
A Volumetric Albedo Framework for 3D Imaging Sonar Reconstruction

Eric Westman, Ioannis Gkioulekas, and Michael Kaess

Abstract— We present a novel framework for object-level 3D
underwater reconstruction using imaging sonar sensors. We
demonstrate that imaging sonar reconstruction is analogous
to the problem of confocal non-line-of-sight (NLOS) recon-
struction. Drawing upon this connection, we formulate the
problem as one of solving for volumetric albedo, where the
scene of interest is modeled as a directionless albedo field.
After discretization, reconstruction reduces to a convex linear
optimization problem, which we can augment with a variety
of priors and regularization terms. We show how to solve the
resulting regularized problems using the alternating direction
method of multipliers (ADMM) algorithm. We demonstrate
the effectiveness of the proposed approach in simulation and
on real-world datasets collected in a controlled, test tank
environment with several different sonar elevation apertures.

I. INTRODUCTION

Imaging sonars, also known as forward-looking sonars
(FLS), have been widely adopted as a sensing modality
for autonomous underwater vehicles (AUVs) and remotely
operated vehicles (ROVs) in recent years. These acoustic
sensors offer long-range imaging capabilities in turbid waters
that are often encountered in the field, where standard optical
cameras typically have a limited sensing range. Thanks to the
robustness and versatility they provide, imaging sonars have
been utilized for a variety of underwater tasks, including
localization [18, 23, 28, 37, 38, 39], mapping [4, 5, 14,
16, 17, 24, 25, 32], object detection [19, 20], and planning
[15, 29].

Imaging sonars are quite analogous to optical cameras
in that they provide 2D image measurements of a 3D
environment. Each pixel in an optical image denotes the
measured light intensity corresponding to discretized azimuth
and elevation angle bins, but the range of an imaged surface
is not measured. In contrast, each pixel in an FLS image
corresponds to discrete azimuth and range bins, with the
elevation angle remaining ambiguous. Some sensors uti-
lize lenses to change the elevation aperture, such as the
SoundMetrics DIDSON1 sensor, which can achieve elevation
apertures of 1°, 14°, or 28°.

While techniques such as multi-view stereo (MVS) [27]
have enabled dense 3D reconstruction of objects and scenes
using optical cameras, this is a difficult goal to achieve with
imaging sonars. MVS relies on the principle of photometric
consistency – the observation that surface patches tend to
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Fig. 1: (a) Photograph of the test structure that was custom made for our test
tank experiments. (b) A 3D mesh reconstruction generated from a pointcloud
extracted from our volumetric albedo scene representation.

look similar from different viewpoints. In the acoustic case,
where the sensor actively “illuminates” the scene with sound
waves, the appearance of surfaces in sonar images is highly
dependent on the viewing geometry. The combination of this
image formation model, high noise levels, low bandwidth,
and acoustic artifacts combine to make 3D reconstruction
from sonar images a challenging problem that cannot be
solved by directly adopting standard MVS techniques from
computer vision.

Rather than looking to classical MVS techniques to gener-
ate 3D reconstructions with imaging sonar, we draw inspira-
tion from advances in non-line-of-sight (NLOS) reconstruc-
tion. This problem consists of reconstructing a scene from
indirect active illumination, by looking through a diffusing
medium or imaging based on reflections off of a matte
surface, such as a wall. The specific contributions of this
work are as follows:

• noting the equivalence between imaging sonar recon-
struction and confocal NLOS reconstruction for the first
time in the literature

• a novel volumetric albedo framework for imaging sonar
reconstruction, inspired by recent works in the field of
NLOS scene reconstruction

• evaluation of our proposed reconstruction algorithm on
simulated and real-world datasets.

The remainder of this paper is organized as follows. We
discuss previous approaches to the problem of imaging sonar
reconstruction with known poses and their limitations and
shortcomings in Section II. In Section III we present the
volumetric albedo framework and subsequently in Section
IV, the proposed ADMM algorithm to solve for the 3D
reconstruction. We demonstrate the effectiveness of our ap-
proach on simulated and real-world datasets in Section V
and offer concluding remarks in Section VI.



II. RELATED WORK

Efforts to generate 3D reconstructions using sonars actu-
ally predate the development of recent FLS imaging sonars.
One such early work segmented images from a sector scan-
ning sonar into shadow and object regions. The height of the
object of interest is estimated based on the shadow length and
a 2.5D elevation map is generated [40]. A similar approach
was adopted to build elevation maps from larger-scale side-
scan sonar data [22]. These methods are tailored for use in
seafloor mapping scenarios, and only succeed in generating
elevation maps, rather than full 3D reconstructions.

More recent methods have used imaging sonars to generate
rich 3D reconstructions of underwater scenes. In [30], a
concentrator lens is fixed to a DIDSON sonar to narrow the
elevation aperture to 1°. Assuming that all detected points
lie at 0° elevation, a global map of a ship hull scene is
reconstructed by registering local submaps using iterative
closest point (ICP). While the results are promising for large-
scale scenes, the assumption that all imaged points lie in a
plane introduces significant error to the reconstruction, and
prohibits extending this method to operation with a wider
elevation aperture.

Several volumetric algorithms have been proposed for
smaller-scale 3D reconstruction. Aykin et al. propose a
space carving method in which the entire scene is assumed
to consist of occupied space until it is observed to be
unoccupied [3, 5]. While this method ideally generates a
mesh that bounds the object of interest, many non-convex
geometries cannot be accurately reconstructed. The same
principle is applied using minimum filtering over a voxel
grid to achieve similar results [10, 11]. Another volumetric
algorithm [33] builds on the classic occupancy grid mapping
framework [9] by distributing occupancy probability to every
voxel along each elevation arc. As a probabilistic framework,
it is more robust to inaccuracies in the sensor pose than space
carving, especially when extended in [34] to include a graph
optimization to align local submaps into a unified global
map, much like Teixeira et al. [30]. However, occupancy
grid mapping considers each voxel independent and does
not reason about the relationship between voxels observed
by same pixel of a sonar image.

Another line of work has used a generative image forma-
tion model based on diffuse reflection to reconstruct the in-
terior of an object given 3D edge initialization using shadow
cues [2, 4]. This approach has been extended for use on
an AUV outside of a laboratory controlled seafloor mapping
scenario [36]. Similarly, Negahdaripour et al. formulate an
optimization that refines an initial reconstruction from space
carving by attempting to match the image predicted by
the generative model with the actual sonar images [25].
In practice, sonar images do not adhere very well to the
proposed generative models due to factors such as high
noise levels, imprecise sonar calibration, multipath returns,
and interference between transducers, making it difficult to
generate accurate 3D reconstructions using such methods.

Guerneve et al. [11] approximate the elevation aperture

as linear, effectively modeling each pixel’s elevation arc as
a vertical line segment parallel to the sensor’s z-axis. By
restricting motion to pure translation along the z-axis, 3D
volumetric reconstruction is framed as a blind deconvolution
with a spatially varying kernel that captures the surfaces’
reflection properties. Assuming uniform reflectivity, the prob-
lem is reduced to a linear least squares problem, solved with
`1 regularization by means of an interior point method [21].
This approach is similar to our proposed method, but the
linear approximation and sensor motion restriction severely
limit its practical application. Our proposed method may be
viewed as a generalization of, and improvement over, this
approach, as we do not introduce linearization errors or place
any restrictions on the sensor motion.

III. VOLUMETRIC ALBEDO FRAMEWORK

In this section we discuss how imaging sonar reconstruc-
tion with known poses is an inverse problem with the same
structure as NLOS reconstruction and present a volumetric
albedo framework for 3D reconstruction. First, we summa-
rize the important characteristics of NLOS reconstruction.

A. NLOS Reconstruction as Volumetric Albedo

Consider the NLOS scenario of reconstructing a scene
around a corner by imaging diffuse reflections off of a
wall. A point l on the line-of-sight (LOS) planar wall is
illuminated, often by a laser pulse, at time t = 0. Light
is scattered in all directions according to some unknown
bidirectional reflection distribution function (BRDF), and
bounces off of some NLOS surfaces at various points in time,
and possibly multiple surfaces at the same instant in time.
The third and final bounce occurs when the light reflects
off the LOS wall again, and back toward the sensor. The
sensor detects light reflected from a distinct sensing point
along the LOS wall s, resulting in the so-called 5D light
transient i (t; l, s), which is the intensity (or photon count)
as a function of time and points l and s. Fourth and higher-
order bounces are usually ignored due to the difficulty of
detecting them and for the sake of simplifying the imaging
model.

In the confocal case, the illumination and sensing point
on the wall are the same – that is, l = s, resulting in
a 3D light transient as a function of t and s [26]. Since
the speed of light and relative position of the sensor to l
are known, a transient measured at point l is equivalent
to a series of range-only measurements taken by a virtual
sensor located at l, where the intensities of the measurements
are determined by the reflectance properties and geometry
of the NLOS surface. The azimuth and elevation angles
of the measured surfaces are lost due to scattering. Thus,
NLOS reconstruction is an ill-posed inverse problem wherein
multiple 1D range measurements must be sampled from a
variety of locations on the LOS scene in order generate
constraints on the azimuth and elevation angles of the NLOS
surfaces.

Due to the complexity of this inverse problem, the scene
is often modeled as a volume wherein each point p is



described by a directionally uniform albedo ρ (p). This sim-
plified model greatly reduces the complexity of the inverse
problem, as compared to attempting to account for surface
normals and BRDF [13]. Under this assumption, the forward
measurement model for the transient in the confocal case is

i (t; l) =

˚

Ωp

ρ (p)
δ (p ∈ Sct)
‖p− l‖42

dp (1)

where Ωp denotes the 3D volume of the NLOS scene, Sct
denotes the sphere of radius ct centered at l, and the quartic
term accounts for the spatial propagation of scattered light.
For more details on the problem of NLOS reconstruction,
we refer the reader to [1, 7, 12, 31].

B. Imaging Sonar Reconstruction as Volumetric Albedo

In the imaging sonar case, each column in an image is
analogous to the 1D series of range-only measurements in
the NLOS scenario. However, the azimuth angle is disam-
biguated by an array of transducers, constraining measured
surfaces to lie upon a 1D elevation arc rather than a 2D
sphere. Thus, under the volumetric albedo model, the forward
measurement model for the imaging sonar is given by

I (θ, r) =

˚

Ωp

ρ (p) δ (p ∈ Aθ,r) dp (2)

where Aθ,r denotes the 1D elevation arc with limited aperture
that corresponds to an image pixel (θ, r). Since the measure-
ment is linear in the albedo, this model may be discretized
as a linear system

b = Ax (3)

where b ∈ RN+ is the vector representation of all N
discrete image measurements I (θ, r) from all images, and
x ∈ Rnxnynz

+ is the vector representation of the discretized
albedo volume, with nx, ny , and nz representing the size
of the voxel grid in the corresponding dimensions. A is a
sparse binary matrix that corresponds pixel measurements to
voxels that lie on the corresponding elevation arc. If the sonar
images are not pre-processed to compensate for the spatial
spreading of sound, then a range-based gain may be applied
to (2), which would scale entries in A accordingly. This
linear system directly follows from the discretized albedo
volumes used for NLOS reconstruction [1, 12, 13, 31].
However, the sonar linear systems are significantly sparser
than those in the NLOS scenario, since each measurement
corresponds to a 1D elevation arc manifold, rather than a 2D
ellipsoidal or spherical manifold.

To compute the correspondence matrix A, a forward
projection (projecting center points of voxels into image
pixels) or back projection (projecting pixels along their
elevation arc into the voxel grid) procedure may be used.
For our experiments, we use forward projection, noting that
both projection procedures may be parallelized to improve
computational efficiency.

Some of the first attempts to solve this large, sparse
system in the NLOS case approximated the solution using

backprojection:
xbp = ATb. (4)

A commonly used heuristic is to apply a filter after backpro-
jection, such as the Laplacian filter, to sharpen the result [31].
Our proposed method attempts to solve (3) via regularized
optimization, which is inspired by similar works in the NLOS
literature [12]. Several convolutional approximations have
been proposed for the NLOS problem that greatly increase
the computational efficiency of these optimization-based
approaches [1, 26]. While similar approximations may be
made in the imaging sonar case, we find that the sparsity of
A and relatively limited resolution of the sonar sensor make
standard optimization procedures much more efficient for
imaging sonar reconstruction than for NLOS reconstruction.

A key shortcoming of this framework is that it does not
capture the effects of occlusion. One possible way to address
this is to only use low-intensity pixels in each image column
from the shortest range until the first high-intensity pixel.
These correspond to free space under the image formation
model. Low-intensity pixels at ranges beyond the first imaged
surface may correspond to actual surfaces in the scene that
are occluded by surfaces closer to the sensor.

One of the benefits of this framework is that the albedo of
the entire scene may be solved for jointly. This contrasts with
prior works utilizing occupancy grid mapping [33] or mini-
mum filtering [10], which update each voxel independently.
Furthermore, formulating the forward sensing model as a
sparse linear system enables the use of convex optimization
methods to guarantee convergence to a global minimum.

IV. ADMM OPTIMIZATION

The linear system derived from the volumetric albedo
formulation of imaging sonar reconstruction may be solved
using a least squares optimization:

x∗ = argmin
x

1

2
‖Ax− b‖22 + Γ (x) (5)

where Γ (x) is a term that combines all priors or regular-
ization terms. If no regularization is used, the solution is
trivial to obtain but may be rather inaccurate. We propose
utilizing three separate priors that are commonly used in the
NLOS volumetric albedo literature [12] to generate smooth,
continuous surface reconstructions: non-negativity, weighted
`1 regularization, and total variation regularization. These
may be expressed as:

x∗ = argmin
x

1

2
‖Ax− b‖22 + IR+ (x) +

λ1 ‖Wx‖1 + λTV ‖∇x‖1
(6)

This may be reformulated as a separable objective function
with linear constraints:

x∗ = argmin
x

g1 (z1) + g2 (z2) + g3 (z3) + g4 (z4)

subject to


A
I
W
∇


︸ ︷︷ ︸

C

x−


z1

z2

z3

z4


︸ ︷︷ ︸

z

= 0. (7)



This may be solved using the alternating direction method
of multipliers (ADMM) algorithm, which is often used to
solve the volumetric albedo problem in the NLOS literature
[12, 13]. Then, the augmented Lagrangian is

Lρ (x, z,y) =

4∑
i=1

gi (zi) + yT (Cx− z) +
ρ

2
‖Cx− z‖22 .

(8)
We proceed using the notation of scaled ADMM, where u =
y/ρ. We compute the update for x using gradient descent,
which is much faster than inverting C:

x← x− ρ

µ
CT (Cx− z + u) (9)

where µ controls the step size. The update for each com-
ponent of z utilizes the proximal operators corresponding to
each gi (zi):

z1 ←argmin
z1

1

2
‖z1 − b‖22 +

ρ

2
‖v − z1‖22 , v = Ax + u1

=
b + ρv

1 + ρ

z2 ←argmin
z2

IR+
(z2) +

ρ

2
‖v − z2‖22 , v = x + u2

=max (0,v)

z3 ←argmin
z3

λ1 ‖z3‖1 +
ρ

2
‖v − z3‖22 , v = Wx + u3

=Sλ1/ρ (v)

z4 ←argmin
z4

λTV ‖∇z4‖1 +
ρ

2
‖v − z4‖22 , v = ∇x + u4

=Sλ1/ρ (v)
(10)

where Sκ (a) = (a− κ)+− (−a− κ)+ is the soft threshold
function. Finally, the dual variable update is

u← u + Cx− z. (11)

This iterative ADMM procedure is performed until conver-
gence of the primal and dual residuals, as defined in [6].

The entire ADMM optimization is performed during each
iteration of an iteratively reweighted `1 minimization proce-
dure (IRL), in order to further enhance sparsity [8, 12]. We
initialize the `1 weighting matrix W as identity for the first
IRL iteration, and update it at each IRL iteration as

Wj+1 := diag

(
1

|xj |+ ε

)
. (12)

V. EVALUATION

In evaluating our proposed imaging sonar reconstruction
framework, we are primarily concerned with the results on
real-world datasets. However, we find it helpful to evaluate
the results on simulated datasets as well, due to the avail-
ability of ground-truth models and sensor poses.

We evaluate our proposed method against backprojection
for comparison (denoted ADMM and BP, respectively). BP
is an approximate solution to the inverse problem computed
using (4). This is a commonly used benchmark solution in
the NLOS literature. It is also akin to the occupancy grid

(a) (b)

(c) (d)

Fig. 2: Maximum intensity projection (MIP) images for (a) BP and (b)
ADMM on a simulated dataset with 3° elevation aperture. (c) and (d) show
the MIP images for BP and ADMM, respectively, on a simulated dataset
with 10° elevation aperture. Blue regions correspond to low albedo, and
yellow regions to high albedo.
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Fig. 3: Coverage vs. error curves for simulated datasets using (a) 3° elevation
aperture and (b) 10° elevation aperture.

mapping (OGM) approach to imaging sonar reconstruction
[33, 34]. Both OGM and BP disregard the correlation be-
tween voxels corresponding to the same measurement — for
each measurement, both methods update each corresponding
voxel independently based on some function of the pixel
intensity (e.g. inverse sensor model).

In all experiments we use a voxel grid with 2.5 cm
resolution. For the ADMM optimization, we use ρ = 1,
µ = ‖C‖22 (estimated by the power method), and ε = 0.01.

A. Metrics

For qualitative evaluation, we show the maximum inten-
sity projection (MIP) images of evaluated volumes. A MIP
image shows the maximum intensity of all voxels along one
particular direction and is a useful tool for visualization.

There are a variety of ways to quantitatively evaluate the
accuracy of a volumetric reconstruction against a ground-
truth pointcloud. We choose to extract pointclouds from the
volume by thresholding the albedo and taking the centers
of voxels that exceed the threshold as surface points. The
pointcloud is aligned to the ground-truth model using a
known transformation for simulated datasets and a manually



tuned transformation for test tank datasets, since ground-truth
alignment is not available. We evaluate two metrics using
the aligned pointclouds: coverage and error. The coverage
is defined as the ratio of points in the ground-truth model
for which the closest point in the reconstructed model is
within a certain Euclidean distance. We use the length of a
voxel diagonal as the threshold when computing coverage.
For the error metric, we compute the root-mean-square
error (RMSE) of the Euclidean distance from all points
from the reconstructed model to the closest ground-truth
point. Varying the threshold throughout the feasible range
allows for trading off between the coverage and error of
the reconstructed pointcloud and yields a curve much like
the receiver operating characteristic (ROC) curve of a binary
classifier. We present these curves for quantitative evaluation
of our reconstructed volumes.

B. Simulation

We simulate sonar images of the structure shown in Fig.
1a, utilizing a ground-truth point-cloud scan scan collected
using a Faro Focus 3D laser scanner. We use a set of sonar
poses that based on a realistic set of viewpoints that could
be imaged using an AUV or ROV. The datasets consist of
180 images with motion between sensor poses limited to
the sensor’s x − y plane. An image is generated at each of
18 different roll angles induced at 10 different points in the
x− y plane, which could be acquired on an AUV by simply
translating and yawing the vehicle. Images are generated by
projecting all points lying in the sonar field of view into the
sonar image, with the intensity of each pixel proportional to
the number of imaged points. A more accurate pixel intensity
model may also be used. However, the precise intensity as
a function of the sensor and surface geometry has minimal
effect on our results, as the volumetric albedo framework
does not consider surface reflection properties. Surfaces that
would actually be occluded are still visible in the simulated
images. Finally, normally distributed noise is added to each
pixel to simulate the low SNR of real acoustic sensors.

Fig. 2 shows the MIP images for the resulting BP
and ADMM volumes for simulated datasets with 3° and
10° elevation apertures. Compared to the BP volumes, the
ADMM volumes show much more distinct surfaces and
lower intensities in sections that correspond to free space.
Naturally, the reconstructions are less precise with greater
elevation ambiguity, but the general shape of the structure is
still clearly visible in the ADMM MIP for the 10° dataset.
Likewise, the coverage vs. error curve for our ADMM
reconstruction achieves significantly lower error for the same
amount of coverage as BP, as shown in Fig. 3. Note that using
a discretized volume representation limits the minimum
possible achievable error. In these simulated experiments, we
use λ1 = φfov

5 and λTV = φfov

20 , where φfov = φmax − φmin

is the elevation field of view in degrees. The regularization
coefficients ought to increase with the elevation aperture to
account for the increased number of voxels observed per
measurement.

(a) (b)

(c) (d)

Fig. 4: Maximum intensity projection (MIP) images for (a) BP and (b)
ADMM on a test tank dataset with 1° elevation aperture. (c) and (d) show
the MIP images for BP and ADMM, respectively, on a test tank dataset with
14° elevation aperture. Blue regions correspond to low albedo, and yellow
regions to high albedo.
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Fig. 5: Coverage vs. error curves for simulated datasets using (a) 1° elevation
aperture and (b) 14° elevation aperture.

C. Test tank

We also evaluate our proposed method on real-world
datasets collected in a test tank environment using a Sound-
Metrics DIDSON imaging sonar mounted on a Bluefin Hov-
ering Autonomous Underwater Vehicle2 (HAUV). Due to the
limited size of the test tank, we keep the DIDSON fixed
and pointed directly downward from the vehicle, scanning
the submerged structure in Fig. 1a from above. We collect
datasets with a concentrator lens to narrow the elevation
aperture to approximately 1° and with no lens for a 14°
elevation aperture. Over 900 images are required with 1°
elevation aperture to achieve full coverage of the structure,
and over 400 images for 14° elevation aperture.

The HAUV’s onboard odometry measurements are used
to provide the pose estimates for both BP and ADMM.
Although the odometry measurements are quite accurate due
to the combination of a high-end IMU and a Doppler velocity
log (DVL), the pose estimate inevitably drifts after prolonged
use. To maintain the integrity of the pose estimates for the
reconstruction procedures, we limit the length of the datasets

2www.gdmissionsystems.com/products/underwater-vehicles/bluefin-hauv



to only a few minutes long, which is expected to limit
the pose drift to less than one degree rotation and several
centimeters in translation. The vehicle is remotely controlled
to perform three to four sweeps parallel to the sensor’s z-
axis, offset along the sensor’s y-axis, to ensure full coverage
of the structure.

Fig. 4 shows the MIP images for the 1° and 14° test
tank datasets. Much like the simulated results, the structure
is more well-defined and clearly visible in the ADMM
MIP images than BP. The coverage-error curves for both
resulting volumes are shown in Fig. 5. As in simulation, the
ADMM results show marked improvement over BP for the
narrow aperture dataset. The difference in performance is not
significant for the wide aperture dataset, which is due to the
limited set of viewpoints, particularly the lack of roll rotation
(around the sonar’s x-axis).

Sample pointclouds extracted from both test tank datasets
are shown in Fig. 6. The narrow aperture reconstruction
is highly accurate and covers the entire top surface of the
structure, with only a few outlier points due to multipath
reflections from the interior of the hollow structure. The
wide aperture reconstruction cannot fully disambiguate the
structure due to the lack of rich viewpoints, but still captures
the main components: the base, two vertical pilings, and
crossbar.

VI. CONCLUSION

In this work, we have connected the problems of NLOS
and imaging sonar reconstruction for the first time in the
literature. We have presented an algorithm for imaging sonar
reconstruction with known poses that generalizes previous
work to arbitrary sensor motion and does not make any
linearization approximations. The proposed framework is
solved via ADMM and may incorporate a variety of priors
and regularization terms. We demonstrate our algorithm’s
improvement over previous methods using simulated and
real-world data, with several different elevation apertures.

In future work, more extensive evaluation of the proposed
method in comparison to OGM [33, 34] and space carving
[5] ought to be carried out with a wide variety of underwater
structures. A drift-free SLAM method such as [35] should
be utilized to increase the accuracy of sensor pose estimates
and to allow for longer, richer datasets to be collected. The
proposed method could be adapted to attempt to explicitly
account for occlusions, for example by incorporating a non-
convex prior as in [12].
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