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Abstract— In this paper, we address the problem of pose
estimation from N 2D/3D point correspondences, known as the
Perspective-n-Point (PnP) problem. Although many solutions
have been proposed, it is hard to optimize both computational
complexity and accuracy at the same time. In this paper, we
propose an accurate and simultaneously efficient solution to
the PnP problem. Previous PnP algorithms generally involve
two sets of unknowns including the depth of each pixel and the
pose of the camera. Our formulation does not involve the depth
of each pixel. By introducing some intermediate variables, this
formulation leads to a fourth degree polynomial cost function
with 3 unknowns that only involves the rotation. In contrast to
previous works, we do not address this minimization problem
by solving the first-order optimality conditions using the off-
the-shelf Gröbner basis method, as the Gröbner basis method
may encounter numeric problems. Instead, we present a method
based on linear system null space analysis to provide a robust
initial estimation for a Newton iteration. Experimental results
demonstrate that our algorithm is comparable to the start-of-
the-art algorithms in terms of accuracy, and the speed of our
algorithm is among the fastest algorithms.

I. INTRODUCTION

The PnP problem is to compute the camera pose relative to
a world frame from N 3D points and their corresponding 2D
pixels in the image plane, which is an important problem in
compute vision and robotics. It has many applications, such
as structure from motion (SfM), simultaneous localization
and mapping (SLAM), augmented reality (AR) and visual
relocalization. Due to its importance, many algorithms has
been proposed to solve this problem. The primary goal of
previous works is to balance the computational complexity,
accuracy and scalability. Although many PnP algorithms
have been proposed, it is still a challenge for an algorithm
to achieve accuracy and high speed at the same time. The
algorithms based on linearization [1], [2] are fast, but may
not be applied to a small N and not robust to noise.
On the other hand, algorithms based on nonlinear [3], [4]
formulation could be more accurate at the cost of speed.
This paper focuses on addressing this problem. We propose
an efficient and accurate solution to the PnP problem.

In previous works, the PnP problem is generally formu-
lated by two sets of unknowns, i.e. the camera pose and the
depth of each point. Our formulation does not involve the
depths of the points, which significantly reduces the number
of unknowns. However, it leads to a sixth degree polynomial
cost function in six unknowns, which is hard to solve. We
introduce three intermediate variables to reduce the degree of
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the polynomial cost function from 6 to 4. These intermediate
variables can also decouple the rotation from the translation
which results in a fourth degree polynomial with 3 unknowns
involving the rotation only. In contrast to the previous works,
we do not solve this minimization problem by finding the
stationary points using the Gröbner basis method, as the
Gröbner basis method may encounter numeric problems [5].
Therefore, algorithms based on Gröbner basis method may
be unstable for certain configurations. Although the previous
works based on the Gröbner basis method are thought as
non-iterative, these methods are actually iterative algorithms,
as the Gröbner basis method itself requires to address an
eigenvalue problem that is solved by iterative methods.
As the cost function is a fourth degree polynomial of 3
unknowns, we can efficiently minimize it by the Newton’s
method. The result of an iterative algorithm depends on the
initial solution. Motivated by [1], we present a method based
on linear system null space analysis to provide a robust initial
estimation for the damped Newton’s method. Our null space
analysis method is based on the rotation matrix instead of the
control points in EPnP [1]. Besides, EPnP uses linearization
[6] to solve for the combination coefficients. The result is
not accurate especially when N is small. We use the hidden
variable method [7] to calculate the combination coefficients.
Experimental results verify that our algorithm is comparable
to the start-of-the-art algorithms in terms of accuracy. For
the speed, our algorithm is among the fastest algorithms.

II. RELATED WORK

The PnP problem has finite solutions when there are at
least 3 points. Estimating the camera pose from 3 2D/3D
point correspondences are known as the P3P problem. The
first solution for the P3P problem is given by Grunert [8] in
1841. This algorithm applies the law of cosines to generate
three quadric equations about the lengths between the three
3D points and the camera origin. Several later works [9],
[10], [11] adopt this formulation and provide different poly-
nomial solver. Haralick et al. [12] give a detailed review of
these algorithms. Quan et al. [13] apply the Sylvester resul-
tant [14] to solve P3P problem. Gao et al. [15] systematically
study the P3P problem, and provide a complete analytical
solution. Kneip et al. [16] and Masselli et al. [17] solve
the P3P problem by introducing the intermediate coordinate
frame to eliminate the variable. Most recently, Ke et al. [18].
give an very efficient solution to the P3P problem.

A lot of algorithms have been proposed to solve the PnP
problem for N ≥ 4. Some algorithms are based on the
iterative algorithm. In [19], the PnP problem is formulated



as a semi-definite positive program problem. In [20], they
proposed an orthogonal iterative algorithm to solve the PnP
problem. These algorithms are generally computationally
demanding. Thus they are not suitable for real-time appli-
cations.

Polynomial cost functions are constructed in the literature
for the PnP algorithm. Li et. al. [21] use the minimal
solution to solve the PnP problem. They divide the N points
into a set of 3-point subsets. Each 3-point subset is used
to generate a quadric equation by [22]. They minimize
the sum of the square of these quadric equations. Hesch
and Roumeliotis [23] apply the Cayley–Gibbs–Rodriguez
(CGR) parametrization to represent the rotation matrix. Their
formulation yields three third order polynomial equations as
the first-order optimality conditions. Zheng et al. [4] use
the scaled quaternion to represent the rotation matrix, whose
first-order optimality conditions are four three-degree poly-
nomials. They use the two-fold symmetry of the polynomial
system to reduce the computational complexity. Laurent et
al. provide a universal algorithm for the PnP problem. It
can be used to different configurations of the points, and
different types of cameras. They also use the quaternion to
represent the rotation matrix. They introduce ||q||2 = 1 to the
optimality conditions of the cost function, rather than apply
the Lagrangian formulation for the constraint ||q||2 = 1.
This leads to an efficient polynomial solver. In [23], [4], [3],
the first-order optimality conditions of a cost functions are
calculated. The Gröbner basis method is adopted to solve
these polynomial systems. As the Gröbner basis method has
numeric problems that are hard to be completely addressed
as mentioned in [5], the algorithms based on the Gröbner
basis method may be unstable for certain configurations.
Furthermore, the speed of algorithms based on the Gröbner
basis method is not comparable to the algorithms based on
linearization.

Linearization is also used to solve the PnP problem. Quan
et al. [13] use the minimal solution to generate a linear
equation system to solve the P4P and P5P problems. Ansar
et al. solve the PnP problem by linearizing the quadratic
equation system. Lepetit et. al. [1] provide the first O(N)
solution for the PnP problem. They introduce the control
points to simplify the computation. The coordinates of the
control points are estimated by computing the weights of
the null space vector. Then the camera pose is recovered
by fitting 2 sets of 3D points. This algorithm is adopted
in the ORB-SLAM system [24]. Ferraz et. al. [2] introduce
an efficient outlier elimination strategy. This algorithm can
generate accurate results in situations with up to 50% of
outliers. As the linearization may not well approximate the
original cost function, this may result in suboptimal solution.

III. NOTATION AND PROBLEM DEFINITION

Throughout this paper we use italic, boldfaced lowercase
and boldfaced uppercase letters to represent scalars, vectors
and matrices, respectively.

Suppose that we have N feature points pi = [xi, yi]
T

(such as SIFT [25] or ORB [26] features) and the corre-

Fig. 1: Schematic of the PnP Problem.

sponding 3D points Pi = [Xi, Yi, Zi]
T . The PnP problem is

to calculate the pose, including the rotation matrix R and the
translation vector t, between the world frame and the camera
fame from N (N ≥ 3) 2D/3D point corresponding pi ⇔ Pi,
as shown in Fig. 1. R ∈ SO (3) subjects to the constraints
RTR = I3 and det (R) = 1, where det (R) represents the
determinant of R. To eliminate the constraints of R, we use
the Cayley–Gibbs–Rodriguez (CGR) parametrization [23] to
represent R as

R =
R̄

1 + sT s
, R̄ =

((
1− sT s

)
I3 + 2[s]× + 2ssT

)
, (1)

where s = [s1; s2; s3] is a 3-dimensional vector and [s]× = 0 −s3 s2
s3 0 −s1
−s2 s1 0

. The CGR parameterization does not

require additional constraints.
Using the pinhole camera model, the relationship between

pi and Pi can be formulated as[
pi
1

]
∼ C [R, t]

[
Pi

1

]
, (2)

where C is the camera intrinsic matrix. To simplify the
notation, we multiply both side of (2) by C−1 before solving
the PnP problem, and adopt the normalized pixel coordinates
ui = [ui, vi]

T [27], where [ui; 1] = C−1 [pi; 1] in the
following description.

IV. OUR ALGORITHM

In this section, we detail our algorithm. We first introduce
our formulation of the PnP problem. This leads to a fourth
degree polynomial cost function in three unknowns, then we
describe how to calculate the initial solution for this cost
function.

A. Problem Formulation

In previous works, depth of each pixel ui is generally
used to formulate the PnP problem [23], [4], [3]. This will
introduce additional N unknowns. Our formulation does not



involve the depth of each pixel. Substituting the definition
of ui into (2), we can obtain following equations:

ui =
r1Pi + t1
r3Pi + t3

, vi =
r2Pi + t2
r3Pi + t3

, (3)

where ri (i = 1, 2, 3) are the three rows of R, and ti (i =
1, 2, 3 ) are the three elements of t. Let us multiply both
sides of the two equations in (3) by r3Pi + t3. After some
elementary math operations, we have

(r1Pi + t1)− ui (r3Pi + t3) = 0,
(r2Pi + t1)− vi (r3Pi + t3) = 0.

(4)

If we substitute the CGR parametrization (1) into (4), and
multiply 1 + sT s to the both sides of (4), we get

exi =
(
r̄1Pi +

(
1 + sT s

)
t1
)
− ui

(
r̄3Pi +

(
1 + sT s

)
t3
)
= 0,

eyi =
(
r̄2Pi +

(
1 + sT s

)
t2
)
− vi

(
r̄3Pi +

(
1 + sT s

)
t3
)
= 0,

(5)
where r̄i are the three rows of R̄. As the inevitable noise
in the real applications, equations in (5) will not be exactly
satisfied. Therefore, we consider the following least-squares
problem:

ŝ, t̂ = argmin
s,t

C (s, t) , C (s, t) =
∑
i

(exi )
2
+(eyi )

2
. (6)

exi and eyi in (5) are third-order polynomials in s and t.
Therefore, C (s, t) is a polynomial cost function of degree
6. In general, we can calculate the first-order optimality
conditions of (6) which will yield a system of 6 fifth-order
polynomial equations, and then solve it by the Gröbner basis
method. Theoretically, the maximum number of solutions
of this equation system is 56 = 15625 according to the
Bézout theorem [7]. Solving a high order polynomial system
is computationally demanding and numerically unstable. In
addition, it will take a plenty of time to find the global
minimizer from these solutions, even if we are able to
correctly calculate these stationary points.

The difficulty of solving (6) is from the terms
(
1 + sT s

)
ti,

i = 1, 2, 3 in (5). These terms are third-order polynomials,
and make R and t correlated. To reduce the degree of the
cost function in (6) and decouple R and t, we introduce an
intermediate vector

T = [T1, T2, T3]
T
, Ti =

(
1 + sT s

)
ti. (7)

Using this definition, we can rewrite (5) as

Exi = (r̄1Pi + T1)− ui (r̄3Pi + T3) = 0,
Eyi = (r̄1Pi + T2)− vi (r̄3Pi + T3) = 0.

(8)

Exi and Eyi are second-order polynomials in s and linear in
T. This formulation reduces the degrees of the polynomials
in (5). Furthermore, we can decouple R and t. Define

r̄ = [̄r1, r̄2, r̄3]
T
, (9)

which is a 9-dimentional vector. Then we can rewrite (8) as

wiT = vir̄,

wi =

(
1 0 −ui
0 1 −vi

)
,vi = −

(
PT
i 03×1 uiP

T
i

03×1 PT
i viP

T
i

)
(10)

Given N 2D/3D correspondences, we can stack the coeffi-
cients wi and vi to generate a linear system as

WT = Vr̄, (11)

where W = [w1;w2; · · ·wn] and V = [v1;v2; · · ·vn].
Given r̄, this becomes an unconstrained linear least-

squares problem for T. The closed-from expression of T
[3] in terms of r̄ is

T =
(
WTW

)−1
WTVr̄. (12)

Substituting (12) into (11), we obtain an equation system
with respect to r̄ as

Kr̄ = 0, K = W
(
WTW

)−1
WTV −V. (13)

According to the definition of r̄, we know that every
element of r̄ is a function of the s defined in (1). Considering
the noise, we can define the least-squares problem for s as

ŝ = argmin
s
C (s) , C (s) = r̄TKTKr̄. (14)

As each element of Kr̄ is a quadric polynomial in
s, cost function (14) is a fourth-order polynomial
only involving s, including the monomials
[s40, s

3
0s1, s

3
0s2, s

2
0s

2
1, s

2
0s1s2, s

2
0s

2
2, s0s

3
1, s0s

2
1s2, s0s1s

2
2, s0s

3
2,

s41, s
3
1s2, s

2
1s

2
2, s1s

3
2, s

4
2]
T . The corresponding first-order

optimality conditions of (14) are three polynomial equations
of degree three. There are at most 27 solutions for this
polynomial system based on the Bézout theorem. We can
apply the Gröbner basis method to solve this polynomial
system to get all the stationary points, then find the one with
the smallest cost as the solution, like previous works [23],
[4], [3]. But this paper does not take this way, since the
Gröbner basis method may encounter numerical problems
[5], as demonstrated in Fig. 2. Besides, the Gröbner basis
method is not efficient. We introduce a null space analysis
method to efficiently calculate an initial estimation ŝ0
of (14), then we refine ŝ0 by minimizing (14) using the
Newton’s method.

B. Null Space Analysis

The cost function (14) is derived from the equation system
(13). Here, we calculate an initial solution for (14) from
the equation system (13). The central idea of our algorithm
is to simplify the cost function (14) through the null space
analysis.

According to (1) and the definition of r̄ in (9), we have r̄ =(
1 + sT s

)
r, where r contains the 3 rows of R. Substituting

this equation into (13), we get Kr = 0 This equation is
a homogeneous equation system of r. Without noise, the
solution of Kr = 0 should lie in the null space of K and
can be expressed as

r̂ =

m∑
i=1

αivi, (15)

where vi (i = 1, · · · ,m) are the m right-singular vectors
for the m smallest singular values of the singular value
decomposition (SVD) of K. We also have ||vi||2 = 1. For



Fig. 2: The residual of polynomial equation system (14) us-
ing the Gröbner basis polynomial solver. We use [28] to gen-
erate the the Gröbner basis polynomial solver. The coefficient
of the polynomial system is uniformly distributed within
[0, 1]. We randomly generate a solution within [−50, 50]. We
then calculate the constant term of each equation to ensure
a polynomial system has that solution. The results are from
5000 independent trials. The long tail of the residual shows
that the Gröbner basis polynomial solver is not stable.

N = 4, the dimension of the null space of K will be 4.
Therefore, we consider that the dimension of the null space
of K can vary from 1 to 4 as EPnP [1]. But unlike EPnP
that uses the distances between 4 control points to establish
equations, we consider computing the coefficient αi by the
constraints of R. We describe how to calculate the coefficient
αi when m varying from 1 to 4 as follows:

Case 1: Because (13) is a homogeneous equation, the
solution can only be determined up to scale. In this case, the
solution can be represented as r̂ = α1v1. As ||̂r||2 should
be equal to 3 and ||v1||2 = 1, substituting r̂ = α1v1 into
||̂r||2 = 3, we get r̂ =

√
3v1.

Case 2: In this case, we have r̂ = α1v1 + α2v2. Let
r̂1, r̂2, and r̂3 be the three vectors in r̂ corresponding to
the three rows of a rotation matrix. We split v1 and v2 in
the same manner. Let v̂ji (i = 1, 2 and j = 1, 2, 3) are the
resulting vectors. Then r̂i can be represented as

r̂i = α1v̂
j
1 + α2v̂

j
2, j = 1, 2, 3. (16)

Using the constraints of the rotation matrix, we obtain 6
equations as

f1 = r̂1 · r̂1 = 1, f2 = r̂2 · r̂2 = 1, f3 = r̂3 · r̂3 = 1,
f4 = r̂1 · r̂2 = 0, f5 = r̂1 · r̂3 = 0, f6 = r̂2 · r̂3 = 0.

(17)
Substituting (16) into (17), we have,

Aa = b, (18)

where a =
[
α2
1, α1α2, α

2
1

]T
, b = [1, 1, 1, 0, 0, 0]

T .
This equation system can be solved by the linearization

technology [6]. Specifically, the linearization method treats
α2
1, α1α2, α

2
1 as three independent unknowns. Then the three

unknowns are solved as a linear least-squares problem. As

this method ignores the relationship between the monomials,
this may result in a suboptimal solution. Here we introduce
a new method to solve (18). We seek to find α1 and α2 that
minimize the least-squares cost function

[α̂1, α̂2] = arg min
α1,α2

C (α1, α2) = ‖Aa− b‖22 . (19)

C (α1, α2) is a fourth-order polynomial in α1 and α2. To find
its global minimizer, we calculate its first-order optimality
conditions as

g1 =
∂C (α1, α2)

∂α1
= 0, g2 =

∂C (α1, α2)

∂α2
= 0. (20)

The two equations in (20) are of degree 3 with the mono-
mials

[
α3
1, α

2
2α2, α1α

2
2, α

3
2, α1, α2

]
. Since the Gröbner basis

method has numerical problems, we use the hidden variable
method [7] to solve this equation. In the hidden variable
method, one unknown is treated as a constant. This unknown
is called the hidden variable. Without loss of the generality,
we treat α2 as the hidden variable. This will generate an
equation system from (20) as

gi = ci1α
3
1 + ci2 (α2)α

2
1 + ci3 (α2)α1+ ci4 (α2) = 0, (21)

where cij (α2) (i = 1, 2, j = 2, 3, 4) are polynomials of α2.
In the following description, we use cij to represent cij (α2)
for simplification. Then according to [7], the solution of α2

should satisfy

f (α) = det


c11 0 0 c21 0 0
c12 c11 0 c22 c21 0
c13 c12 c11 c23 c22 c21
c14 c13 c12 c24 c23 c22
0 c14 c13 0 c24 c23
0 0 c14 0 0 c24

 = 0.

(22)
This is a ninth-order polynomial equation in α2 with the
form as

k9α
9
2 + k7α

7
2 + k5α

5
2 + k3α

3
2 + k1α2 = 0. (23)

α2 = 0 is equal to case 1 mentioned above. Here, we only
consider the nontrivial solution. We divide both side of (23)
by α2. This leads to a eighth-order polynomial equation
with only even terms. If we define β = α2

2, the resulting
polynomial equation is a quartic,

k9β
4 + k7β

3 + k5β
2 + k3β + k1 = 0. (24)

Equation (24) has a close-form solution. After we get α2, we
substitute α2 into (21). α1 can be solved from the resulting
third order equations.

Case 3: The resulting combination in this case will be
r̂ = α1v1+α2v

¯2
+α3v3. Substituting r̂ into the 6 constraints

of the rotation matrix mentioned in (17), we can obtain a
system of 6 equations as (18), except that we have a =[
α2
1, α

2
2, α

2
3, α1α2, α1α3, α2α3

]
. Let us consider the first 3

equations f1 = 1, f2 = 1, f3 = 1 in (17). We define

g1 = f1 − f2 = 0, g2 = f1 − f3 = 0. (25)



Then g1 = 0, g2 = 0, f4 = 0, f5 = 0, f6 = 0 are combined
to generate a new equation system

Ba = 0, a =
[
α2
1, α

2
2, α

2
3, α1α2, α1α3, α2α3

]
. (26)

We define
α2 = k1α1, α3 = k2α1. (27)

Substituting (27) into (26) and dividing α1 to both side of
(26), we can obtain

Bk = 0,k =
[
k21, k

2
2, k1k2, k1, k2, 1

]T
. (28)

Similar to (19) in Case 2, we can define the cost function
for k1, k2 as[

k̂1, k̂2

]
= arg min

k1,k2
C (k1, k2) = ‖Bk‖22 . (29)

We can solve (29) using the similar method as solving
(19). After we get k1, k2, we can substitute (27) into f1 to
calculate α1. Then we can compute α2 and α3 using the
definition in (27).

Case 4: This case is more complicated than the
above 3 cases. In this case, the form of the solu-
tion will be r̂ = α1v1 + α2v2 + α3v3 + α4v4.
The 6 constraints of the rotation matrix mentioned in
(17) will generate 6 equations for αi, i = 1, 2, 3, 4.
But there are 10 possible combinations of αiaj , i.e.,[
α2
1, α

2
2, α

3
2, α

2
4, α1α2, α1α3, α1α4, α2α3, α2α4, α3α4

]
. The

relinearization method [29] was adopted to solve this prob-
lem in [1]. Here we introduce a new solution for this
problem.

We first consider the last 3 equations of (17), i.e., f4 =
0, f5 = 0, f6 = 0. They are homogeneous equations. Let us
define

α2 = k1α1, α3 = k2α1, α4 = k3α1. (30)

Substituting (30) into f4 = 0, f5 = 0, f6 = 0 and eliminating
α1, we can obtain

Cx = 0,

x =
[
k21, k

2
2, k

2
3, k1k2, k1k3, k2k3, k1, k2, k3, 1

]T
.

(31)

They are three quadratic equations in three unknowns. We
can efficiently solve this equation system by [30]. For
completeness, we briefly introduce this method below. We
treat k1 as a constant, and split the remaining monomials
into two parts k22, k

2
3, k2k3 and k2, k3, 1. Then (31) can be

rewritten as

M

 k22
k23
k2k3

 = N (k1)

 k2
k3
1

 . (32)

Each element of N (k1) is a polynomial in k1. If we treat
k22, k

2
3, k2k3 as independent variables, we can have a closed

form expression of them as k22
k23
k2k3

 = T (k1)

 k2
k3
1

 ,T (k1) =
(
MTM

)−1
MTN (k1)

(33)

Then three identities k22 × k3 = k2 × k2k3, k2k3 × k3 =
k2 × k23, k2k3 × k2k3 = k22 × k23 are used to generate three
constraints for k1, k2 and k3. Substituting the expression of
k22, k

2
3, k2k3 in (33) into these three identities, we can get a

homogeneous system as

M (k1)

 k2
k3
1

 =

 0
0
0

 . (34)

where M(k1) is 3 × 3 matrix with polynomials of
k1 as its elements. Denote the determinant of M(k1)
as det (M(k1)). According to the linear algebra theory,
det (M(k1)) should equal to zero when (34) has non-trivial
solutions. det (M(k1)) is an eighth-order polynomial in k1.
We can solve det (M(k1)) = 0 for k1, then back-substitute
k1 into the linear system (34) to get k2 and k3. After we
get k1, k2 and k3, we substitute (30) into the first three
equations of (17). Then we can solve for α1 by minimizing
the following cost function.

α̂1 = argmin
α1

3∑
i=1

‖fi − 1‖22. (35)

This cost function only involves α1. Its first-order optimality
condition is a third-order polynomial equation. It has closed-
form solution. After we get k1, k2, k3 and α1, α2, α3, α4

can be estimated from the definition (30).
Planar Case: For the planar case, a 3D point could

be represented as [x, y, 0]
T . This can be used to simplify

the computation. Let ci (i = 1, 2, 3) be the three columns
of R. As the z coordination of a planar point could be
zero, we can cancel the last column c3 of R. As the non-
planar case, we use the constraints of R to calculate the
combination coefficients of the right singular vectors of the
resulting equitation system for c1 and c2. Specifically, c1
and c2 satisfy c1 · c1 = 1, c2 · c2 = 1 and c1 · c2 = 0. As
here we reduce the elements of R, we only consider m = 1
and 2 for the planar case.

C. Recover the CGR Parameters

After we get r̂, we can obtain the rotation R̂ by rearrang-
ing the elements of r̂. R̂ may be an invalid rotation matrix
because of the noise. Assume the SVD of R̂ is R̂ = USVT .
Then the closest rotation matrix R̄ for R̂ in the Frobenius
sense is R̄ = UVT [31]. Then s can be calculated by
transforming R̄ into the CGR parameters.

D. Translation Estimation

When we get ŝ, the scaled translation T̂ in (7) can be
calculated by (12). Then the translation can be recovered by
t̂ = T̂

/(
1 + ŝT ŝ

)
using the definition in (7).

E. Estimation Refinement

After we get the estimations from the above steps, we can
obtain an initial solution. Then we refine the initial solution
by using the damped Newton method.

The cost function (14) is a polynomial function. Therefore,
we can efficiently calculate its Hessian matrix and gradient
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Fig. 7: Computational time. (a) shows the computational time
of all the methods. (b) gives a closeup.

vector. The iterative algorithm starts from ŝ0. For the nth
iteration, we first compute the Hessian matrix Hn and
the gradient vector ∇Cn(s) of (14). Then we update the
solution by ŝk+1 = ŝk−(H + λI3)

−1∇Cn(s). λ is adjusted
according to the LM algorithm [32] to ensure the cost (14)
is reduced.

F. Algorithm Summarization

We first calculate K in (13). Then we compute the SVD
of K to get the right singular vectors. We next solve the
4 cases to get an initial estimation. This initial solution is
then refined by minimizing (14) using the damped Newton’s
method. Finally, we get t using (12) and (7). We summarize
our algorithm as follows:

Input: N Pi ⇔ pi (N ≥ 4)
Output: Camera pose relative to the world frame

1) Construct the matrices W and V in (11), then
compute the coefficient matrix K of the linear
system (13).

2) Calculate the SVD of K to get the four right
singular vector vi, i = 1, 2, 3, 4 corresponding
to the four smallest singular value.

3) Calculate the initial solution ŝ0 by computing the
4 possible combinations of the null space of K.

4) Refine ŝ0 by minimizing (14) using the damped
Newton’s method.

5) Compute the rotation R̂ from (1) and the trans-
lation t̂ from (11) and (7).

V. EXPERIMENTAL RESULTS

In this section, we compare the accuracy and the running
time of our algorithm, referred to as EOPnP, with the state-
of-the-art PnP algorithms, including the method based on
minimal solution RPnP [21], the method based on semi-
definite positive program SDP [19] and orthogonal iterative
algorithm LHM [20], the Gröbner basis based algorithms
OPnP [4], UPnP[3] and DLS [23], and the methods based

on null space combination EPnP+GN [1] and EPPnP
[2]. Besides, we also consider the iterative solution from
minimizing the reprojection error OPnP+LM [4], which is
known as the gold standard algorithm [27].

A. Experiment with Synthetic Data

Our simulation covers all possible rotations. We uniformly
sample the whole range of Euler angles α, β, γ ( α, γ ∈
[0◦, 360◦] and β ∈ [0◦, 180◦]). The 3D points are distributed
within a [−2, 2]× [−2, 2]× [4, 8] box. We choose the origin
of the world frame at the centroid of these 3D points as [4].

The result of each experiment is obtained from 500 inde-
pendent trials. Denote the estimated rotation and translation
as R̂ and t̂, and the ground truth as Rgt and tgt. We
evaluate the rotation error by the maximum angle between
each column of R̂ and Rgt , i.e. max3k=1 acos(r

k
gt, r

k), and
the translation error by

∥∥tgt − t̂
∥∥
2

/
‖tgt‖2 as [4].

Varying Number of Points Denote the standard de-
viation of a zero mean Gaussian noise as δ. In the first
experiment, the number of points N varies from 4 to 15
with a fixed standard deviation δ = 2 pixels. Fig. 3 gives
the results. Fig. 3 (a) and (b) include the results of all the
methods. Fig. 3 (c) and (d) compares the algorithms with
similar results. DLS is not stable and out of the range.
Generally, UPnP is stable, but it generates a large estimation
error at N = 10. This may be caused by the numeric problem
of the Gröbner basis method. The result from EPnP+GN and
EPPnP are with large errors, especially when N is small.
This is the reason why we need to introduce the hidden
variable solution. LHM is not stable when N is small. Our
algorithm (EOPnP), OPnP and SDP are the most stable
ones among these algorithms. Furthermore, our algorithm
gives a comparable result with OPnP+LM which gives the
maximum likelihood estimation under the Gaussian noise.
This is probably because our algebraic error is generated
from the reprojection error.

Varying Noise Level This experiment considers the
performance of different algorithms under increasing noise
level. We set the number of points to 10. The standard
deviation of the Gaussian noise varies from 0.5 to 5 pixels.
Fig. 4 demonstrates the results. Like the first experiments,
Fig. 4 (a) and (b) show the results of all the algorithms. (c)
and (d) compare the algorithms with similar performance.
The results of SDP, OPnP, LHM and our algorithm are
more accurate than other algorithms.

Computational Time We compare the computational
time of different algorithms. Fig. 7 gives the results. EPPnP
and our algorithm EOPnP are the fastest ones among these
algorithms. EPPnP is slightly faster than our algorithm,
as our cost function of the finial iterative step is more
complicated than EPPnP. But our algorithm is much more
accurate than EPPnP. Our algorithm is about 8 times faster
than OPnP. The LM algorithm [32] based on the reprojection
error is time-consuming, and can not be applied to a large-
scale problem with real-time requirement.
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Fig. 3: Experiment results w.r.t. varying point numbers. (a) and (b) show the results of all the methods. (c) and (d) compare
the algorithms with close results

(a) (b) (c) (d)

Fig. 4: Experiment results w.r.t. varying noise levels. (a) and (b) show the results of all the methods. (c) and (d) compare
the algorithms with close results

(a) EOPnP (b) EPnP (c) UPnP (d) OPnP

Fig. 5: Experiments with the book cover.

Fig. 6: Experiments with a checkerboard.



B. Experiment with Real Data

We test our algorithm on real images. The book cover
image is from [4]. The feature points in the test image is
matched with the reference image by the SIFT [25] feature.
Fig. 5 gives one example. Our algorithm gives visually
accurate result. We also use EPnP, UPnP and OPnP to
compute the pose. The results from EPnP and UPnP are not
accurate. Our algorithm and OPnP provide similar results.

Planar and uncentered (points are within in a small region)
configurations are challenging for the PnP algorithm. We
evaluated the performance of different algorithms under this
configuration. 4 vertexes of one block of a checkerboard are
used to estimate the pose between the checkerboard frame
and the camera frame. A cube is put on the checkerboard
to visually evaluate the PnP algorithms. Fig. 6 shows some
results. It is obviously that our algorithm gives more accurate
results.

VI. CONCLUSION

In this paper, we propose an efficient and accurate solution
for the PnP problem. It is a challenging task to achieve
an accurate solution as well as maintain the efficiency. Our
algorithm avoids involving the depth of each point into the
formulation. This results in a sixth-order polynomial with
six unknowns. We simplify this problem by introducing
three intermediate variables. This leads to a fourth degree
polynomial with three unknowns. We do not adopt the
Gröbner basis method to compute the stationary points.
Although this strategy is optimal in theory, the Gröbner basis
method may encounter numeric problems. We present a null
space combination method to provide stable initial estimation
for the damped Newton iteration. The experimental results
verify that our algorithm is comparable to previous state-of-
the-art algorithms in terms of accuracy, and is among the
fastest algorithms.

REFERENCES

[1] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, p. 155, 2009.

[2] L. Ferraz, X. Binefa, and F. Moreno-Noguer, “Very fast solution to
the pnp problem with algebraic outlier rejection,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2014, pp. 501–508.

[3] L. Kneip, H. Li, and Y. Seo, “Upnp: An optimal o (n) solution to
the absolute pose problem with universal applicability,” in European
Conference on Computer Vision. Springer, 2014, pp. 127–142.

[4] Y. Zheng, Y. Kuang, S. Sugimoto, K. Astrom, and M. Okutomi,
“Revisiting the pnp problem: A fast, general and optimal solution,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2013, pp. 2344–2351.

[5] M. Byröd, K. Josephson, and K. Åström, “Fast and stable polynomial
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