and It+1. Given the
estimated depth map D̂t from It and the estimated pose
T̂t→t+1 between It and It+1, we can map a homogeneous
pixel pt ∈ It onto a pixel p̂t+1 ∈ It+1 as

p̂t+1 ∼ KT̂t→t+1D̂t (pt)K
−1pt (1)

where K is the camera intrinsic matrix. As previous work
[8], we adopt the differentiable spatial transformer network
introduced in [26] to calculate the value of It+1 (p̂t+1).
Specifically, It+1 (p̂t+1) is calculated by the bilinear interpo-
lation using the values of the 4 neighbors around p̂t+n. Using
this method, we can reconstruct It by It+1 and T̂t→t+1.
Assuming a static scene, no occlusion, and constant lighting
conditions, Ît is expected to be the same as It. As some
pixels of It may not be visible in It+1, we use the mask
Mt (pt) proposed in [13] to get rid of these invisible pixels.
We formulate the photometric consistency cost between Ît
and It as

Lre =
N−1∑
t=1

∑
pt

Mt(pt)L
t
re (pt),

Lt
re (pt) = α 1−SSIM(Ît(pt),It(pt))

2
+ (1− α)

∣∣∣Ît(pt)− It(pt)
∣∣∣
(2)

where SSIM represents the structural similarity index [34]
and α is set to 0.85 as previous work.

2) Cross-sequence Geometric Consistency Cost: The
depth of a 3D point estimated from different images should
be consistent. This can be used to establish constraints
among images in S. However, the geometric consistency
cost can not be formated as done in [7], using the
above photometric consistency cost. This is because we
can assume the color of a 3D point is the same for different
frames, however, the depth of a 3D point changes.

For each pt ∈ It, we can use (1) to estimate the
corresponding p̂t+n ∈ It+n. Since p̂t+n has continuous
coordinates, we estimate the depth of p̂t+n using the bilinear
interpolation. We denote the depth map generated in this way
as D̂t→t+n (pt). On the other hand, we can transform the
point cloud in frame t to frame t+ n using

Pt→t+n = T̂t→t+nD̂t (pt)K
−1pt (3)

Then the depth of pt in frame t + n is the z-coordinate of
Pt→t+n. We denote the depth map generated from (3) as
D̃t→t+n (pt). Ideally, D̃t→t+n (pt) and D̂t→t+n (p) should
be equal. Thus, we have the depth consistency cost as

Ldc =

N−1∑
t=1

N−t∑
n=1

∑
pt

∣∣∣D̃t→t+n(pt)− D̂t→t+n(pt)
∣∣∣ (4)

Ldc establishes cross-sequence constraints, which increases
the camera base line, as illustrated in Fig. 4.



Fig. 4. Our windowed bundle adjustment training framework. Our framework can be applied to a N -frame snippet. Here we use 3 frames as an example.
Arcs represent constraints. Previous works [5], [10], [12], [7], [13], [14] typically only consider two consecutive cameras, which results in a short baseline.
Motivated by the traditional WBAF, our algorithm jointly optimized the camera poses and depth maps within a sequence. Compared to previous training
frameworks, our WBAF increases the baseline and generate more constraints.

Fig. 5. Moving objects generate large errors during training.

3) Spatial Smoothness Cost: The above cost functions are
not sufficient to predict the depth of textureless regions. To
handle this problem, we adopt the edge-aware smoothness
regularization term to encourage local smoothness while
allowing sharpness at the edges [6]. As the values for depth
are unbounded, we impose the following regularization term
on disparity (inverse depth)

Lds =

N∑
t=1

∑
i,j

∣∣∂xdtij∣∣ e−|∂xI
t
ij | +

∣∣∂ydtij∣∣ e−|∂yI
t
ij | (5)

where ∂x and ∂y represent the gradient in x and y directions.
4) Backward Sequence: Apart from the general forward

sequence, we also reverse the order of the sequence to
generate a backward sequence. We construct the cost of
the backward sequence in the same manner as the forward
sequence. This leads to more constraints that help avoid
overfitting. During training, we jointly optimize the forward
and backward losses.

D. Clip Loss Function

The above model assumes a static scene and no occlu-
sion. An image region that violates the above assumption
will generate a large cost as demonstrated in Fig. 5, and
will in turn yield a large gradient that potentially worsens
the performance. We treat these violations as outliers, and

present a clip function to handle them. Assume ci is the ith
cost in the cost set C. To handle the above problem, we
introduce the following robust loss function

ρ (ci) = min (ci, α) , α = p (C, q) (6)

where p (C, q) represents the qth percentile of C. That is
to say the cost in C is clipped at the qth percentile. Costs
above the qth percentile will yield zero gradient, and do not
affect the training. We apply (6) to the cost functions (2) and
(4) introduced above.

E. Total Objective Function

Our learning objective combines the above-mentioned loss
functions including both forward and backward sequences.
For the cost function (2) and (4), we apply (6) to deal with the
moving object and occlusion. We adopt multiple scale losses
to train the network. 4 scales are used in the experiments as
was done in previous work. The final objective function is

L =

4∑
s=1

Ls

2s−1
, Ls = ρ (Ls

re) + αρ (Ls
dc) + βLds, (7)

where ρ (·) is the clip loss function defined in (6).

III. EXPERIMENTS

In this section, we compare our algorithm with the state-
of-the-art methods. In addition, we conduct the ablation
experiment to show that our WBAF, SPN, SRN and clip
loss function all benefit depth prediction.

A. Training Details

Our network is implemented using TensorFlow 1.9 and is
trained from scratch. We employed the Adam [35] optimizer
to minimize the objective function (7) with β1 = 0.9,
β2 = 0.999. The model is trained for 15 epochs with initial



Fig. 6. Qualitative results on the KITTI dataset. The results from top to bottom are from Zhou [5], DDVO [9], DF-Net [7], GeoNet [12], strcut2depth [1]
and ours algorithm, respectively. The compared algorithms produce some inaccurate depth estimation, as illustrated by the red rectangles.

learning rate of 10−4 for the first 10 epochs, then dropped
to 10−5 for the last 5 epochs. The weights in (7) are set
as α = 1 and β = 0.01 throughout all the experiments
below. For the clip loss function (6), we set the percentile
q = 95 in our experiments. During training, we randomly
scale the image contrast with [0.8, 1.2] and jet the brightness
with ±10. The image is resized to 128×416 during training,
which results in a 256× 832 depth map.

B. Monocular Depth Estimation

We mainly use the KITTI [36] and Make3D [21] datasets
to evaluate our algorithm. As previous work, we set the
length of the training sequence to 3. The dataset is split as
in [22], which generates 40K training samples, 4k evaluation
samples, and 697 test samples. The performance is assessed
by absolute relative difference, square related difference,
RMSE and log RMSE as previous work.

KITTI Table I lists the results of different algorithms.
The table is split into several parts according to the su-
pervision level, the dataset used to train the model, and
the capped distance during testing. Our algorithm signifi-
cantly outperforms previous unsupervised algorithms using
monocular video. Struct2depth [1] uses a pretrained model to
initialize the network, which will improve the performance
[30]. Besides, it uses a segmentation mask during training.
Our algorithm learns from scratch without requiring extra
information and outperforms struct2depth [1], except for the
last 2 metrics. Furthermore, our algorithm yields comparable
or better results than the algorithms that use stereo sequences
to train the network (i.e., pose is used during the training).

Fig. 6 provides some qualitative results on the KITTI
dataset. Previous work provides a low resolution depth map,
so their results are generally blurry and lose some details
of the image. Furthermore, their algorithms may generate

false depth estimation. For example, in the last column
of Fig. 6, only our algorithm correctly recovers the wall.
Besides, struct2depth [1] sometimes assigns the wrong depth
to the sky. However, these errors are not counted, as they are
out of the range of the LiDAR.

Make3D We also used the Make3D dataset [21] to
test the cross dataset generalization ability of our algorithm.
Our model is trained on the Cityscapes+Kitti dataset, then
tested on the Make3D dataset. Table II lists the results. Our
algorithm gives the state-of-the-art results.

Computational Complexity Our algorithm extends the
U-Net and generates more constraints for training. This
increases the inference and training time. The training takes
about 35 hours on a single GTX 1080. The depth inference
takes about 16 ms. It is slower than the original U-Net (9
ms). Although our depth net increases the computational
complexity, the inference speed still achieves real-time.

C. Ablation Study

We conduct an ablation study to investigate the con-
tributions from each component. Specifically, we add one
component to the baseline or remove it from the full system.
Table III lists the results. The baseline ( first row of Table
III) has a U-Net structure, and uses the cost similar to the
temporal component in [14] except that we do not include
the normal constraints in the cost function. Compared to
the baseline, our WBAF doubles the camera baseline, and
introduces more than 2 times the number of constraints. This
significantly improves the accuracy. It is obvious that each
of the introduced components contributes to an improvement
in the performance. We find that adding WBAF, SRN or
SPN alone can provide a comparable result to [12], [9], [7].
Removing one of the components reduces the accuracy, but
this still provides better results than [12], [9], [7].



TABLE I
MONOCULAR DEPTH PREDICTION RESULTS ON THE KITTI DATASET USING THE SPLIT OF EIGEN. THE DATASET COLUMN LISTS THE TRAINING

DATASET. K AND CS DENOTE THE KITTI AND CITYSCAPES DATASET, RESPECTIVELY. THE SUP. COLUMN DENOTES THE SUPERVISION LEVEL. D, P
AND SM REPRESENT DEPTH, POSE AND SEGMENTATION MASK. THE RESULTS ARE EVALUATED FOR THE DEPTH CAPPED AT 80m AND 50m.

STRUCT2DEPTH [1] USES PRETRAINED RESNET18 MODEL. OTHERS LEARN FROM SCRATCH. THE BEST RESULTS OF EACH PART ARE IN BOLD.

Method Sup. Dataset Cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [22] D K 80 0.203 1.548 6.307 0.282 0.702 0.890 0.958
PyD-Net(200) [37] P K 80 0.153 1.363 6.030 0.252 0.789 0.918 0.963
Godard [6] P K 80 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Zhan [8] P K 80 0.135 1.132 5.58 0.229 0.820 0.933 0.971
Yang [31] P K 80 0.127 1.239 6.247 0.214 0.847 0.926 0.969
Zhan [14] P K 80 0.133 1.083 5.580 0.229 0.816 0.932 0.971
SuperDepth [19] P K 80 0.112 0.875 4.958 0.207 0.852 0.947 0.977
BA-Net [17] P+D K 80 0.083 0.025 3.640 0.134 - - -
Struct2depth [1]∗ SM K 80 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Kumar [38] No K 80 0.211 1.980 6.154 0.264 0.732 0.898 0.959
Yang [10] No K 80 0.182 1.481 6.501 0.267 0.725 0.906 0.963
SfMLearner++ [32] No K 80 0.175 1.396 5.986 0.255 0.756 0.917 0.967
Mahjourian [13] No K 80 0.163 1.240 6.220 0.250 0.762 0.916 0.968
LEGO [39] No K 80 0.162 1.352 6.276 0.252 - - -
GeoNet [12] No K 80 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DDVO [9] No K 80 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [7] No K 80 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Ours No K 80 0.135 0.992 5.288 0.211 0.831 0.942 0.976
Zhou [5] No K 50 0.201 1.391 5.181 0.264 0.696 0.900 0.966
Mahjourian [13] No K 50 0.155 0.927 4.549 0.231 0.781 0.931 0.975
GeoNet [12] No K 50 0.147 0.936 4.348 0.218 0.810 0.941 0.977
Ours No K 50 0.129 0.767 3.982 0.197 0.847 0.949 0.980
Zhou [5] No CS+K 80 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Mahjourian [13] No CS+K 80 0.159 1.231 5.912 0.243 0.784 0.923 0.970
LEGO [39] No CS+K 80 0.159 1.345 6.254 0.247 - - -
GeoNet [12] No CS+K 80 0.153 1.328 5.737 0.232 0.802 0.934 0.972
DDVO [9] No CS+K 80 0.148 1.187 5.496 0.226 0.812 0.938 0.975
Ours No CS+K 80 0.135 1.022 5.188 0.211 0.835 0.943 0.977

TABLE II
RESULTS ON THE MAKE3D DATASET. WE DIRECTLY APPLY THE MODEL

TRAINED ON CS+K TO THE TEST DATASET OF MAKE3D. ERRORS ARE

CALCULATED FOR PIXELS WHOSE DEPTHS ARE LESS THAN 70 METERS.

Method Sup. Abs Rel Sq Rel RMSE RMSE log
Karsch [40] Depth 0.428 5.079 8.389 0.149
Laina [41] Depth 0.204 1.840 5.683 0.084
Godard [6] Pose 0.544 10.94 11.76 0.193
Zhou [5] No 0.383 5.321 10.47 0.478
DDVO [9] No 0.387 4.720 8.09 0.204
Ours No 0.347 3.518 7.303 0.188

We also tested the impact of the parameter q of the clip
loss function (6). The results in table IV show that the clip
loss function could improve the performance for a large range
of q in the KITTI dataset. However, how to determine an
optimal q for each training sequence is still an open question.
We will investigate this topic in our future work.

D. Pose Estimation

We evaluate the performance of our pose estimation model
using the KITTI odometry dataset The test sequences are
split into 5-frame snippets, and the Absolute Trajectory
Error (ATE) [5] is adopted as the metric. We adopt online
refinement introduced in [1] . Table V lists the results. Our
algorithm achieves the same result as [1] in sequence 9, and
outperforms all of the competing algorithms in sequence 10.

TABLE III
ABLATION RESULTS. TO STUDY THE CONTRIBUTION OF INTRODUCED

COMPONENTS, EACH OF THEM IS ADDED TO THE BASELINE, OR IS

REMOVED FROM THE FULL SYSTEM. CL REPRESENTS THE CLIP LOSS.

WBAF SPN SRN CL Abs Rel Sq Rel RMSE RMSE log
6 6 6 6 0.172 1.197 6.052 0.248
4 6 6 6 0.150 1.099 5.635 0.227
6 4 6 6 0.152 1.093 5.571 0.229
6 6 4 6 0.157 1.127 5.594 0.232
6 6 6 4 0.161 1.125 5.625 0.235
4 4 4 6 0.139 1.014 5.413 0.217
4 4 6 4 0.142 1.024 5.501 0.218
4 6 4 4 0.146 1.077 5.423 0.222
6 4 4 4 0.145 1.023 5.528 0.219
4 4 4 4 0.135 0.992 5.288 0.211

TABLE IV
IMPACT OF THE PERCENTILE OF THE CLIP LOSS FUNCTION

percentile Abs Rel Sq Rel RMSE RMSE log
100 0.139 1.014 5.413 0.217
98 0.137 1.006 5.388 0.216
95 0.135 0.992 5.288 0.211
92 0.136 0.990 5.296 0.213
90 0.138 1.020 5.401 0.218

IV. CONCLUSION

This paper presents a WBAF to train the network. Com-
pared to previous work, our framework generates more
constraints and a larger camera baseline. We apply a SPN
and a SRN to extend the traditional U-Net. The SPN ad-
dresses the context information reduction problem of the U-



TABLE V
POSE ESTIMATION RESULTS ON THE KITTI DATASET [42].

Seq. 09 Seq.10
ORB-SLAM (full) 0.014 ± 0.008 0.012 ± 0.011
ORB-SLAM (short) 0.064 ± 0.141 0.064 ± 0.130
Zhou et al. [5] 0.021 ± 0.017 0.020 ± 0.015
Mahjourian et al. [13] 0.013 ± 0.010 0.012 ± 0.011
DF-Net [7] 0.017 ± 0.007 0.015 ± 0.009
Yin et al. [12] 0.012 ± 0.007 0.012 ± 0.009
structure2depth [1] 0.011 ± 0.006 0.011 ± 0.010
Ours 0.011 ± 0.006 0.010 ± 0.009

Net. The SRN solves the problem caused by interpolation
which may result in a blurry depth map and ignore details.
Furthermore, we introduce a clip loss function that can
make the training robust to moving objects and occlusions.
Experimental results show that the presented components can
benefit depth estimation, and our algorithm yields the state-
of-the-art results.
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