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Abstract— In this paper we propose a new framework for
reconstructing underwater surfaces from wide aperture imag-
ing sonar sequences. We demonstrate that when the leading
object edge in each sonar image can be accurately triangulated
in 3D, the remaining surface may be “filled in” using a
generative sensor model. This process generates a full three-
dimensional point cloud for each image in the sequence. We
propose integrating these surface measurements into a cohesive
global map using a truncated signed distance field (TSDF) to
fuse the point clouds generated by each image. This allows for
reconstructing surfaces with significantly fewer sonar images
and viewpoints than previous methods. The proposed method
is evaluated by reconstructing a mock-up piling structure and
a real world underwater piling, in a test tank environment
and in the field, respectively. Our surface reconstructions are
quantitatively compared to ground-truth models and are shown
to be more accurate than previous state-of-the-art algorithms.

I. INTRODUCTION

The ability of acoustic waves to propagate through turbid
waters makes sonar sensors the de facto option for exte-
roceptive underwater sensing in poor visibility conditions.
Side-scan sonars have been used widely for many years
on autonomous underwater vehicles (AUVs) to image the
seafloor in order to perform large-scale localization [13],
mapping [9], and object tracking [38]. A newer class of
higher frequency sonars called imaging or forward looking
sonars (FLS) have been developed for sensing on a smaller
scale. Examples include the SoundMetrics ARIS [1] and
DIDSON [2] sensors. Like side-scan sonars, they have been
used in seafloor scenarios for image registration [3, 18, 21],
mosaicing [14, 33], mapping [20, 22, 30, 31, 39, 44], and
tracking [17]. However, unlike side-scan sonars, imaging
sonars are not restricted to the configuration of pointing
downward towards the seafloor. They have been mounted on
AUVs in a variety of configurations that allow for inspection
of more complex environments than seafloors [8, 19, 28].

The focus of this work is using imaging sonar for under-
water mapping with known poses. Specifically, we aim to
accurately reconstruct the surfaces of objects in underwater
scenes. A growing body of work has emerged in which
imaging sonars are used for this very purpose. The main
difficulty these algorithms must overcome is the sonar’s
elevation ambiguity. Each pixel in a sonar image corresponds
to a specific bearing (or azimuth) angle and range, but does
not measure the elevation angle, similar to a monocular
camera’s range ambiguity. Most previous approaches do not
attempt to resolve the elevation ambiguity, but rather assume
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Fig. 1: (a) The above-water portion of a pier piling, with the HAUV
preparing to scan. (b) A mesh model of the 3D reconstruction generated
by our proposed algorithm. The coordinate axes represent the vehicle and
sonar poses.

that a pixel measurement applies to the entire volume lying
along the elevation arc.

In this work we take significant steps towards the ulti-
mate goal of autonomous underwater mapping of arbitrary
structures using multibeam imaging sonar. Specifically, we
present:

• a general framework for reconstructing 3D objects from
a single sonar scan, by explicitly estimating the missing
elevation angle using a generative sensor model;

• a method of fusing surface measurements from multiple
viewpoints to create a cohesive object model;

• experimental results demonstrating the ability of our
proposed algorithm to accurately reconstruct underwater
piling structures using a robotic AUV platform.

The remainder of this paper is organized as follows:
Section II discusses previous approaches to the imaging
sonar mapping problem and the advantages that our proposed
method provides over them. Section III provides an intro-
duction to imaging sonar sensing and defines the problem
statement. Sections IV and V describe our proposed frontend
image processing and backend surface reconstruction mod-
ules, respectively. We present results from our experiments
in Section VI. Lastly, we summarize the contributions of this
work in Section VII and discuss the next steps in this line
of research in Section VIII.



II. RELATED WORK

A variety of algorithms have been proposed in recent years
to generate 3D surface models using underwater imaging
sonar. Teixeira et al. utilize a concentrator lens on a DIDSON
[2] sonar to narrow the sensor’s elevation aperture from 14◦

to 1◦ and assume that each point has zero elevation [41].
In this case, the sonar is treated as a single-line scanner.
While this technique has been used to generate large-scale
reconstructions, we aim to increase the accuracy and reduce
the time required to create such maps by utilizing much
richer images generated with a wide elevation aperture.

The principle of space carving (SC) has been applied to
generate dense 3D models from known poses [5, 7]. Rather
than using high intensity pixel measurements that correspond
to surface observations, space carving uses the low intensity
pixel measurements that correspond to free space to “carve
out” the unoccupied regions of the scene, ideally generating
a surface model that is an outer bound of the actual object
surfaces. Due to the fact that surfaces along a particular
bearing angle may occlude other surfaces lying at the same
angle but a longer range, this requires using the feasible
object region mask (FORM image), rather than the raw
polar coordinate sonar image. The FORM image segments
the image into the region from the sonar’s minimum range
up until the leading object edge as “free space”, and the
region from the leading object edge to the maximum range as
“possibly occupied”. Aykin et al. produce the surface model
by using the intersection of α-shapes corresponding to the
leading object edges. This framework has proven effective
at accurately reconstructing simple shapes when precisely
known poses are available in a laboratory environment.
However, the SC paradigm is incapable of reconstructing
a wide variety of complex shapes and discards most of the
information available from the sonar images.

A similar framework presents a slightly different imple-
mentation of space carving using voxel grids [15, 16]. Each
pixel in the sonar image is projected into the volume along
its elevation arc. Each voxel that it intersects tracks the min-
imum pixel value observed. An observation corresponding
to a low intensity pixel carves that voxel out of the model.
Occlusions are handled with a post-processing step, which
attempts to generate a model consisting only of points on the
object’s surface, discarding points from the object’s interior.
This approach, called “min-filtering”, suffers from the same
limitations as the SC method of Aykin et al. – namely that
generating an accurate model is highly dependent on having
a multitude of good viewing angles.

Similar to min-filtering, voxel grids have been used to
model the likelihood of occupancy under the occupancy
grid mapping (OGM) framework [43, 42]. Projecting the
pixels into the voxel grid, voxels are updated using an
inverse sensor model, which encodes how a pixel intensity
measurement corresponds to the likelihood of a voxel’s
occupancy. A threshold may be selected to classify the voxels
as free or occupied based on their filtered values. Like space
carving, this framework is dependent on having a variety of

Fig. 2: Simple sonar geometric sensor model. A point at location (θ, r, φ) is
projected along the red, dotted elevation arc into the zero elevation imaging
plane. However, all surfaces lying along the elevation arc may reflect sound
back towards the sensor and contribute to the intensity measured at the
corresponding pixel.

viewpoints which may not be possible to obtain. In fact, if
the FORM image is used to account for possible occlusions,
occupancy grid mapping can be seen as a generalization of
the space carving framework.

Several more recent algorithms have been presented that
attempt to infer directly from a generative sensor model.
Guerneve et al. [16] propose a linear approximation to
the nonlinear elevation aperture, which presents an efficient
solution to solve for 3D occupancy using blind deconvolu-
tion with a spatially-varying kernel. However, this method
requires precise motion from the sensor – pure translation
along the z-axis. Additionally, the linear approximation
holds well for sonars with a narrow elevation aperture, but
the quality of the reconstruction degrades as the elevation
aperture widens.

A body of work by Aykin et al. [4, 6] is, to the best of our
knowledge, the only work that aims to directly estimate the
elevation angle of each pixel in a sonar image. This method is
constrained to the scenario of objects lying on the seafloor.
Upon detecting the seafloor plane and manually extracting
object and shadow edges, the bottom and top 3D contours
of the object of interest may be easily computed. With these
edges bounding the object’s surface, the interior of the object
is iteratively “filled-in” based on the generative sensor model
and the actual sonar image intensities. This method has laid
the groundwork for our proposed algorithm, in which we
seek to apply generative model-based surface reconstruction
to arbitrary scenes, not just seafloor mapping.

In this work we seek to develop a method that does
not place restrictions on the sensor motion (e.g. pure z-
axis translation only, no motion), environment (e.g. seafloor
mapping only), or make linearization assumptions that break
down for wide aperture sensors. Our proposed algorithm
may be divided into two steps which are discussed in the
following sections: frontend image processing and backend
model-based surface reconstruction.

III. PROBLEM STATEMENT AND BACKGROUND

The problem we wish to solve in this work is as follows.
Given a set of polar coordinate sonar images, the poses
from which they were taken, and a generative sensor model,



produce a three-dimensional reconstruction of the imaged
surfaces. In this section, we describe the fundamentals of
the imaging sonar sensor and define the generative sensor
model that we use in this work.

To precisely define the sonar sensor model, consider a 3D
point in the frame of the sonar sensor:

p =

 X
Y
Z

 = r

 cos θ cosφ
cos θ sinφ

sinφ

 (1)

where (r, θ, φ) denote the spherical coordinates: range, bear-
ing (azimuth), and elevation. As shown in Fig. 2, this point
projects into the polar coordinate sonar image I (r, θ) at the
discrete pixel bin that contains the real-valued range and
bearing measurements:

r =
√
X2 + Y 2 + Z2 (2)

θ = atan2 (Y,X) . (3)

This simple projection accurately models the location of
a projected point or surface patch in the sonar image. A
generative sensor model must also describe how the imaged
surfaces produce the corresponding pixel intensities.

Ideally, the pixel intensity is influenced only by the
interaction of the sound waves with the imaged surfaces,
although in reality there are multiple confounding factors.
Assuming isotropic sound emission by the sensor, this ideal
model can be expressed generally as

I (r, θ) =

∫ φ=φmax

φ=φmin

1 (r, θ, φ) Ω (r, θ, φ) dφ (4)

where 1 (r, θ, φ) is an indicator function denoting the exis-
tence of an imaged surface at the 3D location and Ω (r, θ, φ)
encodes how the sound is reflected by the surface and
propagated back to the sonar [16]. Note that this model
disregards multipath returns, in which the sound reflects off
of multiple surfaces before returning to the sensor.

While a variety of reflection models have been used that
consider specular and / or diffuse scattering, the specular
component often may appear to be negligible due to the gen-
erally rough surfaces of underwater objects and the grazing
incident angles often used with sonar sensors [6, 25, 27]. In
this work we adopt a simple diffuse reflection model for all
imaged surfaces, assuming each pixel images a single surface
patch:

I (r, θ) = k cosm (α) (5)

where k is a normalization constant, 1 ≤ m ≤ 2, and α is
the angle of incidence between the incoming acoustic beam
and the surface normal of the patch. We assume that a time
/ range varying gain (TVG / RVG) has been applied to the
raw image to correct for the spatial spreading of the sound
waves. It is important to note that our proposed algorithm
may utilize any reflection model, not just the particular one
we have selected for our experiments.

(a) (b) (c) (d)

Fig. 3: The stages of our frontend image processing pipeline, demonstrated
on our test tank piling dataset. (a) The raw polar coordinate sonar image,
(b) denoising using anisotropic diffusion, (c) the surface segmentation using
MSER and (d) the binary surface mask applied to the denoised image.

IV. FRONTEND - IMAGE PROCESSING

The frontend of our system operates on each input sonar
image individually. The two goals of this module are: (1)
to denoise the sonar image and (2) to identify the pixels
that correspond to surface measurements. Upon completing
these steps, the denoised sonar image and the binary image
mask corresponding to object surfaces may be passed to the
backend for surface reconstruction.

A. Denoising

Sonar images suffer from significantly higher speckle
noise than optical images. Previous attempts to denoise sonar
images include averaging multiple images taken from the
same viewpoint [32]. Since our algorithm is targeted for
robotic underwater mapping, in which the vehicle and sensor
poses may not be precisely known or controlled, we seek a
method of denoising each image individually. To this end, we
adopt the procedure of anisotropic diffusion [37]. This step
blurs the image as in a standard Gaussian blurring process,
but preserves distinct edges in the image by scaling the
diffusion in proportion to the inverse of the image gradient.
This has been previously used with success as a denoising
step before detecting point features for sparse SLAM systems
[39, 44]. An example of the denoising process applied to a
sonar image of a mock-up piling (a rectangular prism shape)
is shown in Figs. 3a and 3b.

B. Surface segmentation

Convolutional neural networks (CNNs) have rapidly be-
come the de facto approach to image segmentation in the
field of computer vision [26]. Their emergence has been
made possible in part due to very large amounts of training
data available. Recent years have seen CNNs successfully
applied to sonar images for various tasks, including crosstalk
removal [40], object detection [23], and global context per-
ception [11, 12]. However, collecting a sufficient quantity of
sonar images for training is a significant challenge to the ap-
plication of these methods for underwater sonar perception.
While we perceive the future of surface segmentation to lie
in the field of machine learning, we leave this approach to
future work.
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Fig. 4: A side view of a sonar imaging a piling. A 2D cross-section of the
viewable frustum is depicted, which corresponds to a single bearing angle.
The imaged area of the piling is shown in dotted red. This depicts how the
elevation angle of the imaged surface increases or decreases monotonically
with increasing range.

We take a simpler approach to surface segmentation by
finding maximally stable extremal regions (MSER) [29] on
the denoised image. This is a blob detection algorithm that
we use to find large connected components with gradual
changes in pixel intensity. Each segmented component corre-
sponds to distinct, continuous surface imaged by the sensor.
An example of the MSER algorithm applied to a denoised
sonar image is shown in Fig. 3b - 3d. We denote the resulting
binary image surface mask as M (r, θ), where M (ri, θj) = 1
denotes a detected surface.

V. BACKEND - SURFACE RECONSTRUCTION

In order to generate a 3D reconstruction from a sonar
image and corresponding surface mask, several assumptions
must be made. We assume that the sonar and scene ge-
ometry are configured such that each pixel (elevation arc)
images a single surface patch. For simply shaped objects,
this assumption holds true when the sonar is positioned
at a grazing angle. We also assume that for a continuous
surface, the elevation angle along a particular bearing angle
either increases or decreases monotonically as the range
increases. A violation of this assumption would cause a self-
occlusion, and the corresponding pixels would presumably
not be classified as surface pixels by the frontend of our
algorithm.

Our approach is inspired by [4], which uses the 3D
locations of the leading and trailing object edges as ini-
tialization to iteratively refine the 3D object reconstruction
and update the generative model normalization parameter.
However, if the full generative model is known a priori, a
3D reconstruction can be obtained using just one object edge
as initialization.

A. Edge initialization

In this work, we focus our experiments on reconstructing
underwater piling structures, which are long columns that
support structures such as bridges or piers. We take advan-
tage of the fact that a piling spans the entire elevation field of
view of the sonar sensor, which is depicted in Fig. 4. As long

as the sonar is tilted at least φmax degrees from perpendicular
to the piling, each pixel’s elevation arc will image only one
surface patch. Furthermore, the closest detected surface patch
in each image column (discrete bearing angle bin), may be
easily determined to lie at elevation φmin. The same principle
may be applied to determine that the 3D position of the
trailing edge of the surface is at φmax. However, for larger
tilt angles, the structure may not span the bottom edge of the
elevation frustum. For the purposes of this work, we utilize
the less restrictive single edge initialization, which may be
applied to a variety of settings apart from piling inspection.

B. Dense 3D reconstruction

With the leading object edge located at φmin, the re-
mainder of the surface points in the image can be filled
in using constraints from the generative model. We follow
the general procedure described by Aykin et al. [4] but can
reconstruct the points in a single pass through the image,
without iteratively updating the normalization parameter.

The single pass through the image I (r, θ) is performed
row-by-row, beginning with the first row r0. We use the
shorthand Ii,j := I (ri, θj) and Mi,j := M (ri, θj), and use
pi,j to denote the 3D point in the sensor frame corresponding
to the pixel at Ii,j . Pixels in row ri are stepped through
column-by-column. If Mi,j , Mi+1,j , and either of Mi,j−1 or
Mi,j+1 are identified as surface pixels, then we can use con-
straints from the generative sensor model to approximately
compute the elevation angle of point Ii+1,j .

Assuming the elevation angle (and therefore 3D location)
of pi+1,j is known, we can compute the surface normal of
the patch at Ii,j using the cross product of the neighboring
3D points:

vij = dij × eij (6)

n̂ij =
vij
‖vij‖2

. (7)

Here, dij = pi+1,j − pi,j and eij = pi,j−1 − pi,j or
eij = pi,j+1−pi,j , depending on which pixel in neighboring
columns is identified as a surface pixel. Then using the vector
corresponding to the ray of incident sound from the sensor
p̂ij = pij/ ‖pij‖2, we can compute the angle of incidence
as:

α = acos (|n̂ij · p̂ij |) . (8)

We can then use the generative model in Equation 5 to
compute the model-predicted image intensity for the given
elevation angle.

We perform a search of discrete elevation angles taken at
uniform intervals from the range of feasible elevation an-
gles: [φi,j ,min (φi,j + ∆φmax, φmax)], where the maximum
change in elevation angle from pixel to pixel ∆φmax may
be manually tuned. We set φi+1,j to the elevation angle
with the smallest absolute error between the actual image
measurement and model-predicted intensity. If there are not
sufficient neighboring surface pixels to solve for pi+1,j , we
assume that φi+1,j = φi,j . This procedure proves to work
quite well for continuous surfaces, but may fail for images
with more complex, disjointly segmented shapes.



AADE (m) RMSE (m)

Dataset SC OGM Ours SC OGM Ours

Tank piling 0.033 0.038 0.0176 0.035 0.047 0.022
Field piling 0.136 0.152 0.039 0.168 0.207 0.047

TABLE I: Quantitative evaluation of three-dimensional object reconstruc-
tions from the test tank experiment. The two metrics we use are average
absolute distance error (AADE) and root mean square error (RMSE). Our
surface reconstruction method results in considerably more accurate surface
models than the baseline methods, according to these two metrics.

If the trailing object edge is known as well as the leading
edge, then the parameters of the generative model k and
m may be iteratively refined until the trailing object edge
determined by integrating the generative model aligns with
the known trailing edge, as in [4]. We leave this to future
work, however, as the trailing edges of the pilings in our
experiments are difficult to consistently localize.

C. TSDF integration

Given the high levels of noise in the sonar image that
remain after denoising and various unmodeled effects, the 3D
point cloud generated by a single image may be quite noisy
and inaccurate, even for simple structures such as pilings.

A truncated signed distance field (TSDF) is a volumetric
map representation that has been used to generate high
quality surface reconstructions from multiple noisy 3D scans
generated by RGB-D cameras [35] and laser scanners [10].
Since point measurements typically correspond to rays of
light or a laser beam, voxels are updated by stepping along
the ray from the sensor to the point measurement. Each
voxel tracks a value that is updated with a weighted, signed
distance of the voxel from the surface along the line of sight.
The zero crossings denote the estimated surface and a point
cloud or triangle mesh may be generated from the TSDF.

While the TSDF is a quite intuitive choice of map rep-
resentation for RGB-D sensors, in which each pixel corre-
sponds to a ray-based surface observation, it is not so obvious
a choice for the imaging sonar, where pixels correspond to
elevation arcs. However, it is a good fit for our framework
since we generate dense 3D surface measurements for each
pixel. Furthermore, each surface measurement is made by
acoustic waves propagating along the ray between the sensor
and surface patch. This allows us to use the standard TSDF
ray casting updates to fuse multiple surface measurements
into a more accurate global model.

VI. EXPERIMENTAL RESULTS

To evaluate the proposed system, we quantitatively and
qualitatively compare our 3D reconstructions from real world
test tank and field datasets to the 3D reconstructions resulting
from two baseline methods: SC and OGM. SC and OGM
are considered the leading state-of-the-art algorithms for
real-time 3D imaging sonar reconstruction. We compare our
proposed method to our own implementations of SC and
OGM, which use fixed-size voxel grids for mapping. Our
implementation of SC actually uses an OGM-like tracking
of the probability of occupancy, rather than min-filtering.

This allows for using a tunable threshold to acquire object
points and to make the algorithm more robust to errors in
the sensor pose and FORM image segmentation. For both
baseline methods, the threshold to distinguish occupied from
free voxels was tuned to generate the best reconstruction. Our
proposed framework uses Voxblox [36] which implements
spatially-hashed voxels [24, 35] for memory-efficient TSDF
integration. For our proposed reconstruction method, we dis-
card surface measurements from the outer 20% of columns
on either side of the image, as the image intensity does
not adhere to the generative model well due to anisotropic
emission by the sonar.

The imaged targets in these experiments are a mock-
up and a real-world piling. While these objects consist of
approximately planar segments, our proposed method does
not make any planarity assumptions.

Both the test tank and field datasets were recorded using
a SoundMetrics DIDSON imaging sonar [2] mounted on a
Bluefin Hovering Autonomous Underwater Vehicle (HAUV).
Actuators allow us to tilt the DIDSON through a 90◦ range
of motion. A spreader lens is used to increase the elevation
aperture φmax − φmin from 14◦ to 28◦. Poses are acquired
from the proprietary vehicle navigation and the actuator
encoders. The vehicle odometry is highly accurate for short-
term localization but inevitably drifts over time. For this
reason, we only image two faces of each piling – the drift
that accumulates from circumnavigating the entire piling is
too great for mapping with known poses.

A. Test tank experiments

We imaged a mock-up piling of dimensions approximately
0.61 m x 0.61 m x1.83 m. We image two faces of the piling,
tilting the sonar between approximately 20◦ and 50◦ from
the horizontal, which allows the sonar to cover the entirety
of the piling, except the small portion that passes through the
top of the viewing frustum. Voxel grids for all reconstruction
methods use a voxel size of 2.5 cm, including the TSDF,
to produce reconstructions in real time at 5-10 frames per
second. The generative model parameters k = 0.37 and m =
1 were used to model the acoustic reflection properties of the
mock-up piling. Upon generating the 3D reconstruction, the
surface points from each model are extracted and aligned to
a ground truth model with ICP. The ground truth model was
obtained using a FARO Focus3D survey laser scanner.

Fig. 5 shows top-down and isometric views for the three
evaluated reconstruction methods. The point clouds are col-
ored according to the point-to-plane error evaluated during
ICP alignment, with the same color scale used across all
three models. The top-down views show how SC and OGM
fail to “carve out” space in front of each piling face. This
causes the reconstructed surface to bulge out towards the
bottom of the piling. On the other hand, our proposed method
fuses the estimated 3D point clouds from each input image
to generate a rather accurate estimate of the surface. While
some inaccuracies in the resulting surface exist, there is no
prominent bulge or spreading of the surface towards the
bottom of the piling - both faces of the reconstructed piling
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Fig. 5: 3D reconstructions of the mock-up piling from our test tank experiment. The gray cloud depicts the ground-truth model generated by a survey
laser scanner. Colored points are the sonar reconstruction, with blue encoding low point-to-plane alignment error and red encoding high error. (a) - (c)
Top-down views of the reconstructed point clouds of the SC, OGM, and Proposed algorithms, respectively, compared to the ground truth model. (d) - (f)
Isometric views of the same reconstructions.

are quite close to vertical and planar.
Furthermore, we quantitatively evaluate the error of the re-

sulting models using average absolute distance error (AADE)
and root mean square error (RMSE) of the point-to-plane
error metric. Table I shows that our method significantly
increases the accuracy of the surface estimate compared to
SC and OGM.

B. Field experiments

As the ultimate goal of this work is to enable robotic
mapping and inspection of real world environments, we
conducted field tests to reconstruct a pier piling in a harbor
environment. Since the piling is larger than the one used in
our test tank, voxel grids for all algorithms use a voxel size
of 10 cm to maintain real-time reconstruction. The generative
model parameters k = 0.28 and m = 2 were used to model
the acoustic reflection properties of the piling. A photo of
the piling and the mesh reconstruction generated by our
algorithm are shown in Fig. 1. As a ground-truth model
is not available for such a piling, we manually measured
the width of the piling underwater (69 cm), and assume a
purely rectangular prism shape. The shape of the piling is
somewhat distorted by biofouling, as is visible in the photo,
but the rectangular prism model remains a rather accurate

estimate. Similar to the tank piling, we imaged two faces of
the piling, as the vehicle state estimate drifted too much for
a full circumnavigation.

Fig. 6 shows the same top-down and isometric views as
for the tank piling dataset. SC and OGM clearly cannot
accurately reconstruct the piling surface below a depth of 2.5
m, while our algorithm reconstructs a rather planar surface
all the way to a depth of 5 m. Table I demonstrates the
quantitative improvement in our reconstruction’s accuracy,
as evaluated against the ideal piling model.

We note that while SC and OGM may theoretically be
able to generate a surface estimate of these simple structures
with accuracy comparable to our method, this would require
obtaining a much wider variety of viewpoints. For real-
world experiments, this would mean longer mission times
and potentially higher state estimate uncertainty.

VII. CONCLUSION

In this paper we have presented an algorithm for mapping
with known poses using imaging sonar and a generative
sensor model. Using very general prior information about the
environment, the 3D location of the leading object edge may
be accurately determined. Using this edge as initialization,
the generative model may be used to fill-in the rest of the
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Fig. 6: 3D reconstructions of the real-world piling in the field. The gray-scale cloud depicts the ideal model according to our measurements of the piling.
Colored points are the sonar reconstruction, with blue denoting low point-to-plane alignment error and red denoting high error. (a) - (c) Top-down views
of the reconstructed point clouds of the SC, OGM, and Proposed algorithms, respectively, compared to the ground truth model. (d) - (f) Isometric views
of the same reconstructions.

object surface. Using known sensor poses, the point clouds
resulting from each input image are fused in a global model
using a TSDF to smooth the surface estimate. We have
demonstrated experimentally that our proposed method can
outperform the existing state-of-the-art algorithms in terms
of accuracy and that it requires fewer viewpoints and images
to generate a surface model.

VIII. FUTURE WORK

This line of work may be extended to increase both the
accuracy of the resulting surface maps and the complexity
of surfaces that are capable of being reconstructed. Our
proposed method assumes that the leading object edge in the
sonar image may be triangulated accurately, but it remains
unclear how to accurately localize such edges when the
object does not extend through the sonar’s elevation field of
view. Additionally, our method relies upon the sonar images
strictly adhering to the provided generative sensor model,
when there are multiple factors that cause real-world sonar
images to deviate from the theoretical model. Future work
ought to investigate procedures for accurately calibrating
the sonar sensor to characterize these effects and produce
a more accurate generative sensor model. This future work

also ought to consider non-diffusely reflecting materials and
structures.

Of particular interest is the general framework of optimiz-
ing the surface model (and possibly sensor poses) using a
generative model and multiple image measurements rather
than fusing the surface models from each individual frame.
This approach has been previously investigated but using
only a single, simulated image to optimize a rough initial
surface estimate [34]. Furthermore, the procedure assumes
that a sufficiently accurate initial surface estimate is pro-
vided using space carving. However, serious doubts remain
regarding the effectiveness of space carving in generating
an accurate initial surface model for real-world applications.
Other initialization methods, such as utilizing motion cues
or a search of the feasible space of solutions, should be
investigated in future work. A generalized edge initialization
procedure would also enhance the versatility of our proposed
algorithm.
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